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Abstract—Since the introduction of automation tech-

nologies in the Industrial field and its subsequent scaling to

horizontal and vertical extents, the need for interconnected

industrial systems, supporting smart interoperability is

ever higher. Due to this scaling, new and critical vul-

nerabilities have been created, notably in legacy systems,

leaving Industrial infrastructures prone to cyber attacks,

that can some times have catastrophic results. To tackle the

need for extended security measures, this paper presents

a Federated Industrial Honeypot that takes advantage of

decentralized private Deep Training to produce models

that accumulate and simulate real industrial devices. To

enhance their camouflage, SCENT, a new custom and

covert protocol is proposed, to fully immerse the Fed-

erated Honeypot to its industrial role, that handles the

communication between the server and honeypot during

the training, to hide any clues of operation of the honeypot

other that its supposed objective to the eye of the attacker.

Index Terms—Honeypots, Deep Learning, Industrial

Control System, SCADA, Autoencoder, Data Generation

I. INTRODUCTION

I n order to orchestrate, organize and make the

communication of industrial environment pos-

sible, Industrial Control Systems (ICS) and Su-

pervisory Control and Data Acquisition (SCADA)

systems, undertake that task and oversee the correct
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operation of their respective supervised systems.

These systems include, but are not limited to, water

pump stations, electrical smart-grids, electrical grid

substation, gas pipelines and so on that differ on

their level of criticality but have additional needs to

that of simple networks. As legacy systems began to

upgrade to suit the modern network needs [1], they

became exposed and susceptible to cyberattacks.

This led to major security breaches with dire impli-

cations. Possible intruders, if attain the right access,

can discover and steal important classified data, per-

sonal information of employees and services, even

tinker with critical systems, for example, opening

and closing the electric Supply in buildings or whole

areas, messing with gas pumps and so on. As can

be made clear, in the case of infrastructures like

hospitals this can have catastrophic consequences

that even threaten human lives.

In the last couple of years, Honeypots, the in-

dividual components deployed in Honeynets, that

undertake the task of posing as active target devices

or services in a network to divert, log and audit

possible malicious interaction in that network, have

come a long way. They are effective in capturing

the interest of attackers, tracking and analysing their

movements and thus giving time to security mea-

sures to be deployed and notify about the interests

and motives of the impending attacks.

Unfortunately, malicious practices have also

evolved. This creates the need for evermore cog-

nitive and advanced security systems. In the case

of honeypots and using techniques like network

discovery and ML traffic classification, Figerprint-

ing and so on [2], attacker can easily distinguish

the security traps and avoid them, thus rendering

them useless. This problem is the product of two

factors, a) honeypots behave in static-predetermined

manners or b) some used protocols, like Modbus,
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support only a handful of actions. For example,

if a Honeypot emulating a Modbus Programmable

Logic Controller (PLC) device running modbus

starts making other transaction in the network, then

that produces a possible indication that the machine

is not what it seems to be.
Taking into account the above problem formu-

lation, this work strives to tackle the mentioned

limitations by extending an Industrial Modbus Hon-

eypot that incorporates a Deep Neural Network. The

contributions of this work are as follows:

• Presents an updated Neural Honeypot based

on LTSM-Autoencoders for better behaviour

accumulation and replication for the Modbus

protocol

• Extents this Honeypot to a Federated Modbus

Honeypot to be used in decentralized and dis-

tributed Honeynets

• Presents modbuS Covert fEderated traiNing

proTocol (SCENT), a protocol for secure covert

Federated Training in Honeynet networks

The rest of this paper is organized as follows.

Section II describes the tools used. Section III ex-

plains the methodology used for the solution while

Section IV provides the evaluation results of the

presented work. Section V concludes this work.

II. BACKGROUND

A. Modbus Communication Protocol

Modbus [3] is an openly available protocol,

widely used in industrial applications for data com-

munication between industrial equipment and con-

trol systems. It is a simple protocol, that supports

the communication of industrial network entities

like PLC and Remote Terminal Units (RTUs) over

serial and Transmission Control Protocol (TCP)

communication. In this work the Modbus protocol

is utilized for both the traffic replication through

the deep accumulation of Modbus memory frames

and for the proposed covert Federated Training

protocol.The basic Modbus entities comprising the

Modbus industrially ecosystem are the i) Modbus

Clients, the ii) Modbus Servers and the iii) Modbus

Slaves. A Client is a remote query terminal, such

as an Human-Machine Interface (HMI), requesting

information from the Modbus servers and sending

control information to them. Servers usually repre-

sent either PLC or RTU controllers in the network.

Those controllers supervise Modbus Slave entities,

such as Acquisition Blocks, that oversee the field

devices. Each Server can have multiple Slaves with

unique slave IDs attached to them.

B. Honeypot Technology

As mentioned, Honeypots represent security traps

deployed in a network. This is done to attract

the interest of possible attackers and safeguard the

integrity of real devices in a network. In this work

a research Honeypot implementation is proposed

based on the Conpot honeypot [4], a well known

industrial honeypot. A research Honeypot, having

the role of gathering and analyzing information in

addition to a being a simple decoy, consists of

more intricate components and logging systems.

This work mainly focuses on the Modbus protocols

since it is widely used in industrial applications, in

both modern and legacy ICSs.

Except Conpot, numerous Honeypot technologies

have seen the light in the last few years, since

the need for enchanced seucutity measure becomes

stronger. For example, the work performed in [5].

The authors present a NeuralPot, a Deep Neural

Honeypot that is trained on modbus data of RTU

an PLC controllers. They subsequently test the data

against two DL architectures, an Autoencoder and a

GAN network and compare their results on generat-

ing realistic responses. A drawback of this method

is that the models have to be manually trained.

Furthermore, the models used are not configured to

capture the temporal attributes of the data. Similarly,

in [6] realizes a honeypot extending [7] that uses

Q-Learning to interact and adapt to the attacker’s

behaviour.

C. Federated Learning

Federated Learning is a distributed ML method-

ology [8] that orchestrates and trains Deep Learning

models in a big corpus of edge devices [9]. Models

are trained locally on edge devices and then their

weights are send to a central server where they

are fused to a global model using an algorithm

like Federated Averaging [10]. The global model is

then sent back to the remote devices to be used.

The central server disseminates a global model

w0

Global to a Federated population Pf ∈ [1, N ] where

N ∈ N
∗. Every node holds a set of local data Di∈N



and local models wi
l . The distributed models are

trained on the on-device data Di and then the model

weights wi
Global are retrieved by central server to

be fused utilizing the Federated Averaging (1), or

a similar fusion algorithm to produce thew global

model wk
Global [11] containing the newly collected

knowledge.

wk
G =

1
∑

i∈N Di

N
∑

i=1

Diw
k
i (1)

Here wk
G is the global model on the kth iteration

and wk
i is the remote ith model at that iteration.

III. METHODOLOGY

A. LSTM Autoencoder Design

This work takes advantage of the Auto-Encoder

Architecture [12] that can encode a data space X
to a manifold F and then decompress it to space

F predicting values P using an Encoder-Decoder.

The data leveraged in this work, are defined as a

collection of time-dependant Modbus memory block

updates. Since they are time-dependant, meaning

that the current samples is based on the previous

samples with an inclined direction (higher/lower),

to better represent the device that the data are

coming from and in extend its function correctly,

the augmentative neural network needs to take in

account the order of the accumulated data and their

correlation. To that end, this work implements an

Long Short-Term Memory (LSTM) Autoencoder

[13], taking advantage of the LSTM’s [14] ability

to capture the temporal structure of given sequences

and the manifold recreation property of the Autoen-

coder. Figure ?? shows the according structure.

The produced model consists of two mirror-

ing partitions, the LSTM-Encoder and the LSTM-

Decoder containing two layers each with scaling

features in opposite directions, as can be seen in

Figure ??. The model is compiled with the Mean

Squared Error (MSE) loss function, eq. 2 and the

Adam Optimizer [15].

MSE =
1

n

n
∑

i=1

(yi − ỹi)
2 (2)

Here, n represents the number of predictions, while

y and ỹ denote the samples and predicted values,

Fig. 1: Industrial FL Architecture

respectively. To train the network, the input data of

N features are rearranged in windows of t time-

steps and are fed to the model.

B. Honeypot Federated Architecture

The Federated Learning architecture extends the

training to a distributed ML ecosystem. Pursuing

the notion of Deep Neural Honeypots for dynamic

asset simulation, a Honeypot Network (Honeynet)

now becomes a grid of clever honeypots emulating

real devices, Figure 1. This knowledge can be

utilised to produce a generalized global model that

can generate realistic data that adhere to a whole

corpus of similar edge devices in a macro-Federated

Environment.

In this scheme, the Honeypot manager, Figure 1,

is in charge of deploying and managing honeypots

in the industrial network, but also has the role

of the Federated Server (FL Server). This means

that the Honeypot manager will decide when a

Federated Training session should take place, with

which population, in case there are more than

one categories of Deep Neural Honeypots in the

network. The honeypots mirror their corresponding

real devices to get the needed data for the training.

Beginning the Training process, the remote workers

(the honeypots) register to the FL server so that they

can participate. The training process follows the

described FL process. After the training process has

ended, the model passes through a personalization

step in order to personalize the received models to

the device the honeypot mirrors.

C. SCENT: Modbus Federated Training Protocol

This work, to complement the Federated Hon-

eynet Design, proposes a custom covert Federated



Training protocol, SCENT (modbuS Covert fEder-

ated traiNing proTocol), that relies on the Modbus

scheme to orchestrate the FL procedure and commu-

nication with the involved parties under the pretext

of industrial data exchange. In a real industrial envi-

ronment a modbus device, can usually communicate

using only the modbus protocol. The Federated

process is a mainly communicational scheme that

demands the constant exchange of information be-

tween involved parties. An attacker, would probably

uncover the honeypot’s intentions seeing that a

device makes long non-modbus transaction over the

network. In contrast, during the whole Federated

process SCENT communicates only through mod-

bus.

In the SCENT scheme, the FL Server takes the

role of a Human Machine Interface (HMI) that polls

the FL Client being a Modbus Master or controller.

At this point it is important to note that Modbus

is a One-Way request protocol. This means that the

Modbus master can only receive modbus requests

from an HMI and can only reply with a correspond-

ing response but can never make requests on its

own. To solve this drawback, the protocol relies on

a wait-for-request-and-update policy described in a

finite state machine pipeline. The honeypot reserves

some addresses for the FL communication among

its usual addresses or deploys an extra modbus

slave reserved for the FL. These addresses are used

for control signals and payload transactions. The

addresses can have variable offsets but cannot dy-

namically change since the FL Server must strictly

know the exact location and lengths of the address

blocks. Two address blocks are used in SCENT, the

Control Block and the Payload Block composed of

modbus Holding Registers. The former is used for

signaling the various states in the protocol stack

and information about them like acknowledging a

successful read and the latter is primarily used for

the transference of the model’s weights. The pay-

load address block can also consist of Coils instead

of Holding Registers in the case of Binary Neural

Network (BNNs) for compression and optimization

purposes.

The communication takes place by the FL Server

writing to the control addresses and the FL Client

acting upon the control context. Since the client can-

not sent messages to the server to notify about the

stages of the FL procedure, it writes the needed in-

formation in the control block registers. The Server

pols the registers and thus gets notified about the

state of the process. The orchestration pipeline stack

can be seen in Figure 2. The weight transmission

follows the same principle.

Fig. 2: SCENT orchestration Protocol Stack

The complex part of the process occurs with

the weight transmission. Usually, the weights are

stored in matrices, each representing a layer of the

network. This means that we have heterogeneously

distributed vectors of weights. Another problem

is that the maximum number of unsigned integer

values that modbus can carry in one response is

125. To solve these problems, the weight matrix is

segmented to layers and each layer is segmented

to half of the available transmission registers. This

way the transmission process is distributed to phases

and each weight vector, is divided to pages that

are transmitted separately. The segmentation in half

of the available registers occurs because before

they are transmitted the weights are converted to

unsigned integers. Since in the modbus protocol

each register is 16bit and the integer and float values

are represented by 16bits and 32bits, respectively,

a float value takes two registers. The transactions

that need to occur to transmit each weight block



are calculated so both sides know how many data

pages to transmit/receive. Equation 3 shows the

transaction calculation formula.

tr =
2
∏n

i=1
di

ar
, (3)

{

armod2 = 0, tr
armod2 > 0, tr + 1

(4)

Here, di is the ith dimension of the layer weights,

and ar denotes the available register. It should be

noted that in the case of the Holding Registers,

the ar should be an even number, equation 4. To

calculate the total weight transmissions over the

weight communication we refer to equation 5,

Tr = wd

2
∏n

i=1
di

ar
(5)

where Tr are the total transactions and wd are the

weight layers. These are calculated without the con-

firmation sequences or the metadata transmissions.

IV. EVALUATION

A. Evaluation Data

The utilized data were produced by a real network

traffic of industrial modbus devices. The traffic was

mirrored from the device and was stored in the

pcap file format. The traffic consists of information

retrieval requests and command exchanges between

an HMI service and the corresponding RTU device

running Modbus. The data were augmented to sim-

ulate a number of similar devices to be used in

the Federated Training. Each of the files represents

the traffic to and from an industrial edge node for

Federation. The data include queries to 41 modbus

addresses with different distribution of data for each

address.

B. Centralized Model Evaluation

Evaluating the proposed LSTM-Autoencoder

model used for the traffic accumulation and the sub-

sequent Modbus value generation in the honeypot,

the model seems to converge at 180-200 iterations

and saturated after that, for the given data. The

model seems to capture the data’s tendencies to

change over time producing real-like results. Figure

3 depicts the mean and standard deviation of the

TABLE I: Autoencoder Training Results

Model Mean Dist FID MAE MSE RMSE R2 EVS

AE-NeuralPot 0.0285 11.6361 0.1283 0.0415 0.1736 -1.5517 -1.3489

AE-Simple 0.0294 11.9394 0.0855 0.0148 0.1036 -0.0228 -0.0024

AE-LSTM 0.0086 13.1457 0.0631 0.0159 0.0848 -0.0109 -0.0001

AE-LSTM FL 0.0044 13.0914 0.0661 0.1042 0.0870 0.4792 0.4878

predicted against the real data. As seen, the model

captures the spacial characteristics of the data and

can reproduce them to emulate the real device.

Fig. 3: Predicted against the Real data. (i) Mean, (ii) Std

C. Federated Deployment Evaluation

For the Federated testbed, 4 remote workers or

honeypots were emulated. In order to emulate the

data originating from a Federated environment, the

data of two devices were divided to be used by the

four remote workers in a Federated dataset. As can

be seen in Table I, both the central and federated

models produce better results. Noticeable are the

Mean Dist and FID scores showing the proximity

of the models’s output to the real data, establishing

their close emulation.The models were trained for

5 Federated iterations and 30 local epochs while

taking 64 sample batches. The federated models

seem to converge faster than the centralized ones.

D. SCENT protocol Evaluation

Concerning the robustness and security of the

proposed scheme, SCENT is a rather strict protocol

as it depends on the Modbus protocol as a channel

for communication. When not participating in a FL

session, the reserved addresses are used as passive

decoys. When federating, most to all unauthorised

actions would lead to the pipeline breaking and

the FL process stopping. Then, the Failure status

is written in the control registers and the state of

the control slave is reverted to idle awaiting for

the next FL request, Figure 2. All the transaction

and states of the SCENT protocol are logged by

the hopeypot and can subsequently audited. On it

network performance, to send a weight vector of



size n and considering eq. 3, using r registers then

there would be at least 2n/r transactions to archive

the weight transference. Since weights are multi-

layer we face thousands of parameters x2 to be send

only using 125 addresses, which is not very optimal.

On the other side, even with its criticallity level,

the protocol showed only around a 10% of fail-

ures in consecutive weight transmissions. Forgoing

its performance shortcomings, SCENT completely

camouflaged the FL process as no other protocol

trace other than Modbus was shown in network

captures parallel to the process.

V. CONCLUSION

This paper extends a classic Honeypot based

on Conpot that utilizes DNNs to simulate devices

running the Modbus protocol, to train its DNNs in

a Federated way. To that end, first a new updated

Deep Network is designed, in particular, an LSTM-

Autoencoder, that shows its ability to learn both

the data of the modbus devices and their temporal

sequencing and is tested in a Federated environment.

To complement the training and fully camouflage

it from possibly ”clever” intruders, SCENT, a new

custom FL training protocol is proposed, that de-

pends on the Modbus protocol. As explained, using

this protocol the FL training network transactions

are fully veiled into seemingly normal modbus

traffic, leaving no trace of the actual distributed

communication of the FL environment with the hon-

eypots, adding to their concept of ”Just” industrial

equipment.
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