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Abstract—In this paper, we study inference and learning
over networks that can be modeled by a directed graph.
Specifically, nodes are equipped each with a (possibly differ-
ent) neural network and some of them possess data that is
relevant to some inference task which needs to be performed
at the end (fusion) node, with the risk measured under
logarithmic loss. The graph defining the network topology
is fixed and known. We develop a learning algorithm and
an architecture that make use of the multiple data streams
and processing units available distributively, not only during
the training phase but also during the inference phase. In
particular, the analysis reveals how inference propagates and
fuses across a network. We study the design criterion of
our proposed method and its bandwidth requirements. Also,
we discuss implementation aspects using neural networks in
typical wireless radio access; and provide experiments that
illustrate benefits over state-of-the-art techniques.

Index Terms—distributed learning, AI at the edge, infer-
ence over graphs

I. Introduction

The unprecedented success of modern machine learning
(ML) techniques in areas such as computer vision [1],
neuroscience [2], image processing [3], robotics [4] and
natural language processing [5] has lead to an increasing
interest for their application to wireless communication
systems over the recent years. Early efforts along this
line of work fall in what is sometimes referred to as the
”learning to communicate” paradigm in which the goal
is to automate one or more communication modules such
as the modulator-demodulator, the channel coder-decoder,
or others, by replacing them with suitable ML algorithms.
Although important progress has been made for some
particular communication systems, such as the molecular
one [6], it is still not clear yet whether ML techniques can
offer a reliable alternate solution to model-based approaches,
especially as typical wireless environments suffer from time-
varying noise and interference.

Wireless networks have other important intrinsic features
which may pave the way for more cross-fertilization be-
tween ML and communication, as opposed to applying
ML algorithms as black boxes in replacement of one or
more communication modules. For example, while in areas
such as computer vision, neuroscience, and others, relevant
data is generally available at one point, it is typically
highly distributed across several nodes in wireless net-
works. Examples include amplitude or phase information

or the so-called radio-signal strength indicator (RSSI) of a
user’s signal, which can be used for localization purposes
in fingerprinting-based approaches [7], and are typically
available at several base stations. A prevalent approach for
the implementation of ML solutions in such cases would
consist in collecting all relevant data at one point (a cloud
server) and then train a suitable ML model using all available
data and processing power. Because the volumes of data
needed for training are generally large, and with the scarcity
of network resources (e.g., power and bandwidth), that
approach might not be appropriate in many cases, however.
In addition, some applications might have stringent latency
requirements which are incompatible with sharing the data,
such as in automatic vehicle driving. In other cases, it might
be desired not to share the raw data for the sake of enhancing
the privacy of the solution, in the sense that infringing the
user’s privacy is generally more easily accomplished from
the raw data itself than from the output of a neural network
(NN) that takes that data as input.

The above has called for a new paradigm in which
intelligence moves from the heart of the network to its
edge, which is sometimes referred to as ”Edge Learning”.
In this new paradigm, communication plays a central role
in the design of efficient ML algorithms and architectures
because both data and computational resources, which are
the main ingredients of an efficient ML solution, are highly
distributed. A key aspect towards building suitable ML-
based solutions is whether the setting assumes only the
training phase involves distributed data (sometimes referred
to as distributed learning such as the Federated Learning
(FL) of [8], [9]) or if the inference (or test) phase too involves
distributed data.

There is a vast body of literature on problems related
to distributed estimation and detection (see, e.g., [10]–
[13] and references therein). In particular, most related to
this paper, a growing line of works focuses on developing
distributed learning algorithms and architectures. Examples
include [14] and [15] which use kernel methods and [16] and
[17] which use marginalized kernels and NNs, respectively.
Perhaps most popular and related to our work, however, is
the FL of [8], [9] which, as we already mentioned, is most
suitable for scenarios in which the training phase has to be
performed distributively while the inference phase has to
be performed centrally at one node. To this end, during the
training phase nodes (e.g., base stations) that possess data
are all equipped with copies of a single NN model which
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they simultaneously train on their locally available data-sets.
The learned weight parameters are then sent to a cloud- or
parameter server (PS) which aggregates them, e.g. by simply
computing their average. The process is repeated, every
time re-initializing using the obtained aggregated model,
until convergence. The rationale is that, this way, the model
is progressively adjusted to account for all variations in
the data, not only those of the local data-set. For recent
advances on FL and applications in wireless settings, the
reader may refer to [18]–[20] and references therein. Another
relevant work is the Split Learning (SL) of [21] in which,
for a multiaccess type network topology, a two-part NN
model that is split into an encoder part and a decoder part
is learned sequentially. The decoder does not have its own
data; and, in every round, the NN encoder part is fed with
a distinct data-set and its parameters are initialized using
those learned from the previous round. The learned two-
part model is then used as follows during the inference:
one part of this model is used by an encoder and the other
one by a decoder. Another variation of SL, sometimes called
”vertical SL”, was proposed recently in [22]. The approach
uses vertical partitioning of the data; and, in the special case
of a multi-access topology, it is similar to the in-network
learning solution that we propose in this paper.

Compared to both SL and FL, which consider only the
training phase to be distributed, in this paper we focus on
the problem in which the inference phase also takes place
distributively. More specifically, in this paper, we study a
network inference problem in which some of the nodes
possess each, or can acquire, part of the data that is relevant
for inference on a random variable Y. The node at which
the inference needs to be performed is connected to the
nodes that possess the relevant data through a number
of intermediate other nodes. We assume that the network
topology is fixed and known. This may model, e.g., a setting
in which a macro BS needs to make inference on the position
of a user on the basis of summary information obtained from
correlated CSI measurements X1, . . . ,XJ that are acquired
at some proximity edge BSs. Each of the edge nodes is
connected with the central node either directly, via an error
free link of given finite capacity, or via intermediary nodes.
While in some cases it might be enough to process only
a subset of the J nodes, we assume that processing only
a (any) strict subset of the measurements cannot yield the
desired inference accuracy; and, as such, the J measurements
X1, . . . ,XJ need to be processed during the inference or test
phase.

Example 1. (Autonomous Driving) One basic requirement of
the problem of autonomous driving is the ability to cope with
problematic roadway situations, such as those involving construc-
tion, road hazards, hand signals and reckless drivers. Current
approaches mostly rely on equipping the vehicle with more on-
board sensors. Clearly, while this can only allow a better coverage of
the navigation environment, it seems unlikely to successfully cope
with the problem of blind spots due, e.g., to obstruction or hidden
obstacles. In such contexts, external sensors such as other vehicles’
sensors, cameras installed on the roofs of proximity buildings or
wireless towers may help perform a more precise inference, by
offering a complementary, possibly better, view of the navigation
scene. An example scenario is shown in Figure 1. The application
requires real-time inference which might be incompatible with

current cellular radio standards, thus precluding the option of
sharing the sensors’ raw data and processing it locally, e.g., at
some on-board server. When equipped with suitable intelligence
capabilities each sensor can successfully identify and extract those
features of its measurement data that are not captured by other
sensors’ data. Then, it only needs to communicate those, not its
entire data.

Fig. 1: Fusion of inference from on-board and external
sensors for automatic vehicle navigation.

Example 2. (Public Health) One of the early applications of
machine learning is in the area of medical imaging and public
health. In this context, various institutions can hold different
modalities of patient data in the form of electronic health records,
pathology test results, radiology, and other sensitive imaging
data such as genetic markers for disease. Correct diagnosis may
be contingent on being able to using all relevant data from all
institutions. However, these institutions may not be authorized
to share their raw data. Thus, it is desired to train distributively
machine learning models without sharing the patient’s raw data
in order to prevent illegal, un-ethic or un-authorized usage of
it [23]. Local hospitals or tele-health screening centers seldom
acquire enough diagnostic images on their own; and collaborative
distributed learning in this setting would enable each individual
center to contribute data to an aggregate model without sharing
any raw data.

A. Contributions
In this paper, we study the aforementioned network

inference problem in which the network is modeled as
a weighted acyclic graph and inference about a random
variable is performed on the basis of summary information
obtained from possibly correlated variables at a subset of
the nodes. Following an information-theoretic approach in
which we measure discrepancies between true values and
their estimated fits using average logarithmic loss, we first
develop a bound on the best achievable accuracy given
the network communication constraints. Then, considering
a supervised setting in which nodes are equipped with
NNs and their mappings need to be learned from distribu-
tively available training data-sets, we propose a distributed
learning and inference architecture; and we show that it
can be optimized using a distributed version of the well
known stochastic gradient descent (SGD) algorithm that
we develop here. The resulting distributed architecture
and algorithm, which we herein name “in-network (INL)
learning”, generalize those introduced in [24] (see also [25],
[26]) for a specific case, multiaccess type, network topology.



We investigate in more detail what the various nodes need
to exchange during both the training and inference phases,
as well as associated requirements in bandwidth. Finally, we
provide a comparative study with (an adaptation of) FL and
the SL of [21] and experiments that illustrate our results.

B. Outline and Notation
In Section II we describe the studied network inference

problem formally. In Section III we present our in-network
inference architecture, as well a distributed algorithm to
training it distributively. Section IV contains a comparative
study with FL and SL in terms of bandwidth requirements;
as well as some experimental results.

Throughout the paper the following notation will be
used. Upper case letters denote random variables,e.g. X;
lower case letters denote realizations of random variables,
e.g x, and calligraphic letters denote sets, e.g., X. The
cardinality of a set is denoted by |X|. For a random vari-
able X with probability mass function PX, the shorthand
p(x) = PX(x), x ∈ X is used. Boldface letters denote matrices
or vectors, e.g., X or x. For random variables (X1,X2, ...) and
a set of integers K ⊆ N, the notation XK designates the
vector of random variables with indices in the set K , i.e.,
XK , {Xk : k ∈ K}. If K = ∅ then XK = ∅. Also, for zero-
mean random vectors x and y, the quantities

∑
x,

∑
x,y and∑

x|y denote, respectively, the covariance matrix of the vector
x, the covariance matrix of vector (x,y) and the conditional
covariance of x given y. Finally, for two probability measures
PX and QX over the same alphabet X, the relative entropy
or Kullback-Leibler divergence is denoted as DKL(PX||QX).
That is, if PX is absolutely continuous with respect to
QX, then DKL(PX||QX) = EPX [log(PX(X)/QX(X))], otherwise
DKL(PX||QX) = ∞.

II. Network Inference: Problem Formulation

Fig. 2: Studied network inference model.

Consider an N node distributed network. Of these N
nodes, J ≥ 1 nodes possess or can acquire data that is
relevant for inference on a random variable (r.v.) of interest
Y, with alphabet Y. Let J = {1, . . . , J} denote the set of
such nodes, with node j ∈ J observing samples from the
random variable X j, with alphabet X j. The relationship
between the r.v. of interest Y and the observed ones,
X1, . . . ,XJ, is given by the joint probability mass function1

PXJ ,Y := PX1,...,XJ ,Y(x1, . . . xJ, y), with (x1, . . . , x j) ∈ X1 × · · · ×XJ
and y ∈ Y. Inference on Y needs to be done at some

1For simplicity we assume that random variables are discreet, how-
ever our technique can be applied to continuous variables as well.

node N which is connected to the nodes that possess the
relevant data through a number of intermediate other nodes.
It has to be performed without any sharing of raw data.
The network is modeled as a weighted directed acyclic
graph; and may represent, for example, a wired network
or a wireless mesh network operated in time or frequency
division, where the nodes may be servers, handsets, sensors,
base stations or routers. We assume that the network graph
is fixed and known. The edges in the graph represent point-
to-point communication links that use channel coding to
achieve close to error-free communication at rates below
their respective capacities. For a given loss function `(·, ·)
that measures discrepancies between true values of Y and
their estimated fits, what is the best precision for the
estimation of Y ? Clearly, discarding any of the relevant data
X j can only lead to a reduced precision. Thus, intuitively
features that collectively maximize information about Y
need to be extracted distributively by the nodes from the
set J , without explicit coordination between them; and
they then need to propagate and combine appropriately
at the node N. How should that be performed optimally
without sharing raw data ? In particular, how should each
node process information from the incoming edges (if any)
and what should it transmit on every one of its outgoing
edges ? Furthermore, how should the information be fused
optimally at Node N ?
More formally, we model an N-node network by a directed
acyclic graph G = (N ,E,C), where N = [1 : N] is the set of
nodes, E ⊂ N ×N is the set of edges and C = {C jk : ( j, k) ∈ E}
is the set of edge weights. Each node represents a device
and each edge represents a noiseless communication link
with capacity C jk. The processing at the nodes of the set J
is such that each of them assigns an index m jl ∈ [1,M jl] to
each x j ∈ X j and each received index tuple (mi j : (i, j) ∈ E),
for each edge ( j, l) ∈ E. Specifically, let for j ∈ J and l such
that ( j, l) ∈ E, the setM jl = [1 : M jl]. The encoding function
at node j is

ω j : X j ×


�

i : (i, j) ∈ E

Mi j

 −→
�

l : ( j,l) ∈ E

M jl, (1)

where
�

designates the Cartesian product of sets. Similarly,
for k ∈ [1 : N − 1]/J , node k assigns an index mkl ∈ [1,Mkl]
to each index tuple (mik : (i, k) ∈ E) for each edge (k, l) ∈ E.
That is,

ωk :
�

i : (i,k) ∈ E

Mik −→
�

l : (k,l) ∈ E

Mkl. (2)

The range of the encoding functions {ωi} are restricted in
size, as

log |Mi j| ≤ Ci j ∀i ∈ [1,N − 1] and ∀ j : (i, j) ∈ E. (3)

Node N needs to infer on the random variable Y ∈ Y using
all incoming messages, i.e.,

ψ :
�

i : (i,N) ∈ E

MiN −→ Ŷ. (4)

In this paper, we choose the reconstruction set Ŷ to be the
set of distributions on Y, i.e., Ŷ = P(Y); and we measure
discrepancies between true values of Y ∈ Y and their



estimated fits in terms of average logarithmic loss, i.e., for
(y, P̂) ∈ Y × P(Y)

d(y, P̂) = log
1

P̂(y)
. (5)

As such, the performance of a distributed inference scheme(
(ω j) j∈J , (ωk)k∈[1,N−1]/J , ψ

)
for which (3) is fulfilled is given

by its achievable relevance given by

∆ = H(Y) − E
[
d(Y, Ŷ)

]
, (6)

which, for a discrete set Y, is directly related to the error of
misclassifying the variable Y ∈ Y.
In practice, in a supervised setting, the mappings given
by (1), (2) and (4) need to be learned from a set of training
data samples {(x1,i, . . . , xJ,i, yi)}ni=1. The data is distributed such
that the samples x j := (x j,1, . . . , x j,n) are available at node j
for j ∈ J and the desired predictions y := (y1, . . . , yn) are
available at the end decision node N. We parametrize the
possibly stochastic mappings (1), (2) and (4) using NNs.
This is depicted in Figure 3. We denote the parameters of
the NNs that parameterize the encoding function at each
node i ∈ [1 : (N − 1)] with θi and the parameters of the NN
that parameterizes the decoding function at node N with
φ. Let θ = [θ1, . . . ,θN−1], we aim to find the parameters
θ,φ that maximize the relevance of the network, given the
network constraints of (3). Given that the actual distribution
is unknown and we only have access to a dataset, the loss
function needs to strike a balance between its performance
on the dataset, given by empirical estimate of the relevance,
and the network’s ability to perform well on samples outside
the dataset.

The NNs at the various nodes are arbitrary and can
be chosen independently – for instance, they need not be
identical as in FL. It is only required that the following
mild condition which, as will become clearer from what
follows, facilitates the back-propagation be met. Specifically,
for every j ∈ J and x j ∈ X j

2 it holds that

Size of first layer of NN (j) =

Dimension (x j) +
∑

i : (i, j) ∈ E

(Size of last layer of NN (i)). (7)

Similarly, for k ∈ [1 : N]/J we have

Size of first layer of NN (k) =∑
i : (i,k) ∈ E

(Size of last layer of NN (i)). (8)

Remark 1. Conditions (7) and (8) were imposed only for the
sake of ease of implementation of the training algorithm; the
techniques present in this paper, including optimal trade-offs
between relevance and complexity for the given topology, the
associated loss function, the variational lower bound, how to
parameterize it using NNs and so on, do not require (7) and (8) to
hold.

2We assume all the elements of X j have the same dimension.

(a) Training phase

(b) Inference phase

Fig. 3: In-network learning and inference using neural
networks

III. Proposed Solution: In-Network Learning and
Inference

For convenience, we first consider a specific setting of the
model of network inference problem of Figure 3 in which J =
N− 1 and all the nodes that observe data are only connected
to the end decision node, but not among them.

A. A Specific Model: Fusing of Inference

In this case, a possible suitable loss function was shown
by [25] to be:

L
NN
s (n) =

1
n

n∑
i=1

log QφJ (yi|u1,i, . . . ,uJ,i)

+
s
n

n∑
i=1

J∑
j=1

(
log Qφ j (yi|u j,i) − log

(Pθ j (u j,i|x j,i)

Qϕ j (u j,i)

))
, (9)

where s is a Lagrange parameter and for j ∈ J the
distributions Pθ j (u j|x j), Qφ j (y|u j), QφJ (y|uJ ) are variational
ones whose parameters are determined by the chosen NNs
using the re-parametrization trick of [27]; and Qϕj (u j) are
priors known to the encoders. For example, denoting by
fθ j the NN used at node j ∈ J whose (weight and
bias) parameters are given by θ j, for regression problems
the conditional distribution Pθ j (u j|x j) can be chosen to be
multivariate Gaussian, i.e., Pθ j (u j|x j) = N(u j;µθj ,Σ

θ
j ). For

discrete data, concrete variables (i.e., Gumbel-Softmax) can
be used instead.
The rationale behind the choice of loss function (9) is that
in the regime of large n, if the encoders and decoder are not
restricted to use NNs under some conditions 3 the optimal
stochastic mappings PU j |X j , PU, PY|U j and PY|UJ are found

3The optimality is proved therein under the assumption that for
every subset S ⊆ J it holds that XS −
− Y −
− XSc . The RHS of (10)
is achievable for arbitrary distributions, however, regardless of such
an assumption.



by marginalizing the joint distribution that maximizes the
following Lagrange cost function [25, Proposition 2]

L
optimal
s = −H(Y|UJ ) − s

J∑
j=1

[
H(Y|U j) + I(U j; X j)

]
. (10)

where the maximization is over all joint distributions of the
form PY

∏J
j=1 PX j |Y

∏J
j=1 PU j |X j .

1) Training Phase: During the forward pass, every node
j ∈ J processes mini-batches of size, say, b j of its training
data-set x j. Node j ∈ J then sends a vector whose elements
are the activation values of the last layer of (NN j). Due
to (8) the activation vectors are concatenated vertically at
the input layer of NN (J+1). The forward pass continues on
the NN (J+1) until the last layer of the latter. The parameters
of NN (J+1) are updated using standard backpropgation.
Specifically, let LJ+1 denote the index of the last layer of NN
(J + 1). Also, let, w[l]

J+1, b[l]
J+1 and a[l]

J+1 denote respectively the
weights, biases and activation values at layer l ∈ [2 : LJ+1] for
the NN (J + 1); and σ is the activation function. Node (J + 1)
computes the error vectors

δ[LJ+1]
J+1 = ∇

a
[LJ+1]

J+1

L
NN
s (b) � σ′(w[LJ+1]

J+1 a[L(J+1)−1]
J+1 + b[LJ+1]

J+1 ) (11a)

δ[l]
J+1 = [(w[l+1]

J+1 )Tδ[l+1]
J+1 ] � σ′(w[l]

J+1a[l−1]
J+1 + b[l]

J+1) ∀ l ∈ [2,LJ+1 − 1],
(11b)

δ[1]
J+1 = [(w[2]

J+1)Tδ[2]
J+1] (11c)

and then updates its weight- and bias parameters as

w[l]
J+1 → w[l]

J+1 − ηδ
[l]
J+1(a[l−1]

J+1 )T, (12a)

b[l]
J+1 → b[l]

J+1 − ηδ
[l]
J+1, (12b)

where η designates the learning parameter 4.

Fig. 4: Forward and Backward passes for an example
in-network learning with J = 2.

Remark 2. It is important to note that for the computation of
the RHS of (11a) node (J + 1), which knows QφJ (yi|u1,i, . . . ,uJ,i)
and Qφ j (yi|u j,i) for all i ∈ [1 : n] and all j ∈ J , only the
derivative of LNN

s (n) w.r.t. the activation vector aLJ+1

J+1 is required.
For instance, node (J + 1) does not need to know any of the
conditional variationals Pθ j (u j|x j) or the priors Qϕ j (u j).

The backward propagation of the error vector from node
(J + 1) to the nodes j, j = 1, . . . , J, is as follows. Node (J + 1)
splits horizontally the error vector of its input layer into J
sub-vectors with sub-error vector j having the same size as

4For simplicity η and σ are assumed here to be identical for all NNs.

the dimension of the last layer of NN j [recall (8) and that
the activation vectors are concatenated vertically during the
forward pass]. See Figure 4. The backward propagation then
continues on each of the J input NNs simultaneously, each of
them essentially applying operations similar to (11) and (12).

Remark 3. Let δ[1]
J+1( j) denote the sub-error vector sent back from

node (J + 1) to node j ∈ J . It is easy to see that, for every j ∈ J ,

∇
a

Lj
j

L
NN
s (b j) = δ[1]

J+1( j) − s∇
a

Lj
j

 b∑
i=1

log
(Pθ j (u j,i|x j,i)

Qϕj (u j,i)

) ; (13)

and this explains why node j ∈ J needs only the part δ[1]
J+1( j), not

the entire error vector at node (J + 1).

(a) Training phase

(b) Inference phase

Fig. 5: In-network learning for the network model for
the case without hops

2) Inference Phase: During this phase node j observes a
new sample x j. It uses its NN to output an encoded value
u j which it sends to the decoder. After collecting (u1, · · · ,uJ)
from all input NNs, node (J + 1) uses its NN to output an
estimate of Y in the form of soft output QφJ (Y|u1, . . . ,uJ). The
procedure is depicted in Figure 5b.

Remark 4. A suitable practical implementation in wireless
settings can be obtained using Orthogonal Frequency Division
Multiplexing (OFDM). That is, the J input nodes are allocated
non-overlapping bandwidth segments and the output layers of the
corresponding NNs are chosen accordingly. The encoding of the
activation values can be done, e.g., using entropy type coding [28].

B. General Model: Fusion and Propagation of Inference

Consider now the general network inference model of
Figure 2. Part of the difficulty of this problem is in finding
a suitable loss function and that can be optimized dis-
tributively via NNs that only have access to local data-sets



each. The next theorem provides a bound on the relevance
achievable (under some assumptions 5) for an arbitrary
network topology (E,N). For convenience, we define for
S ⊆ [1, . . . ,N − 1] and non-negative (Ci j : (i, j) ∈ E) the
quantity

C(S) =
∑

(i, j) : i∈S, j∈Sc

Ci j. (14)

Theorem 1. For the network inference model of Figure 2, in the
regime of large data-sets the following relevance is achievable,

∆ = max I(U1, . . . ,UJ; Y) (15)

where the maximization is over joint measures of the form

PQPX1,...,XJ ,Y

J∏
j=1

PU j |X j,Q (16)

for which there exist non-negative R1, . . . ,RJ that satisfy∑
j∈S

R j ≥ I(US; XS|USc ,Q), for all S ⊆ J∑
j∈S∩J

R j ≤ C(S) for all S ⊆ [1 : N − 1] with S ∩J , ∅.

Proof. The proof of Theorem 1 appears in Appendix A. An
outline is as follows. The result is achieved using a sepa-
rate compression-transmission-estimation scheme in which
the observations (x1, . . . , xJ) are first compressed distribu-
tively using Berger-Tung coding [30] into representations
(u1, . . . ,uJ); and, then, the bin indices are transmitted as
independent messages over the network G using linear-
network coding [31, Section 15.5]. The decision node N
first recovers the representation codewords (u1, . . . ,uJ); and,
then, produces an estimate of the label y. The scheme is
illustrated in Figure 6. �

(a) Compression using Berger-Tung coding

(b) Transmission of the bin indices using linear coding

Fig. 6: Block diagram of the separate compression-
transmission-estimation scheme of Theorem 1

5The inference problem is a one-shot problem. The result of The-
orem 1 is asymptotic in the size of the training data-sets. One-shot
results for this problem can be obtained, e.g., along the approach
of [29].

Part of the utility of the loss function of Theorem 1 is in
that it accounts explicitly for the topology of the network
for inference fusion and propagation. Also, although as seen
from its proof the setting of Theorem 1 assumes knowledge
of the joint distribution of the tuple (X1, . . . ,XJ,Y), the result
can be used to train, distributively, NNs from a set of
available date-sets. To do so, we first derive a Lagrangian
function, from Theorem 1, which can be used as an objective
function to find the desired set of encoders and decoder.
Afterwards, we use a variational approximation to avoid the
computation of marginal distributions, which can be costly
in practice. Finally, we parameterize the distributions suing
NNs. For a given network topology in essence, the approach
generalizes that of Section III-A to more general networks
that involve hops. For simplicity, in what follows, this is
illustrated for the example architecture of Figure 7. While
the example is simple, it showcases the important aspect of
any such topology, the fusion of the data at an intermediary
nodes, i.e., a hop.

Fig. 7: An example in-network learning with inference
fusion and propogation

Setting N = {1, 2, 3, 4, 5} and E = {(3, 4), (2, 4), (4, 5), (1, 5)} in
Theorem 1, we get that

∆ = max I(U1,U2,U3; Y) (17)

where the maximization is over joint measures of the form

PQPX1,X2,X3,YPU1 |X1,QPU2 |X2,QPU3 |X3,Q (18)

for which the following holds for some R1 ≥ 0, R2 ≥ 2 and
R3 ≥ 0:

C15 ≥ R1, C24 ≥ R2, C34 ≥ R3, C45 ≥ R2 + R3 (19a)
R1 ≥ I(U1; X1|U2,U3,Q), (19b)
R2 ≥ I(U2; X2|U1,U3,Q), (19c)
R3 ≥ I(U3; X3|U1,U2,Q) (19d)
R3 + R2 ≥ I(X2,X3; U2,U3|U1,Q), (19e)
R3 + R1 ≥ I(X1,X3; U1,U3|U2,Q) (19f)
R2 + R1 ≥ I(X1,X2; U1,U2|U3,Q), (19g)
R2 + R1 + R3 ≥ I(X1,X2,X3; U1,U2,U3|Q). (19h)

Let Csum = C15 + C24 + C34 + C45; consider the region of all
pairs (∆,Csum) ∈ R2

+ for which relevance level ∆ as given
by the RHS of (17) is achievable for some C15 ≥ 0, C24 ≥ 0,
C34 ≥ 0 and C45 ≥ 0 such that Csum = C15 + C24 + C34 +
C45. Hereafter, we denote such region as RIsum. Applying
Fourier-Motzkin elimination on the region defined by (17)



and (19), we get that the region RIsum is given by the union
of pairs (∆,Csum) ∈ R2

+ for which 6

∆ ≤ I (Y; U1,U2,U3) (20a)
Csum ≥ I(X1,X2,X3; U1,U2,U3) + I(X2,X3; U2,U3|U1) (20b)

for some measure of the form

PYPX1,X2,X3 |YPU1 |X1 PU2 |X2 PU3 |X3 . (21)

The next proposition gives a useful parametrization of the
region RIsum as described by (20) and (21).

Proposition 1. For every pair (∆,Csum) that lies on the boundary
of the region described by (20) and (21) there exists s ≥ 0 such that
(∆,Csum) = (∆s,Cs), with

∆s = H(Y) + max
P
Ls(P) + sCs (22a)

Cs = I(X1,X2,X3; U∗1,U
∗

2,U
∗

3) + I(X2,X3; U∗2,U
∗

3|U
∗

1), (22b)

and P∗ is the set of pmfs P := {PU1 |X1 ,PU2 |X2 ,PU3 |X3 } that maximize
the cost function

Ls(P) := −H(Y|U1,U2,U3) − sI(X1,X2,X3; U1,U2,U3)
− sI(X2,X3; U2,U3|U1). (23)

Proof. See Appendix B. �

In accordance with the studied example network inference
problem of Figure 7, let a random variable U4 be such that
U4−
−(U2,U3)−
−(X1,X2,X3,Y,U1). That is, the joint distribution
factorizes as

PX1,X2,X3,Y,U1,U2,U3,U4 = PX1,X2,X3,YPU1 |X1 PU2 |X2 PU3 |X3 PU4 |U2,U3 .
(24)

Let for given s ≥ 0 and conditional PU4 |U2,U3 the Lagrange
term

L
low
s (P,PU4 |U2,U3 ) = −H(Y|U1,U4) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U2; U1) − I(U3; U1,U2)

]
.

(25)

The following lemma shows that Llow
s (P,PU4 |U2,U3 ) lower

bounds Ls(P) as given by (23).

Lemma 1. For every s ≥ 0 and joint measure that factorizes
as (24), we have

Ls(P) ≥ Llow
s (P,PU4 |U2,U3 ), (26)

Proof. See Appendix C. �

For convenience let P+ := {PU1 |X1 ,PU2 |X2 ,PU3 |X3 ,PU4 |U2,U3 }. The
optimization of (25) generally requires the computation
of marginal distributions, which can be costly in practice.
Hereafter we derive a variational lower bound on Llow

s
with respect to some arbitrary (variational) distributions.
Specifically, let

Q := {QY|U1,U4 ,QU3 ,QU2 ,QU1 }, (27)

where QY|U1,U4 represents variational (possibly stochastic)
decoders and QU3 , QU2 and QU1 represent priors. Also, let

L
v-low
s (P+,Q) :=E[log QY|U1,U4 (Y|U1,U4)] − sDKL(PU1 |X1‖QU1 )

6The time sharing random variable is set to a constant for simplicity.

− 2sDKL(PU2 |X2‖QU2 ) − 2sDKL(PU3 |X3‖QU3 ).
(28)

The following lemma, the proof of which is essentially
similar to that of [25, Lemma 1], shows that for every
s ≥ 0, the cost function Llow

s (P,PU4 |U2,U3 ) is lower-bounded
by Lv-low

s (P+,Q) as given by (28).

Lemma 2. For fixed P+, we have

L
low
s (P+) ≥ Lv-low

s (P+,Q) (29)

for all pmfs Q, with equality when:

QY|U1,U4 = PY|U1,U4 , (30)
QU3 = PU3 |U2,U1 , (31)
QU2 = PU2 |U1 , (32)
QU1 = PU1 , (33)

where PY|U1,U4 ,PU3 |U2,U1 ,PU2 |U1 ,PU1 are calculated using (24).

Proof. See Appendix D. �

From the above, we get that

max
P+

L
low
s (P+) = max

P+

max
Q
L

v-low
s (P+,Q). (34)

Since, as described in Section II, the distribution of the
data is not known, but only a set of samples is available
{(x1,i, . . . , xJ,i, yi)}ni=1, we restrict the optimization of (28) to
the family of distributions that can be parametrized by
NNs. Thus, we obtain the following loss function which
can be optimized empirically, in a distributed manner, using
gradient based techniques,

L
NN
s (n) :=

1
n

n∑
i=1

[
log Qφ5 (yi|u1,i,u4,i) − s log

(
Pθ1 (u1,i|x1,i)

Qϕ1 (u1,i)

) ]
−

2s
n

n∑
i=1

[
log

(
Pθ2 (u2,i|x2,i)

Qϕ2 (u2,i)

)
+ log

(
Pθ3 (u3,i|x3,i)

Qϕ3 (u3,i)

) ]
,

(35)

with s stands for a Lagrange multiplier and the distri-
butions Qφ5 ,Pθ4 ,Pθ3 ,Pθ2 ,Pθ1 are variational ones whose
parameters are determined by the chosen NNs using the
re-parametrization trick of [27]; and, {Qϕi : i ∈ {1, 2, 3}} are
priors known to the encoders. The parametrization of the
distributions with NNs is performed similarly to that for the
setting of Section III-A.

1) Training Phase: During the forward pass, every node
j ∈ {1, 2, 3} processes mini-batches of size, b j of its training
data set x j. Nodes 2 and 3 send their vector formed of the
activation values of the last layer of their NNs to node 4.
Because the sizes of the last layers of the NNs of nodes 2
and 3 are chosen according to (8) the sent activation vectors
are concatenated vertically at the input layer of NN 4. The
forward pass continues on the NN at node 4 until its last
layer. Next, nodes 1 and 4 send the activation values of their
last layers to node 5. Again, as the sizes of the last layers
of the NNs of nodes 1 and 4 satisfy (8) the sent activation
vectors are concatenated vertically at the input layer of NN
5; and the forward pass continues until the last layer of NN
5.
During the backward pass, each of the NNs updates its
parameters according to (11) and (12). Node 5 is the first to



Fig. 8: Forward and backward passes for the inference
problem of Figure 7

apply the back propagation procedure in order update the
parameters of its NN. It applies (11) and (12) sequentially,
starting from its last layer.

Remark 5. It is important to note that, similar to the setting
of Section III-A, for the computation of the RHS of (11a) for
node 5, only the derivative of LNN

s (n) w.r.t. the activation vector
aL5

5 is required, which depends only on Qφ5 (yi|u1,i,u4,i). The
distributions are known to node 5 given only u1,i and u4,i.

The error propagates back until it reaches the first layer of
the NN of node 5. Node 5 then splits horizontally the error
vector of its input layer into 2 sub-vectors with the top sub-
error vector having as size that of the last layer of the NN of
node 1 and the bottom sub-error vector having as size that
of the last layer of the NN of node 4 – see Figure 8. Similarly,
the two nodes 1 and 4 continue the backward propagation at
their turns simultaneously. Node 4 then splits horizontally
the error vector of its input layer into 2 sub-vectors with the
top sub-error vector having as size that of the last layer of
the NN of node 2 and the bottom sub-error vector having
as size that of the last layer of the NN of node 3. Finally, the
backward propagation continues on the NNs of nodes 2 and
3. The entire process continues until convergence.

Remark 6. Let δ[1]
J+1( j) denote the sub-error vector sent back from

node (J + 1) to node j ∈ J . It is easy to see that, for every j ∈ J ,

∇a[L]
4
L

NN
s (b) = δ[1]

5 (4),

∇a[L]
3
L

NN
s (b) = δ[1]

4 (3) − 2s∇a[L]
3

1
b

b∑
i=1

[
log

(
Pθ3 (u3,i|x3,i)

Qϕ3 (u3,i)

)] ,
∇a[L]

2
L

NN
s (b) = δ[1]

4 (2) − 2s∇a[L]
2

1
b

b∑
i=1

[
log

(
Pθ2 (u2,i|x2,i)

Qϕ2 (u2,i)

)] ,
∇a[L]

1
L

NN
s (b) = δ[1]

5 (1) − s∇a[L]
1

1
b

b∑
i=1

[
log

(
Pθ1 (u1,i|x1,i)

Qϕ1 (u1,i)

)] .
and this explains why, for back propagation, nodes 1, 2, 3, 4 need
only part of the error vector at the node they are connected to.

2) Inference Phase: During this phase, nodes 1, 2 and 3
observe (or measure) each a new sample. Let x1 be the sample
observed by node 1; and x2 and 3 those observed by node
2 and node 3, respectively. Node 1 processes x1 using its
NN and sends an encoded value u1 to node 5; and so do

nodes 2 and 3 towards node 4. Upon receiving u2 and u3
from nodes 2 and 3, node 4 concatenates them vertically and
processes the obtained vector using its NN. The output u4 is
then sent to node 5. The latter performs similar operations
on the activation values u1 and u4; and outputs an estimate
of the label y in the form of a soft output Qφ5 (y|u1,u4).

C. Bandwidth requirements
In this section, we study the bandwidth requirements of

our in-network learning. Let q denote the size of the entire
data set (each input node has a local dataset of size q

J ), p =
LJ+1 the size of the input layer of NN (J + 1) and s the size
in bits of a parameter. Since as per (8), the output of the last
layers of the input NNs are concatenated at the input of NN
(J + 1) whose size is p, and each activation value is s bits,

one then needs
2sp

J
bits for each data point – the factor 2

accounts for both the forward and backward passes; and,

so, for an epoch our in-network learning requires
2pqs

J
bits.

Note that the bandwidth requirement of in-network
learning does not depend on the sizes of the NNs used
at the various nodes, but does depend on the size of the
dataset. For comparison, notice that with FL one would
require 2NJs, where N designates the number of (weight-
and bias) parameters of a NN at one node. For the SL of [21],
assuming for simplicity that the NNs j = 1, . . . , J all have the
same size ηN, where η ∈ [0, 1], SL requires (2pq + ηNJ)s bits
for an entire epoch.

The bandwidth requirements of the three schemes are
summarized and compared in Table I for two popular NNs
architectures, VGG16 (N = 138, 344, 128 parameters) and
ResNet50 (N = 25, 636, 712 parameters) and two example
datsets, q = 50, 000 data points and q = 500, 000 data points.
The numerical values are set as J = 500, p = 25088 and
η = 0.88 for ResNet50 and 0.11 for VGG16.

Federated
learning

Split
learning

In-network
learning

Bandwidth
requirement 2NJs

(
2pq + ηNJ

)
s

2pqs
J

VGG 16
50,000 data points 4427 Gbits 324 Gbits 0.16 Gbits

ResNet 50
50,000 data points 820 Gbits 441 Gbits 0.16 Gbits

VGG 16
500,000 data points 4427 Gbits 1046 Gbits 1.6 Gbits

ResNet 50
500,000 data points 820 Gbits 1164 Gbits 1.6 Gbits

TABLE I: Comparison of bandwidth requirements

Compared to FL and SL, INL has an advantage in that all
nodes work jointly also during inference to make a predic-
tion,not just during the training phase. As a consequence
nodes only need to exchange latent representations, not
model parameters, during training.

IV. Experimental Results
We perform two series of experiments for which we

compare the performance of our INL with those of FL and



Fig. 9: Network architecture. Conv stands for a convolu-
tional layer, Fc stand for a fully connected layer.

SL. The dataset used is the CIFAR-10 and there are five
client nodes. In the first experiment the three techniques are
implemented in such a way such that during the inference
phase the same NN is used to make the predictions. In
the second experiment the aim is to implement each of the
techniques such that the data is spread in the same manner
across the five client nodes for each of the techniques.

A. Experiment 1
In this setup, we create five sets of noisy versions of the

images of CIFAR-10. To this end, the CIFAR images are
first normalized, and then corrupted by additive Gaussian
noise with standard deviation set respectively to 0.4, 1, 2, 3, 4.
For our INL each of the five input NNs is trained on a
different noisy version of the same image. Each NN uses
a variation of the VGG network of [32], with the categorical
cross-entropy as the loss function, L2 regularization, and
Dropout and BatchNormalization layers. Node (J + 1) uses
two dense layers. The architecture is shown in Figure 9. In
the experiments, all five (noisy) versions of every CIFAR-10
image are processed simultaneously, each by a different NN
at a distinct node, through a series of convolutional layers.
The outputs are then concatenated and then passed through
a series of dense layers at node (J + 1).

(a) Accuracy vs. # of epochs.

(b) Accuracy vs. bandwidth cost.

Fig. 10: Comparison of INL, FL and SL - Experiment 1

For FL, each of the five client nodes is equipped with the
entire network of Figure 9. The dataset is split into five sets of
equal sizes; and the split is now performed such that all five
noisy versions of a same CIFAR-10 image are presented to

Fig. 11: Used NN architecture for FL in Experiment 2

the same client NN (distinct clients observe different images,
however). For SL of [21], each input node is equipped with an
NN formed by all fives branches with convolution networks
(i.e., all the network of Fig. 9, except the part at Node (J +1));
and node (J + 1) is equipped with fully connected layers
at Node (J + 1) in Figure 9. Here, the processing during
training is such that each input NN concatenates vertically
the outputs of all convolution layers and then passes that to
node (J + 1), which then propagates back the error vector.
After one epoch at one NN, the learned weights are passed
to the next client, which performs the same operations on its
part of the dataset.

Figure 10a depicts the evolution of the classification
accuracy on CIFAR-10 as a function of the number of training
epochs, for the three schemes. As visible from the figure,
the convergence of FL is relatively slower comparatively.
Also the final result is less accurate. Figure 10b shows the
amount of data needed to be exchanged among the nodes
(i.e., bandwidth resources) in order to get a prescribed value
of classification accuracy. Observe that both our INL and SL
require significantly less data exchange than FL; and our INL
is better than SL especially for small values of bandwidth.

B. Experiment 2
In Experiment 1, the entire training dataset was parti-

tioned differently for INL, FL and SL (in order to account for
the particularities of the three). In this second experiment,
they are all trained on the same data. Specifically, each
client NN sees all CIFAR-10 images during training; and

(a) Accuracy vs. # of epochs.

(b) Accuracy vs. bandwidth cost.

Fig. 12: Comparison of INL, FL and SL - Experiment 2.



its local dataset differs from those seen by other NNs only
by the amount of added Gaussian noise (standard deviation
chosen respectively as 0.4, 1, 2, 3, 4). Also, for the sake of a
fair comparison between INL, FL and SL the nodes are set to
utilize fairly the same NNs for the three of them (see, Fig. 11).

Figure 12b shows the performance of the three schemes
during the inference phase in this case (for FL the inference
is performed on an image which has average quality of the
five noisy input images for INL and SL). Again, observe the
benefits of INL over FL and SL in terms of both achieved
accuracy and bandwidth requirements.

Appendix
A. Proof of Theorem 1

The proof of Theorem 1 is based on a scheme in which
the observations {x j} j∈J are compressed distributively using
Berger-Tung coding [30]; and, then, the compression bin
indices are transmitted as independent messages over the
network G using linear-network coding [31, Section 15.4].
The decision node N first decompresses the compression
codewords and then uses them to produce an estimate
Ŷ of Y. In what follows, for simplicity we set the time-
sharing random variable to be a constant, i.e., Q = ∅. Let
0 < ε

′′

< ε
′

< ε.
1) Codebook Generation: Fix a joint distribution

PX1,...,XJ ,Y,U1,...,UJ that factorizes as given by (16). Also,
let D = H(Y|U1, . . . ,UJ); and, for (u1, . . . ,uJ) ∈ U1 × . . . ×UJ,
the reconstruction function ŷ(·|u1, . . . ,uJ) ∈ P(Y) such

that E
[
d(Y, Ŷ)

]
≤

D
1 + ε

, where d : Y × P(Y) −→ R+ is
the distortion measure given by (5). For every j ∈ J ,
let R̃ j ≥ R j. Also, randomly and independently generate
2nR̃ j sequences un

j (l j), l j ∈ [1 : 2nR̃ j ], each according to∏n
i=1 pU j (u ji). Partition the set of indices l j ∈ 2nR̃ j into equal

size bins B j(m j) =
[
(m j − 1)2nR̃ j−R j : m j2nR̃ j−R j

]
, m j ∈ [1 : 2nR j ].

The codebook is revealed to all source nodes j ∈ J as well
as to the decision node N, but not to the intermediary nodes.

2) Compression of the observations: Node j ∈ J observes
xn

j and finds an index l j ∈ [1 : 2nR̃ j ] such that (xn
j ,u

n
j (l j)) ∈

T
(n)
ε′′

. If there is more than one index the node selects one at
random. If there is no such index, it selects one at random
from [1 : 2nR̃ j ]. Let m j be the index of the bin that contains
the selected l j, i.e., l j ∈ B j(m j).

3) Transmission of the compression indices over the graph
network: In order to transmit the bins indices (M1, . . . ,MJ) ∈
[1 : 2nR1 ] × . . . × [1 : 2nRJ ] to the decision node N over
the graph network G = (E,N ,C), they are encoded as if
they were independent-messages using the linear network
coding scheme of [31, Theorem 15.5]; and then transmitted
over the network. The transmission of the multimessage
(M1, . . . ,MJ) ∈ [1 : 2nR1 ] × . . . × [1 : 2nRJ ] to the decision
node N is without error as long as for all S ⊆ [1 : N − 1] we
have ∑

j∈S∩J

R j ≤ C(S) (A-1)

where C(S) is defined by (14).
4) Decompression and estimation: The decision node N

first looks for the unique tuple (l̂1, . . . , l̂J) ∈ B1(m1) ×
. . . × BJ(mJ) such that (un

1(l̂1), . . . ,un
J (l̂J)) ∈ T

(n)
ε . With high

probability, Node N finds such a unique tuple as long as n

is large and for all S ⊆ J it holds that [30] (see also [31,
Theorem 12.1]) ∑

j∈S

R j ≥ I(US; XS|USc ). (A-2)

The decision node N then produces an estimate ŷn of yn as
ŷ(un

1(l̂1), . . . ,un
J (l̂J)).

It can be shown easily that the per-sample relevance level
achieved using the described scheme is ∆ = I(U1, . . . ,UJ; Y);
and this completes the proof of Theorem 1.

B. Proof of Proposition 1
For Csum ≥ 0 fix s ≥ 0 such that Cs = Csum; and let P∗ =

{PU∗1 |X1 ,PU∗2 |X2 ,PU∗3 |X3 } be the solution to (23) for the given s.
By making the substitution in (22):

∆s =I(Y; U∗1,U
∗

2,U
∗

3) (B-1)
≤∆ (B-2)

where (B-2) holds since ∆ is the maximum I(Y; U1,U2,U3)
over all distribution for which (20b) holds, which includes
P∗.
Conversely let P∗ be such that (∆,Csum) is on the bound of
the RIsum then:

∆ =H(Y) −H(Y|U∗1,U
∗

2,U
∗

3)
≤H(Y) −H(Y|U∗1,U

∗

2,U
∗

3) + sCsum

− s
[
I(X2,X3; U∗2,U

∗

3|U
∗

1) + I(X1,X2,X3; U∗1,U
∗

2,U
∗

3)
]

(B-3)
≤H(Y) + max

P
Ls(P) + sCsum (B-4)

=∆s − sCs + sCsum

=∆s + s(Csum − Cs). (B-5)

Where (B-3) follows from (20b). Inequality (B-4) holds due
to the fact that maxPL(P) takes place over all P, including P∗.
Since (B-5) is true for any s ≥ 0 we take s such that Csum = Cs,
which implies ∆ ≤ ∆s. Together with (B-2) this completes the
proof.

C. Proof of Lemma 1
We have

Ls(P) = −H(Y|U1,U2,U3) − sI(X1,X2,X3; U1,U2,U3)
− sI(X2,X3; U2,U3|U1) (C-1)

= −H(Y|U1,U2,U3)

− s
[
I(X1; U1) + 2I(X2,X3; U2,U3|U1)

]
(C-2)

= −H(Y|U1,U2,U3) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U3; U1,U2) − I(U2; U1)

]
(C-3)

= −H(Y|U1,U2,U3) − sI(X1; U1) − 2sI(X2; U2)

+ 2s
[
I(U2; U1) + I(U3; U1,U2) − I(X3; U3)

]
(C-4)

≥ −H(Y|U1,U4) − sI(X1; U1) − 2s
[
I(X2; U2) + I(X3; U3)

]
+ 2s

[
I(U2; U1) + I(U3; U1,U2)

]
(C-5)

where (C-2) holds since U1 −
− X1 −
− (X2,X3,U2,U3) and
(U2,U3)−
− (X2,X3)−
− (U1,X1); (C-3) holds since U2 −
−X2 −


− (U1,X3) and U3 −
− X3 −
− (U1,U2,X2); (C-5) hold since
U4 −
− (U2,U3) −
− (Y,U1).



D. Proof of Lemma 2
From [25, eq. (55)] it can be shown that for any pmf

QY|Z(y|z) , y ∈ Y and z ∈ Z the conditional entropy H(Y|Z)
is :

H(Y|Z) = E[− log QY|Z(Y|Z)] −DKL(PY|Z||QY|Z). (D-1)

And from [25, eq. (81)]:

I(X; Z) = H(Z) −H(Z|X)
= DKL(PZ|X‖QZ) −DKL(PZ‖QZ). (D-2)

Now substituting Equations (D-1) and (D-2) in (28) the
following result is obtained:

L
low
s (P+) = −H(Y|U1,U4) − sI(X1; U1) − 2sI(X2; U2)

− 2sI(X3; U3) + 2s
[
I(U2; U1) + I(U3; U1,U2)

]
=E[log QY|U1,U4 ] + DKL(PY|U1,U4 ||QY|U1,U4 )
− sDKL(PU1 |X1‖QU1 ) + sDKL(PU1‖QU1 )
− 2sDKL(PU2 |X2‖QU2 ) + 2sDKL(PU2‖QU2 )
− 2sDKL(PU3 |X3‖QU3 ) + 2sDKL(PU3‖QU3 )
+ 2sDKL(PU2 |U1‖QU2 ) − 2sDKL(PU2‖QU2 )
+ 2sDKL(PU3 |U1,U2‖QU3 ) − 2sDKL(PU3‖QU3 )

=Lv-low
s + sDKL(PU1‖QU1 ) + 2sDKL(PU2 |U1‖QU2 )

+ 2sDKL(PU3 |U1,U2‖QU3 ) + DKL(PY|U1,U4 ||QY|U1,U4 )

≥L
v-low
s (D-3)

The last inequality (D-3) holds due to the fact that KL
divergence is always positive and s ≥ 0, thus proving the
lemma.
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