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Abstract—Machine learning (ML) has made incredible impacts
and transformations in a wide range of vehicular applications. As
the use of ML in Internet of Vehicles (IoV) continues to advance,
adversarial threats and their impact have become an important
subject of research worth exploring. In this paper, we focus
on Sybil-based adversarial threats against a deep reinforcement
learning (DRL)-assisted IoV framework and more specifically,
DRL-based dynamic service placement in IoV. We carry out an
experimental study with real vehicle trajectories to analyze the
impact on service delay and resource congestion under different
attack scenarios for the DRL-based dynamic service placement
application. We further investigate the impact of the proportion
of Sybil-attacked vehicles in the network. The results demonstrate
that the performance is significantly affected by Sybil-based
data poisoning attacks when compared to adversary-free healthy
network scenario.

Index Terms—Sybil attack, deep reinforcement learning, ser-
vice placement, multi-access edge computing, internet of vehicles.

I. INTRODUCTION

INTERNET of Vehicles (IoV) witness promising develop-
ment in vehicular designs by globally extending the acces-

sibility and availability. The broader connectivity and wider
interoperability of devices require modern control methods.
Thus, the research evolves to incorporate artificial intelligence
(AI) and machine learning (ML) into IoV applications [1].
Driven by the dynamic nature of vehicles, deep reinforce-
ment learning (DRL) has been a breakthrough technique for
interactive and continual decision-making in IoVs. The use
of DRL and its variants are widely explored in the literature
to provide solutions toward motion planning and control,
resource sharing, service placement, scheduling, security and
many other aspects of vehicular networks [2]–[4].

Technological advances and innovation always bring in
opportunities as well as limitations. The adversarial ML attack
is one such limitation which is becoming an active area of
research as ML grows to play a crucial role in a number of
applications. The research predicts that 30% of all cyberat-
tacks will be adversarial attacks by 2022 [5]. According to
one survey, Microsoft shares that 90% of businesses don’t
have enough tools or techniques to secure their ML-operated
systems [6]. The fact that ML is used to secure several other
systems and frameworks, the security of the ML model itself
has received little attention. Such attacks, their impact, their
detection and prevention in the context of IoV applications are
not much explored in the literature. With the advent of vehicle

automation which involves the use of ML and its variants to
perform services like motion planning and vehicle control,
an adversarial attack may result in long delay and resource
congestion leading to dire consequences of catastrophe in
vehicles and danger to human lives. In this paper, we focus
on the adversarial attacks on DRL framework in IoVs.

Fig. 1: Three-layer IoV Network Architecture

DRL is a category of ML which combines deep learning
(DL) and reinforcement learning (RL). RL is an objective-
oriented algorithm. It learns a policy regarding how to achieve
an objective and how to maximize it as system progresses. The
actions which help to get the targeted objective are reinforced.
In DRL, the policy is a neural network, and its framework
contains an agent that interacts with the environment as it op-
erates and makes a decision by rewarding the desired behavior
and punishing the undesired one. The continual interaction of
the DRL agent with the end-user exposes it to the number
of adversarial attacks [4], [7]. The assumption of having a
secure environment to interact is not satisfactory in vehicular
applications where misbehavior from an attacker can be life-
threatening in case of accidents in vehicles.

Data poisoning attacks like label flipping, backdoor attack,
and model poisoning attack are very common adversarial
attacks and explored in the literature for vehicular applications
[4]. In the context of DRL, where each time user feedback is
collected to calculate reward, the effectiveness of an attack can
increase using Sybils. A Sybil-based attack is an impersonation
attack in which a malicious vehicle masquerades as a set of
vehicles by stealing or borrowing the identities of legitimate
users, or by creating fake ones [12]. Sybil attack is easy to
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execute in mobile IoV networks where the communication is
wireless, broadcast, and dynamic. When Sybil attack overloads
the network with fake poisonous messages it can also lead to
other attacks such as denial of service (DoS) attacks or replay
attacks.

The Sybil defense schemes in the literature are not much
effective for mobile networks due to the lack of historical
behaviors in attack detection schemes [8]. In addition, the
traceability of Sybil nodes is also difficult because of the
high mobility of vehicles. There are also proposals on using
privacy-preserving schemes, trust-enabling, and other attack
detection methods to protect against Sybil attacks [9]–[11].
Nevertheless, it is possible to craft well-trained intelligent
Sybil attacks over the internet of things (IoT) which impose
more serious threats and make it difficult to devise a de-
fense mechanism to prevent or detect Sybil nodes [12]. Not
limited to this, there are studies which show the possibility
of successful launching of Sybil attacks on mobile networks
[13]. Despite being a critical threat, the study on impacts of
Sybil-based data poisoning attack and its defense against DRL-
assisted mobile IoV network is not much explored.

In this work, we study the problem of adversarial attacks
on a DRL framework. Specifically, we study the Sybil-based
data poisoning attacks in the context of DRL-based service
placement mechanism in IoV, investigate the impacts on
decision making and evaluate the delay perceived by vehicles
and edge resource usage when the network is under attack.
We consider a three-layer IoV architecture, as shown in Fig.
1. The DRL framework is deployed at the Multi-access Edge
Computing (MEC) layer. It consists of the DRL agent, where
actor network and critic network are the primary functions to
perform an action and evaluate decision quality value. The
agent has direct interaction with the time-varying data layer
of the IoV environment. In the proposed service placement
technique, the agent receives delay as feedback from the envi-
ronment to calculate quality values, and carry out decisions on
effective service placement in a dynamic vehicular network.
In case of data poisoning, the adversary tries to disrupt the
network performance, misguides the DRL mechanism and
affects it’s decision by sending fake data (i.e. replacing long
delays with small delays) in the feedback using Sybil nodes.
The fake delays will lead to improper placement of services
at edge nodes. To quantitatively analyze the impacts of wrong
decision making on service delay and edge resource usage, we
carry out a comprehensive experimental study with real-world
vehicle trajectories. We further investigate the impact of the
proportion of Sybil-attacked vehicles with different choices of
types of services under attack when compared to attack-free
healthy network scenario.

II. SYSTEM MODEL

The hierarchical architecture of our proposed IoV network
model is shown in Fig. 1. It consists of three layers that
include data layer, MEC layer, and cloud layer. At the data
layer, a city road environment with a real journey of taxis
in San Francisco is used. The vehicles are mobile, which are

assumed to generate service requests with a certain rate for
a type of service. A service is a facility like CAM (coopera-
tive awareness message) service, teleoperated support service,
media downloading/sharing service, etc. Vehicles use these
services to get assistance in different tasks related to driving.
Each service/application has its own deployment requirements
in terms of resource and delay defined by the standardizing
bodies for well-timed and effective provisioning of a facility.

We also assume each vehicle 𝜈 is equipped with necessary
sensors like clock and GPS, which enable it to provide relevant
information. The attacks are assumed to take place at the data
layer. The attack model is discussed in Section IV. For the
MEC layer, we assume the IoV network environment is under
5G coverage using evolved NodeB (eNB) stations. There are
multiple eNBs equipped with edge servers that extend the
capabilities (storage and compute) of the cloud and bring
them closer to the end user. The resources available at the
edge required to provide services are limited. A DRL-based
dynamic service placement algorithm (discussed in Section
III) is deployed at the MEC layer to facilitate vehicles with
multiple requested services. Additionally, the edge network
connects to the large capacity cloud layer via a backbone
network. We assume adequate links between different layers,
nodes, and servers are available to enable communication
among them.

III. DRL-ASSISTED SERVICE PLACEMENT FRAMEWORK

In our recent work [14], we developed a DRL-based dy-
namic service placement framework for IoVs. In this paper,
we use this framework to study the problem of Sybil-based
data poisoning attacks and evaluate the impact on vehicular
services. The architecture of the service placement approach
is shown in Fig. 2.

Fig. 2: DRL-assisted Service Placement Framework

The framework consists of a DRL agent over the edge
network. Here, the actor network and critic network are the
agent’s primary functions to perform an action and evaluate
decision quality value. The agent has direct interaction with
the time-varying IoV environment. We use an ILP-based
optimization at the actor network to perform optimal service
placement. Further, the design involves state space 𝜔, action
space 𝔞, policy, and reward/feedback function R, as shown in
Fig. 2. The state space 𝜔 describes the network environment
in terms of the service request message. A service request is
defined as a 4-tuple structure containing the information on



vehicle ID, type of service requested, location of the vehicle,
and time. In return, considering the demand at a given time and
the location of vehicles requesting services, the policy function
comes into action to select the edge servers for the placement
of services based on the action strategy. Therefore, the action
space 𝔞 describes the action taken by a policy function for the
placement of service over an edge node.

In this framework, the policy function optimizes the objec-
tive function subject to different constraints. The objective is to
minimize the maximum edge resource usage and service delay,
with the control of the relative importance of resource usage
vs. service delay by using a parameter 𝛼. The rationale for
using resource usage is to efficiently utilize the limited edge
resources and decrease the possibility of congestion so that
the edge node has enough room for service instance scale-up
in case of increased future demands. From the perspective of
a user, minimizing the maximum delay will help to satisfy
adequate delay requirements and make service availability
faster for the vehicles. At each time unit, in response to
the action taken by an actor network, the system receives
an immediate reward R(𝜔, 𝔞) from the environment. The
reward/feedback function used in our framework is calculated
as:

R(𝜔, 𝔞) = E
[
𝑑𝑠𝑒 (𝑡)

]
(1)

where 𝑑𝑠𝑒 (𝑡) is the average service delay observed by a set
of vehicles in accessing service 𝑠 from the associated edge
server 𝑒 at time unit 𝑡. The objective of reward values in
our framework is to maintain low service delay observed
from vehicles in accessing a service. Here, the reward is
an important parameter to enhance the performance of the
time-varying IoV network for future actions. This impacts
the performance of the DRL framework in the case of false
information due to attacks over the environment

Further, the critic network is responsible for calculating
the quality value 𝑄(𝜔, 𝔞) of the decision taken by the ac-
tor network. A high 𝑄(𝜔, 𝔞) means a high-quality decision.
Therefore, an actor has to select actions with the maximum
quality value, 𝔞 = arg max 𝑄(𝜔, 𝔞). However, the performance
of the critic network highly depends on the feedback (rewards)
from the environment. In this design, the critic network is a
neural network, and the input of the neural network include a
state 𝜔, action 𝔞, and reward R. The critic network updates its
parameters 𝜃 to minimize the mean square loss function L𝑄.
The loss function is computed as:

L𝑄 (𝜃) = 1
N

N∑︁
𝑖=1

[
(𝑦𝑡𝑖 −𝑄𝑖 (𝜔, 𝔞; 𝜃))2] (2)

Here, 𝑦𝑡 is a target value and N is the batch size used to update
the critic network parameters. The DRL agent further uses a
replay memory. It is used to store the experience for training
the critic network. The critic network uses replay memory to
fetch experience after a random period 𝑇 and optimizes the
network parameters for better performance. Once the network
is trained, the procedure for decision making gets simple.
Altogether, the trained critic network is used by the DRL agent

to observe the state and perform an action for which the quality
value is maximum. Later, it obtains a reward and observes a
new state to facilitate traffic for the next time unit and so on.

IV. SYBIL-BASED DATA POISONING ATTACK MODEL

The data poisoning attack is an integrity attack which
pollutes the ML model’s input data and impacts its ability of
decision making. In the case of DRL-assisted service place-
ment, the vehicle to edge (V2E) communication is responsible
for providing feedback to the DRL. The data poisoning attack
over V2E communication is a serious threat where the deci-
sions are based on real-time interaction with the environment
and the effectiveness of an attack can increase using Sybils.
Here, the Sybil node is an impersonation node in which a
malicious vehicle masquerades as a set of vehicles by stealing
or borrowing the identities of legitimate users. It is hard to
detect and easy to execute in mobile IoV networks [8]. The
attacker can easily degrade the network performance with
data poisoning and disrupts the services which are crucial for
driving-related decisions.

There can be trained attackers or amateur attacks. Sybil
nodes are also classified into three different classes, i.e. SA-1,
SA-2, and SA-3 [8], depending on the type of network under
attack. Here, SA-1 and SA-2 are for static networks. The SA-
3 type is for mobile networks. Due to the dynamic nature of
the IoV environment, in this work, we use SA-3 where Sybil
nodes are mobile and distributed throughout the network. We
assume a compromised-node can launch SA-3 attacks where
the identities of legitimate vehicles are purposely stolen. The
stolen identities can easily be hidden and remain undetected
if the imitated vehicles are temporarily restricted from the
network. We assume that the adversary can gain access to all
the information related to a vehicles whose IDs are stolen [12].
Moreover, compromised identities will also help an attacker to
easily pass all security checks of the network. The adversary
is then able to reprogram the vehicle to behave maliciously by
performing data poisoning and sending fake information to the
network. In the case of service placement, we use fake reward
values (i.e. replace long delays with small delays) which are
sent back to the DRL agent to make it taking wrong decisions
on quality values, which will lead to improper placement of
services at the edge.

Fig. 3 illustrates an example scenario of a Sybil-based data
poisoning attack over three vehicles. The number inside the
small circle represents the vehicle’s identity. We assume the
vehicles with identity numbers 3, 4, and 5 are under a Sybil
attack. We further suppose that vehicles 1, 2, 3, 4, and 5
are under coverage and accessing service X from the edge
node. When there is no attack, the table shows a high delay
observed by three vehicles out of five vehicles. Considering
this, it can be observed by the edge node that many vehicles
are leaving the coverage which requires relocation of service X
or installation of a new instance of service X at another edge
node, which is closer to the vehicles. The new location for
service X will be calculated by the actor network, as discussed
in Section III. On the contrary, when the network is under



attack, the attacker intrudes the network by compromising
vehicles 3, 4 and 5, and uses these identities to launch data
poisoning and send fake delay values in the feedback. The fake
values are smaller delay values from the valid range of possible
observed delay values in the given scenario. This obscures the
edge network, and it interprets that the network performance
is good and vehicles can continue service X from the same
edge node. Thus the vehicles continue to receive poor service
which is undesirable.

Fig. 3: Illustration of the Sybil attack in IoV

V. PERFORMANCE EVALUATION

We carry out a comprehensive performance study on the
real-world dataset to evaluate the impacts of attack.

A. Experimental Setup

The simulations are carried out using the MATLAB plat-
form. The vehicle trajectories are obtained from a real-world
vehicle mobility dataset, provided by crawdad [15]. The data
is generated from 500 taxis traveling the city of San Francisco.
The choice of the dataset is significant, as it is an urban
environment with high traffic densities. From the big city
area given, we extract an area of 10𝑥10𝑘𝑚2 for use in our
experiments, as shown in Fig. 4. Each taxi is equipped with
a GPS sensor and uploads its geo-coordinates record in real-
time to form the vehicle trajectories. Each location updated to
the central server includes a timestamp, vehicle identifier, and
geo-coordinates.

Further, a uniformly distributed and randomly chosen choice
of service is added to a record to form a service request
message sent from each vehicle to the edge network. In total,
there are 8 types of services with their pre-defined resource
requirements 𝑅𝑠 and delay thresholds 𝐷𝑠 , as shown in Table. I.
The delay threshold represents the maximum allowable delay
for each service. The fake delay value 𝑓𝑑 is chosen from the
range of values used to poison original values. The DRL agent
which receives the service request message is deployed at the
edge. At the MEC layer, there are 6 eNBs, each equipped
with edge servers with the capability to place multiple ser-
vices while satisfying the resource requirements, i.e., the total
resources consumed by services

∑
𝑅𝑠 to be placed must be less

than the available resources at that particular eNB server 𝐶𝑒.
The design parameters for DRL agent neural network design
and optimization algorithm are the same as discussed in [14].

Fig. 4: The experimental coverage area

In our experiment, first, the attack-free network scenario is
considered wherein all vehicles are assumed to be legitimate
and the network performs effective service placement deci-
sions. The results collected in attack-free scenarios are called
as no-attack (NA) in this paper. In case of an attack, different
proportions of vehicles under-attack (UA) are chosen for
performing multiple experiments. At first, the Sybil attacker
acquires a set of valid identities, called Sybil identities, in
the node compromise phase. The next phase is the attack
deployment phase, wherein we randomly pick locations to
deploy malicious nodes throughout the network. We do not
restrict all attacked vehicles within a limited region or the
same neighborhood. Finally, to launch attack, the fake delay
(but in the valid range) information (i.e. low delay values)
is sent back to the DRL agent as a reward for Sybil nodes.
We assume the attacker is smart enough to calculate the valid
range of delay in a given scenario.

TABLE I: Simulation Parameters

Parameters Value Parameters Value
Services 8 𝑅𝑠 (𝑈𝑛𝑖𝑡) [5 10 15 20 25 30 35 40]
Vehicles 500 𝐶𝑒 (𝑈𝑛𝑖𝑡) [60 70 80 90 100 100]
eNBs 6 𝐷𝑠 (𝑚𝑠) [14 16 18 20 22 24 26 28]
time 1 to 900 𝑓𝑑 (𝑚𝑠) {3,4,5,6,7,8,9}

B. Results and Discussion

In this section, we evaluate the impacts of the attack in terms
of five different performance metrics that include, number of
re-optimizations, average service delay, average service delay
of targeted vehicles, edge resource usage, and fairness (Jain’s
index [16]). We investigate the effect for different proportion
of Sybil vehicles. We use 10%, 20%, 30%, 40%, and 50% as
the proportion of vehicles under attack. Further, we study two
scenarios; case 01 is ”Attack-Any”, we consider all vehicles
with any type of service request are under attack; case 02 is
”Attack-Selective”, we assume selected vehicles, i.e. vehicles
requesting for service 1 to 4 only, are under attack. For each
experiment, we conduct 5 runs with different random seeds
and plot the average results.

We first investigate the impact of different proportions of
attacked vehicles on the number of re-optimizations in both



cases, as shown in Fig. 5. This metric gives the number of
times the framework re-optimizes within the total duration of
the experiment. The first bar with the label of no-attack (NA)
scenario shows that in the absence of attacks, an average of
87 re-optimizations are needed to maintain good performance
in both attack-any and attack-selective cases. On the other
hand, in case of an attack, with the increasing proportion of
attacked vehicles the number of re-optimizations decreases.
This is because data poisoning with low delay values make the
DRL think that high level of service quality is perceived by the
vehicles. This force the critic network to give a high-quality
decision, which makes the agent to decide on continuing with
the same service locations for most of the time. When the
50% of traffic is under attack, the number of re-optimizations
reduces to 1 and 2 in attack-any and attack-selective case,
respectively. This renders the DRL framework’s functioning
completely ineffective.

(a) Attack-Any (b) Attack-Selective

Fig. 5: Number of Re-optimizations

Fig. 6, 7 and 8 depict the average service delay for all
vehicles, the targeted vehicles of attack-any case, and the
targeted vehicles of attack-selective case, respectively. Here,
the targeted vehicles mean the vehicles whose IDs are stolen
to create Sybil nodes. This metric calculates the average delay
experienced by vehicles for availing different services. Fig. 6a
plots the performance for attack-any case where the attacker is
amateur and attacks randomly-chosen vehicles without taking
note of any further information. In general, the delay is
higher for most of the services in an attack scenario than
in a no-attack scenario, but the pattern of observed delay is
quite random. This is because with insufficient amount of
information a random pattern of services is attacked during
each time unit. However, even with the little information,
an adversary is successful to disrupt the functioning of the
DRL algorithm by increasing the average delay for multiple
services.

On the contrary, in attack-selective case, when an attacker
follows a fixed pattern of services to attack, a significant
impact is observed over the delay. The higher proportion of
attacked vehicles inevitably increases the average observed
delay for all vehicles requesting that service. Additionally, the
DRL agent is no more effective to satisfy the delay threshold
requirement for the attacked services. In Fig. 7 and 8, we plot
the delay for the targeted vehicles only. In attack-any case,
the delay observed shows an increase of up to 30% for few
services. However, in attack-selective case, the delay for the
attack scenario is always higher with an increase of up to

90% by maliciously reducing the feedback signal of selected
services only. Such an increase in delay due to adversarial
attacks over DRL can be much serious when the requested
service performs critical tasks related to driving.

(a) Attack-Any (b) Attack-Selective

Fig. 6: Average Service Delay

Fig. 9 plots the edge resource usage which is measured as
the percentage of resources that the instance(s) of services will
consume after the placement at the edge node. The resources
at the edge servers are limited and thus are important to be
utilized efficiently. The impact of adversarial attacks over the
DRL framework is much more sensitive for the edge resource
usage. With the increasing proportion of attacked vehicles,
the imbalanced deployment of resources across the edge nodes
increases linearly. Defending the adversarial attacks over DRL
is important because ineffective distribution of edge resources
may result in congestion and failure to deliver a service in the
case of increasing future demands for the deployed service.

To quantitively measure the fair and balanced resource
consumption, we plot fairness in Fig, 10. We use Jain’s index
as a fairness measure in this work [16]. The resource utilization
is fair when the index value is higher. As can be observed from
Fig. 10, the fairness decreases for both cases as the attack
becomes more pronounced with increasing Sybil nodes. In
the NA scenario, the fairness is substantially higher compared
to all other scenarios. The attack over DRL results in wrong
placement decisions which cause significant load imbalance
among the edge nodes. This is undesirable, as it may cause
bottleneck at any single server given the limited resources of
edge.

VI. CONCLUSION AND FUTURE WORK

Security of ML algorithms and their variants is an important
and active area of research today. With the focus on the adver-
sarial attack against the DRL framework in IoV, we show that
a simple attack can have a significant impact when security
measures are not taken into account. In this paper, we studied
the problem of adversarial Sybil-based data poisoning attacks
against a DRL-based IoV network. Specifically, we considered
a DRL-based service placement application to evaluate the
impacts on decision-making and network performance in the
presence of Sybil nodes. An extensive set of experiments
was carried out to show the performance degradation where
vehicles experience poor delay and resource congestion when
the network is under attack. Such attacks can have devastating
effects when the services are performing critical tasks related



(a) (b) (c) (d) (e)

Fig. 7: Average Service Delay of Targeted Vehicles - Attack-Any

(a) (b) (c) (d) (e)

Fig. 8: Average Service Delay of Targeted Vehicles - Attack-Selective

(a) Attack-Any (b) Attack-Selective

Fig. 9: Edge Resource Usage

(a) Attack-Any (b) Attack-Selective

Fig. 10: Fairness in Resource Usage

to vehicle driving. Considering the findings and insights from
our study, in the future, we plan to work on developing pre-
processing techniques in conjunction with the DRL model to
detect or minimize the effect of such adversarial attacks on
the DRL framework.
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