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Abstract—Frequent and severe wildfires have been observed
lately on a global scale. Wildfires not only threaten lives and
properties, but also pose negative environmental impacts that
transcend national boundaries (e.g., greenhouse gas emission
and global warming). Thus, early wildfire detection with timely
feedback is much needed. We propose to use the emerging beyond
fifth-generation (B5G) and sixth-generation (6G) satellite Internet
of Things (IoT) communication technology to enable massive
sensor deployment for wildfire detection. We propose wildfire and
carbon emission models that take into account real environmental
data including wind speed, soil wetness, and biomass, to simulate
the fire spreading process and quantify the fire burning areas,
carbon emissions, and economical benefits of the proposed system
against the backdrop of recent California wildfires. We also
conduct a satellite IoT feasibility check by analyzing the satellite
link budget. Future research directions to further illustrate the
promise of the proposed system are discussed.

I. INTRODUCTION

Global warming is a pressing global issue and a result of

excessive green house gas (GHG) emission. A major element

of GHG is carbon dioxide. There are many contributing

factors to carbon emissions, including wildfires. Global carbon

emissions from fires for the recent years are 2.0 GtC yr−1

which is 40% of the atmospheric carbon dioxide growth rate

[1]. Frequent and intense fire activities could switch forests

from carbon stocks to sources, especially during drought times,

and such extreme cases contribute to significant carbon emis-

sion. A timely wildfire detection system can reduce carbon

emissions and negative environmental impacts, as well as save

lives and properties, by shifting the fire regime to a short and

small one through reducing the spread of fires.

Satellite-based monitoring has been used in detecting wild-

fires. However, the long scan period and low resolution of

satellites limited the performance of the system [2]. Moreover,

the two-dimensional image data from satellite-sensor remote

sensing cannot present the landscape-level ecological infor-

mation such as biomass, soil wetness, and wind speed, which

results in inaccurate detection [3]. These challenges inspired

the employment of sensor-based systems [4]. Although the

sensor-based systems could report more timely and precise in-

formation, there remain issues to address, such as deployment
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robustness, sensor power management, and communication

reliability and security [5].

Various types of sensor-based systems such as observation

by watchtowers and unmanned aerial vehicles (UAVs) [6]–[8]

all face some of these issues. The installation and mainte-

nance of watchtowers are costly [6], [7]. Some conventional

watchtowers required human operation which added to the

total cost of watchtowers. Therefore, Ko et al. [6] designed a

computer vision system to replace human presence in watch-

towers. Flexibility is another issue because adding or removing

watchtowers will create redundancy or insufficiency in the

observation coverage. Zhang et al. [7] proposed algorithms

to optimize the locations of watchtower deployment.

Using UAVs for disaster management faces two major

challenges in regard to power management and security [8].

First, UAVs are battery-powered and the recharge time could

create a lapse in communicating essential data. Second, the

observed data by UAVs might contain sensitive or private

information, and therefore the use of UAVs is typically subject

to government regulations regarding their sizes, ranges, and

maximum flight heights.

There is a potential to leverage the advances of wireless

communication and Internet of Things (IoT) technologies

for geo-hazards prevention [9]. To achieve timely wildfire

detection and overcome the aforementioned limitations of

watchtowers and UAVs, we propose to use the emerging

beyond fifth-generation (B5G) and sixth-generation (6G) satel-

lite IoT communication technology to enable massive sensor

deployment in remote areas. Satellite communication has the

advantage of covering an expansive area but is traditionally a

closed-loop small ecosystem that requires dedicated, expensive

satellite communication equipment (e.g., satellite phones), and

is not available for large-scale commercial use. We propose to

use the same radio interface and the same terrestrial radio

communication technologies (i.e., B5G or 6G) with low-cost,

consumer-grade wireless equipment for satellite IoT commu-

nication, which was shown feasible in [10], for early wildfire

detection. The main contributions of this paper include:

• We develop a mathematical model and perform the fea-

sibility analysis of sensor-based satellite IoT for wildfire

monitoring and detection. We propose a wildfire evolution
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Fig. 1. The proposed satellite-enabled IoT sensors for wildfire detection.

model that takes into account wind speed and soil wet-

ness. We propose a carbon emission model. We perform

a satellite IoT feasibility check by calculating the satellite

system capacity.

• We use real environmental data such as wind, soil wet-

ness, and biomass information to conduct simulations

using California as a case study. We demonstrate the

effect of sensor density on the fire burning time and the

resulting carbon emissions and monetary costs. Benefits

and implications of the proposed method are discussed.

II. THE PROPOSED SYSTEM

Fig. 1 illustrates the proposed system. A massive number

of geographically distributed sensors are deployed in remote

areas (e.g., forests) for fire detection. The sensors are under

the geostationary earth orbit (GEO) satellite beam coverage.

Upon detecting a fire event, the sensors send alarm signals to

the GEO satellite en route to the fire monitoring center for

intervention and fire extinguishing measures.

We propose mathematical models to quantitatively evaluate

the proposed system. In what follows, we first model the wild-

fire evolution. Then, we model the carbon emission according

to the burned area and the biomass within the area. Finally,

we calculate the satellite communication link budget to verify

the number of sensors that can be supported by the system.

A. Wildfire Model

We extend the elliptical wildfire model with a single ignition

point and a constant wind magnitude and direction [11], to

wildfire evolution that involves multiple ignition points and

varying wind magnitudes and directions as time evolves. These

are described as follows.

1) Elliptical Fire Model: The spread of fire from a single

ignition point under constant wind condition can be modeled

as an ellipse, as depicted in Fig. 2(a). Ws is the wind speed;

up is the fire spreading speed in the same direction of the wind

(i.e., in the major axis direction of the ellipse); ub is the fire

spreading speed in the opposite direction of the wind, where

ub = 0.2up; and v is the fire spreading speed in the minor

(a)

(b)

Fig. 2. (a) Elliptical fire model. (b) Fire evolution model.

axis direction of the ellipse. The fire spreading speed up (m/s)

can be represented as

up = umax × g(Ws)× h(βroot) (1)

where umax is a constant representing the maximum fire

spreading speed which is 0.13 m/s (0.45 km/h), and g(Ws)
and h(βroot) are functions representing the dependence of up

on the wind speed (Ws) and root zone soil wetness (βroot).

The outputs of these two functions have values between 0 and

1. g(Ws) is computed by

g(Ws) = 1− (1 − g0) exp

(

−
W 2

s

2500

)

(2)

where g0 = 0.1 is a constant that controls the growth rate

when there is no wind. h(βroot) is described as

h(βroot) = (1− βm)2, βm =

{

βroot

βe

, for βroot ≤ βe

1, for βroot > βe

(3)

where βe = 0.35 is a threshold. When the soil wetness is above

this threshold, h(βroot) = 0, which leads to up = 0. The v
speed can be calculated from the ellipse length-to-breadth ratio

LB = (up + ub)/2v. LB is related to Ws and is represented

as

LB = 1+ 10
(

1− exp(−0.017Ws)
)

. (4)

Since up, ub, and v are speeds, they will be multiplied by a

time parameter to represent the distances of major and minor

axes of the ellipse.



2) Fire Evolution Model: We model the fire development

with changing winds as time evolves based on the elliptical

fire model. Fig. 2(b) describes the proposed fire evolution

model. At time t = 0, there is a single ignition point and

a single ellipse with the wind direction depicted. As time

evolves, theoretically, each point inside the elliptical area for

t = 0 could be the next ignition point for t = 1. This entails

infinitely many points. For modeling tractability, we consider

only the four points at the two ends of major and minor axes

of each ellipse as the next ignition points, to approximate fire

spreading. In other words, each ellipse at time t will generate

four ellipses at time t + 1. As shown in Fig. 2(b), the winds

may change magnitudes and directions, resulting in different

shapes and rotations of ellipses, as time evolves.

We approximate the fire burning area covered by the many

ellipses by the area of a circle, since directly calculating the

total area of possibly overlapping ellipses is intractable. The

center of the circle for calculating the fire burning area at time

t is determined by the average coordinates of the next ignition

points at time t, and the radius of the circle is determined by

the longest distance from the center to any of the ignition

points. For example, at time t = 2, there are four shaded

ellipses and 16 next ignition points, as shown in Fig. 2(b). The

center of the circle is the average coordinates of the 16 ignition

points, and the radius of the circle is the longest distance from

the center to any of the 16 ignition points. The area of the

circle, depicted by the blue dashed circle in Fig. 2(b), will be

used to approximate the fire burning area at t = 2. While this

may appear to be an overestimate of area, it is a reasonable

approximation considering the fact that in reality there are

many ellipses (instead of four) initiated from many ignition

points, as mentioned previously. Note that while at t = 1 we

can calculate the fire burning area exactly (since there is only

one ellipse), we still adopt the same approximation method

for consistency.

B. Carbon Emission Model

Given the burned area, and the biomass within the area,

the corresponding carbon emission can be derived. Since

the biomass varies from place to place, we use the average

biomass to calculate the amount of carbon emissions. It

is known that the underground biomass is 20% of above-

ground biomass [12], and both underground and above-ground

biomass will contribute to carbon emission. Let the total

burned area be A (km2) and the average (above-ground)

biomass be Bavg (Mg/ha), where Mg/ha denotes megagram

(or ton) per hectare (or 104 m2). Then, the carbon emission

in the unit of ton is given by

A× 1.2Bavg × 100 (5)

where 100 is a unit conversion factor.

We calculate the average biomass by dividing the fire

burning area into several (say, N ) smaller homogeneous areas

with biomass bn, n = 1, . . . , N , and averaging them to get the

average biomass Bavg = (b1 + b2 + · · ·+ bN )/N for the fire

Fig. 3. Calculation of the average biomass for the carbon emission model.

TABLE I
GEO SATELLITE LINK BUDGET PARAMETERS

Elevation angle (degrees) 10 90

Transmission mode UL UL

Subcarrier frequency (GHz) 1.5 1.5

TX: EIRP (dBm) 23 23

RX: G/T (dB/K) 19 19

Bandwidth (kHz) 3.75 3.75

PLFS (dB) 188.14 187.05

PLA (dB) 0.16 0.16

PLSM (dB) 3 3

PLS (dB) 2.2 2.2

PLP (dB) 3 3

Distance (km) 40581 35786

CNR (dB) 8.3714 9.4636

burning area, as illustrated in Fig. 3. In our model, each small

area has an area of one hectare with a biomass value.

C. Satellite Link Budget Analysis

Here, we conduct a feasibility check of GEO satellite

communication supporting sensors on the earth based on the

3GPP NB-IoT non-terrestrial network (NTN) solution [13].

We assume that the sensors are uniformly distributed in the

sensing area, and the sensing area is within the satellite

beam coverage. The GEO satellite beam diameter is 1000
km. Table I summarizes the GEO satellite communication

parameters for two cases of elevation angle [13]. 10-degree

elevation angle represents the worst case of link budget due

to the largest distance between the satellite and the sensors,

whereas 90-degree elevation angle represents the best case of

link budget as the satellite is directly overhead. Other cases of

link budget fall between these two cases.

The received carrier-to-noise ratio (CNR) at the satellite for

the uplink transmission can be calculated by [14]

CNR (dB) = EIRP (dBW) + G/T (dB/K)

− PLFS (dB)− PLA (dB)− PLSM (dB)

− PLS (dB)− PLP (dB)

− BW (dBHz)− k (dBW/K/Hz) (6)

where all terms are specified in Table I except the last term

which is the Boltzmann constant k = −228.6. The first term

of (6) is the effective isotropic radiated power (EIRP) equal to

23 dBm. The second term of (6) is the antenna-gain-to-noise-

temperature ratio (G/T) equal to 19 dB/K. The third term of



(6) is the free space path loss (PLFS) equal to 188.14 dB when

the elevation angle is 10 degrees, which is calculated from

PLFS = 32.45 (dB) + 20 log10(d) + 20 log10(f) (7)

where f = 1.5 GHz and d = 40581 km from Table I. The

fourth term of (6) is the atmospheric path loss (PLA) due to

gases and rain fades, taken to be 0.16 dB. The fifth term of (6)

is the shadow fading margin (PLSM) due to obstacles affecting

the wave propagation, taken to be 3 dB. The sixth term of (6)

is the scintillation loss (PLS) caused by the local variation

of the ionospheric electron density, taken to be 2.2 dB. The

seventh term of (6) is the polarization loss (PLP) caused by

the polarization mismatch in antennas, taken to be 3 dB. The

eighth term of (6) is the channel bandwidth (BW) which is

3.75 kHz. Summing up these terms gives CNR = 8.3714
dB for the worst case (10-degree elevation angle). This CNR

value, according to the transport block size (TBS) table in the

3GPP standard [15], allows the sensors to transmit 144 bits per

resource unit for uplink single tone (subcarrier) transmission.

A resource unit is 32 ms in time and 3.75 kHz in frequency.

Since the total available system bandwidth is 180 kHz, the

peak data rate (or throughput) is 144× (180/3.75/32) bits/ms

or 216 kbps for the worst case (10-degree elevation angle).

We consider two typical cases of wildfire sensing based

on the sensor traffic model in [16]: periodic report and fire-

event-triggered report. For the first case, the sensor report rate

is twice per day and the sensing data size per connection

is 50 bytes, which leads to 0.0093 bps under the assump-

tion of uniform traffic distribution. For the second case, the

sensor report rate is once per minute with the same data

size, which leads to 6.6667 bps. The supportable numbers

of sensors operating in the first and second cases can be

calculated as 216 (kbps)/0.0093 (bps) = 2.32 × 107 and

216 (kbps)/6.6667 (bps) = 3.24 × 104, respectively. Consid-

ering deploying one sensor per acre, or about 247 sensors per

km2, the supportable number of sensors for periodic report

can cover most of the forest area in the U.S. [17]. On the

other hand, since a fire event will trigger only sensors nearby

at a time as fire propagates, a capacity to support 3.24× 104

sensors for simultaneous event-triggered report is sufficient

for practical use. Clearly, increasing the system bandwidth

(which incurs additional operational cost) will increase the

link budget and the supportable number of sensors for both

cases of wildfire sensing.

III. SIMULATION RESULTS

A. Simulation Setup: California Wildfires

We consider California wildfires with fundamental historical

wildfire data as a case study for our proposed model. His-

torically, California has the highest number of wildfires and

burned areas among all states in the U.S. [18], motivating a

meaningful case study. The latitude and longitude of California

are 32◦ 32′ N to 42◦ N and 114◦ 8′ W to 124◦ 26′ W,

respectively. Since 1◦ of latitude equals approximately 111 km,

California spans about 1110 km vertically. Since the distance

Fig. 4. Simulation area approximation of California.

between longitudes varies depending on the latitude, California

spans about 1012 km at 32◦ N latitude and 902 km at 42◦

N latitude horizontally. For simplicity, we approximate the

geographic area of California by a 1000 × 1100 km2 area,

as illustrated in Fig. 4, with grid cells corresponding to the

environmental data described next.

Table II presents the environmental data of California in

2020 from [19]. There are four variables. u10 is the 10-

meter U-wind component and v10 is the 10-meter V-wind

component. The wind speed Ws in our wildfire model can

be calculated directly from Ws =
√

u2
10 + v210, and the wind

direction, represented by the angle θ with the horizontal

axis, can be calculated as θ = arctan(v10/u10). Swvl1 is

volumetric soil water in the unit of %, given by the volume

of water (m3) divided by the volume of soil (m3), which

corresponds to βroot in (1). These three variables are each

three-dimensional corresponding to longitude, latitude, and

time. Specifically, the 1000×1100 km2 area depicted in Fig. 4

is divided into 111×101 grid cells, and the time is in the unit

of hours for the entire year of 2020, given by 366 (day) ×
24 (hr/day) = 8784 (hr). The last variable is Biomass which

is the amount of the above-ground live biomass in the unit

of Mg/ha. The value of this variable is used to calculate the

average biomass in our model in Sec. II-B to get the carbon

emission. Biomass does not vary from time to time in our

dataset but changes from location to location.

We compare our simulation results with the historical wild-

fire data from the California Department of Forestry and Fire

Protection (CAL FIRE) database [20]. The database records

the incident created time, incident extinguished time, incident

coordination, and incident burned area in acre for all 255
California wildfires in the entire year of 2020. We set the

ignition point and starting time of each fire outbreak in

our simulation according to these 255 wildfires for a fair

annual comparison with the historical data. The sensors are

randomly deployed (uniformly distributed) in the approximate

geographic area of California.

B. Results and Discussion

1) Fire Burning Time/Area vs. the Number of Sensors: We

first examine the effect of the number of sensors on the fire

burning time and area. Fig. 5(a) shows the burned hours vs.

the number of sensors result. For simplicity and to focus our

discussion on the contribution of the number of sensors, we

assume that the fire is extinguished as soon as the fire spread-



TABLE II
THE ENVIRONMENTAL DATA OF CALIFORNIA IN 2020

Variables u10 v10 Swvl1 Biomass

Name 10-meter U-wind component 10-meter V-wind component Volumetric soil water layer 1 Above-ground live biomass

Dimensions 111 × 101 × 8784 111 × 101 × 8784 111× 101 × 8784 11645 × 10666 × 1

Grid spacing 10 (km) 10 (km) 10 (km) 100 (m)

Unit m/s m/s % Mg/ha
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Fig. 5. Simulation results. (a) Fire burning time (hours). (b) Fire burning area (km2). (c) Carbon emission (ton). (d) Carbon price (USD). (e) Savings (USD),
for sensor costs of 10, 20, 50, and 100 USD per sensor. The 2020 wildfire data from the CAL FIRE database are shown for comparison.

ing reaches any of the sensors. As can be seen, deploying more

sensors reduces the burned hours since the fire could be more

timely detected. The number of sensors ranges from 105 to

106, where 106 sensors deployed in the 1000×1100 km2 area

of California amounts to approximately one sensor per km2.

The burned time when 105 and 106 sensors are deployed is

594.21 hours and 178.77 hours, respectively. In comparison,

the historical annual burned time, calculated by summing the

burning time (the duration between incident created time and

incident extinguished time) of all California wildfires in 2020

in the CAL FIRE database, is 36716.25 hours.

Fig. 5(b) shows the burned areas vs. the number of sensors

result. The burned areas are 1420.11 km2 and 308.35 km2

when 105 and 106 sensors are deployed, respectively. In

comparison, the annual burned area derived from the CAL

FIRE database is 10202.04 km2.

2) Carbon Emission/Price vs. the Number of Sensors: We

calculate the carbon emission based on the carbon emission

model in (5). Fig. 5(c) shows the result. The amounts of carbon

emission are 5.82× 106 ton and 1.17× 106 ton when 105 and

106 sensors are deployed, respectively. According to [21], we

assume per ton of carbon is equal to 20 USD. The carbon

price is shown in Fig. 5(d), which is 116.4 million USD with

105 sensors and 23.4 million USD with 106 sensors.

In comparison, the annual carbon emission from the 2020

California wildfires can be calculated as 10202.04 × (1.2 ×
46.6237)×100 = 5.71×107 ton based on (5), where we have

adopted the average biomass value of the entire California,

46.6237 Mg/ha. This amounts to a carbon price of 1.14 billion

USD.

3) Savings vs. the Number of Sensors: The annual saving

yielded by using our proposed sensor-based system is the

monetary difference between the 1.14 billion USD cost and

the carbon price for the proposed method shown in Fig. 5(d)

plus the sensor costs. For example, assuming the sensor cost of

100 USD per sensor, the saving is 1.14×109−(116.4×106+
105×100) = 1.01×109 USD, or 1.01 billion USD, when 105

sensors are deployed. The savings result is shown in Fig. 5(e)

for four different sensor costs. As can be seen, the proposed

sensor-based system can potentially lead to significant annual

savings by detecting wildfires early.

C. Further Discussion and Future Directions

The results presented have shown the promise of the pro-

posed system. Further studies in the following directions can



be done to enhance the completeness and generality of the

proposed system:

• The current study considers an ideal situation where fire

is contained immediately upon detection of fire by one

or more sensors. The time and cost associated with the

follow-up fire extinguishing measures should be taken

into account to provide a more well-rounded view of the

total savings achieved by the proposed method.

• The current study considers a simple sensor placement

model (i.e., uniform distribution). In practice, the terrain

(land, sea, lake, etc.), population density (urban/suburban

areas, etc.), and heterogeneous characteristics and vege-

tation of the land coverage area may be considered for a

more intelligent and efficient placement of sensors. For

example, more sensors should be deployed in high-risk,

high-flammability areas such as forests. This considera-

tion can be further coupled with an analysis of the critical

fire time and area beyond which a fire would be difficult

to control, so as to identify the required number of sensors

in specific areas.

• The current study could further take into account different

causes of fire, especially, natural causes of fires (e.g.,

lightning) and human-caused fires, which may demand

different sensor types and data traffic models.

• A proof-of-concept field trial can be conducted to verify

the integration and testing of wildfire detection sensors

and NB-IoT NTNs.

IV. CONCLUSION

In this paper, we have proposed a sensor-based satellite

IoT system for wildfire detection. We quantitatively investi-

gated the feasibility and effectiveness of the proposed system.

Specifically, we first proposed a wildfire model with multiple

ignition points and varying wind magnitudes and directions,

and a method to approximate the fire burning area. We then

proposed a carbon emission model based on real biomass

information, as well as conducted a satellite link budget

analysis. Simulation results based on real environmental data

of California in 2020 demonstrated that deploying as few as

one sensor per km2 could reduce the annual carbon emission

by more than ten times, and deploying our system could yield

significant annual savings of billions of USD due to early fire

containment. Pointers on further research based on this pilot

study were outlined.
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