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Abstract—By considering the dynamicity and complexity that
is present in modern Socio-Environmental Systems along with the
misalignment in the usage of terms that are used by scientists in
different disciplines, there is a need to support new ways of mod-
elling and analysis based on the establishment of synergies and
the collaboration among scientists. To address this challenge, we
present a novel paradigm for modeling of Socio-Environmental
Systems that aims to enable interdisciplinary scientists to realise
participatory, reproducible and easily extensible modelling and
analysis, across different temporal and spatial scales. To concep-
tualize the overall paradigm, emerging technologies for knowl-
edge management and analysis are exploited, such as Knowledge
Graphs and Machine Learning techniques. Knowledge Graphs
are used as a variant of a semantic network, where constraints,
structural elements and characteristics of nodes and links are
continuously evolving. Machine Learning techniques are used
for populating the Knowledge Graph with different types of
data, as well as supporting analysis and inference processes over
the produced knowledge. A proof of concept scenario has been
implemented, focusing on the tracking of indicators specified in
the Sustainable Development Goals.

Keywords—knowledge graph, participatory modeling, socio-
environmental system, machine learning, sustainable develop-
ment goals

I. INTRODUCTION

Nowadays, we have reached a critical point where human
communities are having a drastic impact on natural envi-
ronments, and vice-versa, the natural phenomena affect our
societies in an unprecedented manner. The fundamental and
unavoidable interplay between natural and societal systems
needs to be jointly modelled and analysed to understand the
basic underlying factors that will enable us to gain different
capacities of control over it in the future, while ensuring a
more virtuous cycle between human communities and natural
environments.

Participatory Socio-Environmental Systems (SES) modeling
is emerging, as an approach to characterize and explore
complex societal and environmental issues in systematic and
collaborative ways. Participatory SES modeling has an inter-
disciplinary perspective, integrating knowledge from various
disciplines into conceptual and computational tools that can
help to investigate complex problems among human and
natural systems [1]. It can be applied over modern SES, that in

many cases can be viewed as Socio-Cyber-Physical Systems
(SCPS) [2], and as such present several of the characteristics
and challenges of the dynamic, evolving, complex systems.

To support participatory SES modeling, a set of chal-
lenges have to be tackled, as detailed at [1]. Due to the
interdisciplinary nature of SES modeling, it is important to
bridge concepts coming from the epistemological pluralism
across disciplines. Continuously evolving, interdisciplinary
and semantically-expressive data representation schemas have
to be developed and maintained, considering concepts related
to environmental resources management (e.g., conceptual rep-
resentation of pollutants, water/air quality indicators, pollu-
tion levels), cognitive, behavioural and group dynamics (e.g.,
cohesion levels, behavioural change, environmental friendly
lifestyle), environmental economics and policies formulation.

Even by harmonizing terms among the various disciplines,
the dynamicity of the considered systems and models makes
challenging the mapping of the available data to well-defined
concepts. There is a need for representation and analysis of
rather diverse data in terms of volume, structure, spatial and
temporal granularity and above all, source of origin. Repre-
sentation and validation of concepts is a dynamic process,
where data and models should be managed and interlinked
as they change, while missing attributes, real causal links and
relationships may be identified and assessed on-the-go. In this
direction, novel techniques of treating and accounting for het-
erogeneous and diverse in nature and volume data, along with
the emerging advances in computational power capabilities,
are fundamental enablers in offering a new paradigm shift
towards embedding intelligence in traditional environmental
modeling.

To improve prediction of SES evolution in terms of ac-
curacy and depth, considering their dynamic nature, novel
analysis methodologies are required taking advantage of graph
networks analysis and machine learning (ML) techniques.
Identification of sources of uncertainty is critical, whether
this is due to the model structure or the collected data.
Uncertainty types and sources have to be identified, prioritized
and managed throughout the whole modeling process [1].
Environmental impact assessment has to be realized and trans-
lated into quantifiable effects for the environmental problem
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in question. Furthermore, there is a need to track and improve
the interaction between humans and the environment, consid-
ering continuous feedback loops through observing systemic
changes, as well as changes in perceptions and attitudes.

A. Contribution and Outline

The aforementioned challenges create the need to introduce
new ways for managing the plethora of data collected by smart
environmental sensing systems and national or international
observatories. A fundamental modeling transformation has to
be introduced at the data provision level, where we move from
the traditional data world perspective towards a knowledge
world perspective. Towards this direction, in the current work,
we detail a novel participatory modelling paradigm, aiming
to enable interdisciplinary scientists to realise participatory,
reproducible and easily extensible SES modelling and analysis,
across different temporal and spatial scales.

To achieve so, we take advantage of emerging technologies,
namely Knowledge Graphs (KGs) [3] and Machine Learning
(ML) techniques. A KG is considered as a variant of a
semantic network, where constraints, structural elements and
characteristics of nodes and links are continuously evolving
based on the processing of the collected data. KGs are essential
for organizing available data, discovering and representing
relationships, and enabling inference and knowledge extraction
in a comprehensive manner and in its full capacity. Semantic
consistency is introduced, considering the ontological differ-
ences across disciplines. ML techniques are used to support
data fusion mechanisms for mapping data to knowledge in the
KG, as well as for analysis purposes for extracting insights
based on the data made available in the KG.

Following, upon a short overview of the concept of KGs,
the overall approach for enabling participatory SES modeling
over KGs is presented. The approach is accompanied with
the development of a proof of concept scenario, targeted to
the monitoring of indicators and public interest related to
concepts specified by United Nations (UN) in the Sustainable
Development Goals (SDGs).

II. BACKGROUND KNOWLEDGE ON KNOWLEDGE GRAPHS

The main idea under the concept of a Knowledge Graph
(KG) is the usage of graphs to represent data, often enhanced
with some way to explicitly represent knowledge [3], [4].
Graphs provide an abstraction of the knowledge for a wide
range of application domains, where the edges of the graph
represent relationships between the nodes that may evolve
across time. They allow the maintainers to postpone the
definition of a schema, allowing the data to evolve in a
more flexible manner, characteristic that is considered very
helpful in cases where someone has to represent incomplete
knowledge [3], [5].

Under this perspective, data modelling and conceptual rep-
resentation in the form of a Knowledge Graph (KG) is a
promising technology. Through KGs, enabled by advanced
data fusion techniques, we can achieve extraction and rep-
resentation of knowledge from unstructured/structured data

sources, manage data and models as they change, discover
missing links across the KGs and complement pure statistical
approaches with knowledge representations and reasoning.
KGs are considered important for improving accuracy, ex-
plainability and trustworthiness of machine learning models
[6].

A KG can complement the functionalities provided by data
repositories by mining data from them and enriching them
semantically [7] or by discovering new datasets on the web via
semantic crawling mechanisms [8]. Furthermore, by exploiting
statistical relational learning techniques, prediction of missing
edges, prediction of properties of nodes, and clustering of
nodes based on their connectivity patterns can be realised [6].

Various approaches have been made available the last years
for developing KGs and associated applications for tackling
social good aspects. Such KGs are mainly targeted to en-
vironmental and health domains. For instance, in [9], it is
proposed the development of a global Climate Action KG
to enable the rapid discovery of new insights and knowledge
and the efficient exploration of important connections between
domains (e.g., water, energy) and/or stakeholders.

III. PARTICIPATORY SOCIO-ENVIRONMENTAL SYSTEMS
MODELING APPROACH

The proposed approach for supporting participatory SES
modeling is depicted at Figure 1. The approach is separated
in three conceptual parts. The first part regards the concep-
tualization and continuous population of the KG, fusing data
coming from a variety of data sources. The second part regards
the support of participatory SES modeling to capture systemic
changes, taking advantage of the knowledge in the KG and
the existence of mature modeling techniques. The third part
regards the support of a set of analysis processes that can be
used to assess the impact of various scenarios, based on the
outcomes of the modeling process in the second part.

Fig. 1. Participatory SES Modeling Approach.

A. Data Fusion and Knowledge Graph Population

A KG is a graph that contains explicit knowledge and facts.
With the term explicit knowledge, we refer to the conceptual-
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ization of the entities of the KG and the relationships among
them. The definition of explicit knowledge is usually the first
step towards the creation of a KG. Existing knowledge from
ontologies, information models and taxonomies is used for this
purpose. The represented explicit knowledge is not static, since
entities can be added or removed on the go, while relationships
can be also created or updated. This is a live process that runs
in parallel with the population of the KG with instance data.

The latter is known as facts and can be imported by any
type of structured, semi-structured or unstructured data source.
Such data regard open data and linked data in open data repos-
itories (e.g., time-series data, documents, directives, policies in
textual format), data that can be consumed through open or
third-party Application Programming Interfaces (APIs), data
provided by environmental sensing systems (e.g., time-series
data from IoT nodes), data collected from existing organiza-
tions and citizens’ observatories, data coming from satellite
systems (e.g., images) and data retrieved through semantic
crawling of web resources. Such data can be processed in
real time or stored in centralized repositories prior to their
processing.

Fig. 2. Data Fusion Mechanisms.

In addition to the heterogeneity of the origin of the sources
of these data, they also differ in terms of structure, volume and
spatial and temporal granularity. To be able to process them
in a unified way and populate the KG, a set of data fusion
and homogenization mechanisms are applied, as depicted at
Figure 2. Data fusion is based on processing techniques that
increase the quality of the aggregated data (e.g., outliers’ re-
moval, data aggregation in temporal or spatial scale) as well as
techniques able to extract knowledge over the data. In the latter
case, various ML techniques can be applied for identifying
hidden relationships, supporting link prediction and continuous
links and relationships validity and strength evaluation. In case
of data in textual format, entities recognition can take place
through Natural Language Processing (NLP) techniques, while
computer vision techniques can be applied for knowledge
extraction over images.

B. Participatory SES Modeling

Following, participatory SES modeling can take place,
taking advantage of the homogeneous and expressive rep-

resentation of the collected data in the KG. Participatory
SES modelling involves developing models to investigate
complex problems arising from interactions among human and
natural systems [1]. Scientists have access to a dynamically
updated repository of knowledge, where the denoted concepts
and relationships are semantically aligned, considering their
representation across different disciplines.

Various modeling techniques can be used for participatory
SES modeling. These include agent-based modelling, system
dynamics modeling and the development of reinforcement
learning environments that simulate SES. The produced mod-
els may examine environmental, economics, behavioural and
policy-making aspects or a combination of them.

Agent-based models (ABM) are key to SES modelling,
since they simulate the actions and interactions of autonomous
agents (both individual or collective entities) and can explicitly
represent the decision-making of human actors [10]. Agent-
based modelling is considered a valuable tool for SES mate-
rialization enabling the exploration of the impact of human
interactions on a broad range of social and ecological patterns
[11]. System dynamics is a methodology and mathematical
modeling technique to frame, understand, and discuss complex
issues and problems. While agent-based models are used to
describe disaggregated parts of a system, system dynamics
models represent the aggregated system in the form of stocks
and flows [12].

SES participatory modeling can be also assisted by emerg-
ing Machine Learning (ML) techniques. For instance, someone
can blend the reinforcement learning (RL) approach with
ABM, so as to better capture the probabilistic nature of the
ecological footprint that may have a group action towards
environmental sustainability. As stated before, ABM modeling
is based in the definition of some rules that are defined by
domain experts. This means that modeling rules affecting an
agent’s states and actions are known beforehand. Integration
of RL agents at ABM modeling can better represent real life
phenomenons where environmental variables may evolve over
time and are not always known in depth. Discovering these
rules is often challenging and requires deep insight about
an agent’s behaviours. Inverse reinforcement learning (IRL)
can complement ABM by providing a systematic way to find
behavioural rules from data [13]. At this approach, rules are
extracted from the same data and get dynamically shaped
during the learning process. IRL frames learning behavioural
rules as a problem of recovering motivations from observed
behaviour and generating rules consistent with these motiva-
tions.

C. Analysis Toolkit and Impact Assessment

The produced participatory SES models will be available
to scientists for their analysis, taking advantage of both the
models and the up-to-date data in the KG. A set of analysis
techniques can be applied for extraction of insights. Such tech-
niques may include pure statistical analysis, spatial analysis,
graph analysis, time series analysis or application of specific
supervised or unsupervised ML techniques.
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Pure statistical analysis may be applied in small and medium
size data and proceed -among other- with detection of data
clusters, classification in high level categories or identifica-
tion of hidden correlations among data. Spatial analysis is
applicable in many cases, since most environmental problems
have a clear spatial dimension [14]. Tracking of evolution
of environmental phenomena, identification of specific loca-
tions for objects or events given certain well-defined socio-
environmental criteria, survey for protected areas that are
close to industrial sites are examples of types of spatial
analysis that can be applied. Graph analysis offers a large
set of potential techniques such as Social Network Analysis
(SNA), where social structures are observed through the use
of networks and graph theory. For instance, SNA can help
to explain natural resources governance in diverse settings, to
examine how decision makers adapt to a changing social and
ecological context and to understand the transmission of local
ecological knowledge [15]. Time series decomposition permits
the detection of patterns that are repeated in time and can be
useful for forecasting the future evolution of SES phenomena.

Various ML techniques can be applied for analysis of the
collected data, in accordance with the developed SES models.
ML can be applied in various settings, especially in cases
where traditional techniques fail to capture the relationships
between variables. Based on data exploration, new knowledge
can be produced, while ecological patterns recognition and
prediction in space and time may take place. For instance, in
Section III-B, we refer to the integration of RL agents at ABM
modeling to better represent real life phenomena.

Moving one step further, by taking advantage of the devel-
oped SES models and analysis mechanisms impact assessment
processes may take place. Impact assessment may regard
environmental, social, economic aspects or a combination
of them. Examination of the impact of different scenarios
can be facilitated through the production of easy to grasp
visualisations related to Key Performance Indicators (KPIs)
monitoring.

IV. PROOF OF CONCEPT IMPLEMENTATION

A proof of concept implementation of the proposed ap-
proach has taken place and is made openly available at [16].
The implementation focuses on the development of a KG that
represents concepts related to the SDGs. Information related
to specific series, targers, indicators and goals per country is
enriched with published articles in the media and associated
metadata. The objective is to track the status of country-
specific KPIs, as they have been defined in the 2030 Agenda
for Sustainable Development, while examining the overall
interest of the public in the area of each SDG based on the
identification of relevant news items. In this way, scientists
from various disciplines can proceed to SES participatory
modeling and prepare different impact assessment reports. In
the proof of concept, an existing model has been adopted and
examined, related to the impact of CO2 emissions into the
increase of the temperature. The overall workflow followed in
the developed scenario is depicted at Figure 3.

The KG population starts with the integration of the
SDG ontology (step 1) that has been developed to represent
the United Nations (UN) SDGs [17]. The SDG ontology
includes four main classes namely sdgo:Goal, sdgo:Target,
sdgo:Indicator and sdgo:Series that represent the SDG hier-
archy [17]. The KG has been implemented in the Neo4j graph
database platform, where the neosemantics (n10s) plugin has
been used to enable the use of RDF. After the integration
of the SDG ontology, all the necessary RDF prefixes and
namespaces are imported (step 2) to support the semantic
alignment with future data comming from open third party
APIs or web crawling sources. Following, the United Nations
SDG API [18] has been used (step 3) to retrieve all available
goals, targets, indicators and series instances. With the help
of the APOC Neo4j’s standard library, the retrieved instances
were imported in the KG (step 3) and interlinked with a set
of relations with the specific classes of the SDG ontology.

Fig. 3. Participatory SES modeling scenario workflow.

At this point the explicit knowledge of the KG is produced,
making the KG ready to be populated with facts from other
third part APIS. Such facts are retrieved on a daily basis
within the News API [19] that locates articles and breaking
news headlines from news sources and blogs across the web.
Each news item is added as a new node in the KG (step 4)
with specific fields (title, description, content, url). After the
insertion of the new ”article” nodes to the KG, it is necessary
to proceed to the semantic enrichment of the news items via
NLP techniques (step 5). This step is necessary since up to now
KG explicit knowledge contains only classes and instances
related with the SDG ontology and is not interlinked with the
”article” facts retrieved from the web.

The nodes with the news articles are interlinked with
relevant wikipages applying both the neo4j APOC NLP en-
tity extraction library and the Google Cloud Platform Entity
Extraction procedures. Furthermore, the LinkedSDG API [20]
is used to automatically discover the semantic links between
news items content with relevant SDG data series. Each one
of the news items is interlinked with one or more geographic
areas with some weight, where the bigger weights refers to
larger identification of news articles for this area. Similarly,
each news item is interlinked with one or more data series,
which are already mapped to specific indicators, target and
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goals. The interlinking is characterized with a specific value
that gives a hint regarding the semantic closeness of the
news item with the concept measured in the data series.
An indicative example for the relationships of a news item
is depicted at Figure 4. This news item (orange node) is
semantically close to approximately 20 SDG data series (grey
nodes), while 6 geographic areas (brown nodes) are noticed.

Fig. 4. Identified relationships for a news item.

Upon the population of the KG, the modeling and analysis
process may take place. In our case, we have focused on the
specification and application of a set of queries for extracting
knowledge over the KG (step 6). The objective is to show the
feasibility for interlinking information from various sources
and making queries over it for jointly analysing the fused
data. In Figure 5, we provide the results of an indicative query
regarding the latest news items that are related with a specific
SDG (end poverty in all its forms everywhere) represented as a
green node. The metadata of the news items are also included
in the query results. The orange nodes refer to indicative
relevant news items to the specific goal, while each news item
refers to specific geographic areas (brown nodes) and shows
semantic proximity to specific wikipages (red nodes).

Similarly, a query is applied that depicts (Figure 6) recent
news items (published one day ago) that are relevant to SDGs
and refer to Europe. A small set of the identified articles
are included in the figure to avoid its overloading. For each
news item, there is information regarding its relationship with
existing data series and the associated indicator, target and
goal. Based on the outcomes of the query and the produced
visualisation, the scientists are able to focus on articles that
regard different levels of the SDG hierarchy and geographic

areas. This may be useful for locating SDG issues of high
interest on behalf of the media and try to use the relevant
SDG data series to develop ABM models that can contribute
towards the specification of socio-environmental policies.

Fig. 5. Identified relationships for a specific Sustainable Development Goal.

Fig. 6. Identification of popular subjects in the media in a specific area.

Based on the produced results, it is noticed high interest
in news related to the carbon dioxide emissions from fuel
combustion in Europe. To examine the level of emissions and
their impact on the environment, we have adopted an existing
ABM model (step 7) [21] that considers the greenhouse gases
that block infrared light that is emitted by the earth. This
model can be fed with real data (step 8) regarding the carbon
dioxide emissions from fuel combustion (millions of tonnes)
[22] per area. The model depicts the earth as rose colored,
while its surface is represented by a green strip (Figure 7).
Above the strip there is a blue atmosphere and black space
at the top. Clouds and CO2 molecules can be added to the
atmosphere to examine the effect on the blocking of sun ray
and the associated heating up of the examined area.
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Fig. 7. Agent Based model regarding energy flow (heat) in the earth.

A set of simulations can be executed based on the adopted
model to check how CO2 emissions from fuel combustion
affect the temperature in the various areas of our planet. Based
on the analysis results, the impact of the evolution of CO2

emissions on the temperature can be examined, considering
various projections and testing scenarios (step 9).

V. CONCLUSIONS AND FUTURE WORK

In the current manuscript, we have presented an approach
for enabling participatory SES modeling and analysis, taking
advantage of the transition from the traditional data world
perspective towards a knowledge world perspective. Data
representation and access is provided through a Knowledge
Graph, enabling the homogeneous representation of data
across various disciplines and the tracking of the evolution
of the established relationships across time. The presented ap-
proach tackle the overall lifecycle of socio-environmental data
aggregation, fusion, modeling and analysis, while it is open
and modular in order to be easily adoptable and extensible
in the future. A proof of concept has been implemented and
made openly available, related to the development of a KG
for tracking the evolution of SDG indicators.

In our upcoming work, we plan to develop an open-source
framework that will provide access to the proposed mech-
anisms to interdisciplinary scientists through user-friendly
interfaces. We also envisage to further populate the developed
KG for SDGs by covering further data sources and techniques.
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