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Abstract—In this paper, we propose a frequency-time division
network (FreqTimeNet) to improve the performance of deep
learning (DL) based OFDM channel estimation. This Freq-
TimeNet is designed based on the orthogonality between the
frequency domain and the time domain. In FreqTimeNet, the
input is processed by parallel frequency blocks and parallel
time blocks sequentially. By introducing the attention mechanism
using the SNR information, an attention based FreqTimeNet
(AttenFreqTimeNet) is proposed. Using 3rd Generation Part-
nership Project (3GPP) channel models, the mean square error
(MSE) performance of FreqTimeNet and AttenFreqTimeNet
under different scenarios is evaluated. A method for constructing
mixed training data is proposed, which could address the gener-
alization problem in DL. It is observed that AttenFreqTimeNet
outperforms FreqTimeNet, and FreqTimeNet outperforms other
DL networks with reasonable complexity.

Index Terms—OFDM, channel estimation, deep learning, at-
tention

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
one of the core technologies in both 4G and 5G standard,
which supports multiple access well and performs robustly in
frequency selective fading environment. Moreover, it seems
that OFDM is very likely to be reused in 6G standard. In
wireless communication systems, the transmit signals suffer
from various kinds of fading and multi-path propagations. To
demodulate the transmit signals, pilot signals such as demod-
ulation reference signal (DMRS) are designed to estimate the
channel information. The DMRS is transmitted along with
the data signals, using the same transmit precoding of the
data signals and suffering from similar channel fadings. Since
the locations and the sequences of DMRS are known to the
receiver, the receiver could estimate the channel using the
received signals. Least square (LS) and linear minimum mean
square error (LMMSE) are two representative OFDM channel
estimation methods.

In recent years, deep learning (DL) or artificial intelligence
(AI) has been widely investigated in wireless communication
systems, in both academia and industries [1]–[3]. DL is proved
to work successfully in various areas, such as MIMO detection
[4], channel state information (CSI) feedback [5]–[7], signal
recovery [8] and channel estimation [9]–[12]. An end-to-end
DL network is proposed in [9] to prove the feasibility of
DL based OFDM channel estimation. As the combination

of the super-resolution network (SRCNN) and the denoising
neural network (DnCNN), ChannelNet is proposed to improve
the OFDM channel estimation performance [11]. Employ-
ing Residual learning, which is a powerful tool in image
super-resolution, the deep residual channel estimation network
(ReEsNet) is proposed in [12].

However, in many DL-based communication studies, DL
technologies in computer science are directly applied to wire-
less communication, ignoring many essential characteristics of
communication. Actually, the features of wireless communica-
tion channels and the theories of wireless communication are
very helpful in the design of DL networks in [4], [13], [14].

In this paper, we propose a frequency-time division network
(FreqTimeNet) for OFDM channel estimation. The orthogo-
nality between the frequency domain and the time domain,
which is used in channel estimation methods in industry to
reduce the complexity of the OFDM channel estimator, is the
key idea of FreqTimeNet. The input is divided into subsets
along the time domain and each subset goes into one of the
frequency blocks. Then the outputs of the frequency blocks
are combined and then divided again into subsets along the
frequency domain. Each new subset passes through one of
the time blocks and then the final outputs are obtained by
using frequency combination. Furthermore, to involve signal
to noise ratio (SNR) in FreqTimeNet, an attention based
FreqTimeNet (AttenFreqTimeNet) is proposed to improve the
performance under different SNRs. The simulation results are
provided under 3rd Generation Partnership Project (3GPP)
channel models. In the simulation, we construct a mixed
channel model, concluding non-line-of-sight (NLOS) channel
with low speed, NLOS channel with high speed, line-of-sight
(LOS) channel with low speed and LOS channel with high
speed. This mixed training data could reduce the impact of
the generalization problem in DL. Better mean square error
(MSE) performance is achieved by FreqTimeNet compared to
other DL based method and AttenFreqTimeNet outperforms
FreqTimeNet.

II. SYSTEM MODEL

We consider an OFDM wireless communication system with
one typical setting in [15]. The minimum unit of the resources
in time domain is one OFDM symbol, and the minimum
unit of the resources in frequency domain is one subcarrier.
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Fig. 1. An example of pilots in 5G OFDM system.

Resource element (RE), which occupies one OFDM symbol
and one subcarrier, is noted as the minimum time-frequency
resource. As shown in Fig. 1, to assist the demodulation of
the received signals, pilots are located sparsely in the time-
frequency resources, the rest of which could be used for data
transmission and other kinds of reference signals. Fig. 1 shows
one typical pilot resource allocation in current 5G system
[15]. In the frequency domain, there are 12 subcarriers in one
resource block (RB) and 14 OFDM symbols in one time slot.
The pilots occupy 6 subcarriers and 2 OFDM symbols in one
RB and one time slot.

Assume the system has Nt OFDM symbols, Nf subcarriers,
MTx transmit antennas and MRx receive antennas. For the
kth OFDM symbol, the ith subcarriers and the mRxth receive
antenna, the received signal at the receiver can be represented
by

yk,i,mRx
=

MTx∑
mTx=1

hk,i,mTx,mRx
wk,i,mTx

sk,i + zk,i,mRx
(1)

where hk,i,mTx,mRx
and wk,i,mTx

are the channel and transmit
percoder of the mTxth transmit antenna, respectively. Symbol
sk,i denotes the transmit signal and zk,i,mRx

is the white
Gaussian noise (AWGN).

Since the pilots and the data signals are beamformed with
the same transmit precoders, the above equation could be
rewritten as

yk,i,mRx
= h̃k,i,mRx

sk,i + zk,i,mRx
(2)

where h̃k,i,mRx
=

∑MTx

mTx=1 hk,i,mTx,mRx
wk,i,mTx

is the pre-
coded channel. Then for all OFDM symbols and subcarriers,
we have

YmRx
= H̃mRx

◦ s+ zmRx
(3)

where yk,i,mRx
, h̃k,i,mRx

, sk,i and zk,i,mRx
are (k, i)th ele-

ment of YmRx
, H̃mRx

, s, and zmRx
∈ CNf ,Nt , respectively.

Symbol ◦ denotes the element-wise product, which is also
known as the Hadamard product.

Refering to Fig. 1, pilots occupies Np,t OFDM symbols
of total Nt OFDM symbol and Np,t subcarriers of total Nf

subcarriers, with Np,t < Nt, Np,f < Nf . Focusing on the

time-frequency resources occupied by the pilots, for the mRxth
receive antenna, we have

Yp,mRx
= H̃p,mRx

◦ sp + zp,mRx
(4)

where Yp,mRx
∈ CNp,t,Np,f is the received signal on the pilot

resources. The channel coefficients of the pilot resources are
H̃p,mRx

, the pilot signals are sp, and the AWGN of the pilot
resources are zp,mRx

. It is clear that Yp,mRx
, H̃p,mRx

, sp and
zp,mRx

are subsets of YmRx
, H̃mRx

, s and zmRx
, respectively.

Since sp is known by both the transmitter and the receiver,
H̃p,mRx

could be estimated based on Yp,mRx
and sp. Then

with the estimation of H̃p,mRx
, H̃mRx

could be further
estimated and used for demodulations of data signals. There
are several conventional methods for this problem, such as
least square (LS) method and minimum mean square error
(MMSE) method [9].

III. DEEP LEARNING BASED CHANNEL
ESTIMATION METHOD

In this paper, we focus on the problem of estimating H̃mRx

based on H̃p,mRx
. It can be seen from Fig. 1 that this

problem is similar to the image super-resolution (SR) problem
in computer vision. In this classic computer vision problem,
a low-resolution image with or without noise is processed to
a high-resolution image with the best possible image quality.

Regarding our problem, H̃p,mRx
could be treated as the

low-resolution image, the size of which is Np,t × Np,f × 2,
and H̃mRx

could be seen as the high-resolution image, the size
of which is Nt ×Nf × 2. Based on this logic, deep learning,
which is one powerful tool in image super-resolution, could
be used to solve the problem.

A. ChannelNet

ChannelNet is the combination of two neural networks [11],
as shown in Fig. 2. The first neural network is SRCNN, which
is used to transform the low-resolution image of size Np,t ×
Np,f × 2 to the high-resolution image with size Nt×Nf × 2.
The second neural network is DnCNN, which is used for noise
reduction and does not change the size of the image. Note that
in [11], only one filter of size 5 × 5 is used in the last layer
of SRCNN and the output of SRCNN would be Nt×Nf × 1.
Here two filters of size 5 × 5 are deployed to improve the
performance.

B. ReEsNet

ReEsNet is based on residual learning, which is introduced
to solve the gradient vanishing problem and the gradient
explosion problem in very deep DL network [12], as shown in
Fig. 2. With the combination of identity mapping and residual
mapping, these gradient related problems could be mitigated.
After one convolutional layer with 16 filters of size 3× 3× 2,
the input of size Np,t×Np,f ×2 is transformed to the feature
map of size Np,t × Np,f × 16. After 4 ResBlocks and one
convolutional layer, the size of the feature map remains the
same. The transposed convolution is used for up-sampling.
After up-sampling, the size of the feature map is increased



Fig. 2. Architectures of ChannelNet and ReEsNet.

to Nt × Nf × 16. The final output is obtained after another
convolutional layer.

C. FreqTimeNet

From Eq. (4), it is seen that H̃p,mRx
is 2D matrix, where

one dimension is frequency and the other dimension is time.
Then the channel estimation methods usually employ 2D
matrix operations or 2D integral. For current wireless com-
munication system with large bandwidth in 5G, there might
be thousands of subcarriers, while there are 12 or 14 OFDM
symbols in one time slot [15]. The 2D matrix operations or 2D
integral would be too complicated to be used in practical wire-
less communication systems. To our knowledge, to reduce the
complexity, one commonly used channel estimation method in
industry is based on the orthogonality between the frequency
domain and the time domain. That is, in the first step, the
channel resources are divided in time domain, and on each
OFDM symbol, the channel coefficients of all subcarriers are
recovered first based on the subcarriers of the pilots, separately.
In the second step, the channel resources are divided in
frequency domain, and on each small number of subcarriers,
the channel coefficients of all OFDM symbols are recovered
based on the OFDM symbols of the pilots, separately. Based
on this frequency-time division method, similar performance
is achieved with much lower complexity.

Using the principle of this frequency-time division method,
FreqTimeNet is proposed in this paper for the OFDM channel
estimation. The architecture of FreqTimeNet is presented in
Fig. 3. The size of the input is Np,t ×Np,f × 2. In the time
division module, the input is divided into Np,t parts, and the
size of each part is 1×Np,f × 2. Each part is reshaped into
a vector and then goes through one of the frequency blocks,
which is a small full-connected (FC) network with one hidden
layer having Np,f × 3 neurons. The outputs of the frequency
blocks are reshaped into the 1×Nf × 2 feature maps and are
combined as one Np,t×Nf×2 feature map in time dimension.
In the following, the Np,t×Nf×2 feature map is divided into
Nf

L parts, and the size of each part is Np,t×L×2. Then each
part is reshaped into a vector and then goes through one of

the time blocks, which is a small full-connected network with
one hidden layer having Np,t×L×2 neurons. The outputs of
the frequency blocks are reshaped into the Nt×L× 2 feature
map. After combining all the feature maps, the final output
of size Nt × Nf × 2 could be obtained. Note that rectified
linear unit (ReLu) is used as the activation function of the FC
networks.

All the frequency blocks could use the same parameters,
and all the time blocks could also share the parameters, which
could largely reduce the number of parameters. Note that, we
use simple full-connected network in both frequency blocks
and time blocks, which could be further optimized by using
convolutional neural network (CNN).

D. AttenFreqTimeNet

Attention mechanism is a DL technique widely used in nat-
ural language processing and computer vision [16]. Recently,
attention mechanism has also been employed in wireless com-
munications [17], [18]. This mechanism introduces additional
neural network, which can select different features in the
original neural network according to different situations. Also,
this additional neural network could assign different weights
to the original features and these weights could be called as
the soft attentions. After this process, the performance of the
neural network could be improved, especially for the data
under various situations.

SNR is a very important channel state information and
could be easily acquired in current wireless networks [19].
However, SNR is not used in above neural networks. How
to design the neural network with SNR is a topic deserving
research. Then attention mechanism is introduced to involve
SNR in the FreqTimeNet, and the new neural network is called
as AttenFreqTimeNet, which is shown in Fig. 4. After each
frequency block, one attention block is added to pay attention
to different features in different SNRs. The details of the
attention block could be seen in Fig. 5. Note that The output
of one frequency block is FG with size 1×Nf × 2.

An attention block includes three parts: 1) context extrac-
tion; 2) factor prediction; and 3) feature recalibration.



Fig. 3. Architecture of FreqTimeNet.

Fig. 4. Architecture of AttenFreqTimeNet.

Fig. 5. Architecture of the attention block.

1) Context extraction: The context information I includes
two parts. The first part is the SNR related information and
the second part is the output of the feature exaction of FG. In
this paper, The SNR related information is obtained through
a simple FC network, in which the input is the linear value
of SNR, the hidden layer has 50 neurons, and the output
layer has 10 neurons. Linear method is employed for feature
exaction and then FG is directly used as a part of the context
information I.

2) Factor prediction: A factor prediction neural network is
employed to obtain the scaling factor S under different SNRs.
Here a simple neural network with two FC layers is used. The
first FC layer has 1 × Nf neurons with a ReLu. The second
FC layer has 1×Nf ×2 neurons with a Sigmoid, which could
limit the output range to (0,1) and achieve better performance
than ReLu.

3) Feature recalibration: The recalibrated feature map FA

is obtained by the element-wise product of FG and the scaling
factor S. The impacts of different SNRs have been included
in FA.

IV. SIMULATION RESULTS
In this section, we present numerical results of the noted

networks based on link level simulations. We consider single
transmit antenna and single receive antenna. There are Nf =
96 subcarriers in the frequency domain and Nt = 14 OFDM
symbols in the time domain. This is equivalent to 8 RBs in
frequency domain since there are 12 subcarriers in one RB, and
one time slot in time domain. The pilot pattern as depicted in
Fig. 1 is used. The number of pilots is 96, and in other words,
the pilots occupy total 96 resource elements. The link level
simulator follows 3GPP tapped delay line (TDL) models [20],
which has been calibrated. The carrier frequency is 3.5GHz,
and subcarrier space is 15KHz. A new method for constructing
mixed training data is proposed to address the generalization
problem in DL. For the training data, the channel model is a
mixed model of TDL-A, TDL-B, TDL-C, TDL-D and TDL-E,
where one sample randomly selects one channel model from
these 5 models; the delay spread is randomly chosen from
0ns to 300ns; the speed is randomly generated from 0km/h to
50km/h; the SNR of each sample is randomly selected from
[0dB, 5dB, 10dB, 15dB, 20dB]. We use total 90,000 training
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Fig. 6. The performance of DL networks in mixed channel model.

samples, 10,000 validation samples and 10,000 test samples.
That is, 2000 test samples are used for one SNR value in
one simulation figure. The number of total epochs is 100, the
size of mini-batch is 128, and the optimizer is Adam with
the default setting in Keras. The MSE between the output of
DL network and actual channel information is used for both
training and performance evaluation.

During the training of FreqTimeNet and AttenFreqTimeNet,
all the time blocks share their parameters, but the frequency
blocks use separate parameters, as a trade-off between perfor-
mance and complexity. The attention blocks also use separate
parameters. The hype-parameter L is set as 12 and then each
time block deals with 12 subcarriers, which is 1 RB in the
frequency domain. ReEsNet 1 uses the same hyper-parameters
in [12], while in ReEsNet 2, the number of filters in each
convolutional layer is 32 except the last convolutional layer
and the number of ResBlocks is 6.

The performance of the proposed FreqTimeNet and Atten-
FreqTimeNet for the mixed channel model is shown in Fig.
6, along with ChannelNet, ReEsNet 1 and ReEsNet 2. The
settings of mixed channel model are the same as the training
samples. It is seen that AttenFreqTimeNet achieves the best
MSE performance in all SNR points, and the performance of
ReEsNet 1 is the worst. Note that the same hype-parameters
for ReEsNet 1 are used as [12], but the channel model and
simulation details are different from [12]. Other values of
hype-parameters would improve the performance of ReEsNet.
Then ReEsNet 2 with higher complexity is investigated. For
MSE of 2 × 10−3, FreqTimeNet achieves about 4dB SNR
gain compared to ReEsNet 2, and more gain compared to
ChannelNet and ReEsNet 1. As the SNR increases, the advan-
tage of FreqTimeNet diminishes gradually, which means that
the generalization performance of FreqTimeNet in high SNR
needs to be further improved. Since the attention blocks are
used in AttenFreqTimeNet to improve the performance under
different SNRs, the advantage of AttenFreqTimeNet is stable
in various SNRs.

In the following, we test the DL networks in different
scenarios. First, we focus on NLOS scenario and use the TDL-
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Fig. 7. The performance of DL networks for TDL-C model, delay spread
100ns, and speed 3km/h.
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Fig. 8. The performance of DL networks for TDL-C model, delay spread
100ns, and speed 50km/h.

C model with delay spread of 100ns. The evaluation results
for low speed of 3km/h are shown in Fig. 7 and results for
the high speed of 50km/h are shown in Fig. 8. Then, LOS
scenario is considered and one typical setting is adopted, in
which the model is TDL-D and the delay spread is 30ns. Fig.
9 and Fig. 10 show the results of 3km/h and 50km/h in this
scenario, respectively. From the curves in these 4 figures, it
can be seen that AttenFreqTimeNet achieves almost the best
MSE performance in different channel conditions. Moreover,
it is seen that these DL networks provide stable performance
in different scenarios.

The numbers of the parameters and the flops of the DL
networks are presented in Table I, using the application
programming interface (API) of Keras. It is noticed that the
complexity of FreqTimeNet is much lower than ChannelNet,
higher than ReEsNet 1, and similar to ReEsNet 2. Considering
the good MSE performance of FreqTimeNet, the complexity
is acceptable. The complexity of AttenFreqTimeNet is higher
than FreqTimeNet, since the attention blocks bring extra
calculations. Note that the frequency blocks, the time blocks
and the attention blocks are small FC networks, and then it
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Fig. 9. The performance of DL networks for TDL-D model, delay spread
30ns, and speed 3km/h.
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Fig. 10. The performance of DL networks for TDL-D model, delay spread
30ns, and speed 50km/h.

TABLE I
THE COMPLEXITY ANALYSIS OF DL NETWORKS

Methods Number of Parameters Number of Flops
FreqTimeNet 102K 286k

AttenFreqTimeNet· 147K 416k
ChannelNet 686K 1364K
ReEsNet 1 27K 54K
ReEsNet 2 145K 289K

is clear that employing convolutional neural network (CNN)
could largely reduce the complexity of FreqTimeNet and
AttenFreqTimeNet.

V. CONCLUSIONS

In this paper, for DL based OFDM channel estimation, the
FreqTimeNet has been proposed, which uses both the commu-
nication domain knowledge and the DL domain knowledge.
Using the orthogonality between the frequency domain and
the time domain, the FreqTimeNet is divided into two parts.
The first part is parallel frequency learning and the second
part is parallel time learning. Moreover, AttenFreqTimeNet

has been proposed to use the SNR information with attention
mechanism. The simulation results have been provided under
3GPP channel models. A method for constructing mixed
training data has been proposed to deal with the generalization
problem in DL. It has been shown that in different communi-
cation scenarios, the MSE performance of AttenFreqTimeNet
is better than FreqTimeNet and FreqTimeNet achieves lower
MSE than other DL networks.
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