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Abstract—Malicious attacks such as jamming can cause signif-
icant disruption or complete denial of service (DoS) to wireless
communication protocols. Moreover, jamming devices are getting
smarter, making them difficult to detect. Forward error correc-
tion, which adds redundancy to data, is commonly deployed to
protect communications against the deleterious effects of channel
noise. Soft-information error correction decoders obtain reliabil-
ity information from the receiver to inform their decoding, but
in the presence of a jammer such information is misleading and
results in degraded error correction performance. As decoders
assume noise occurs independently to each bit, a bursty jammer
will lead to greater degradation in performance than a non-bursty
one. Here we establish, however, that such temporal dependencies
can aid inferences on which bits have been subjected to jamming,
thus enabling counter-measures. In particular, we introduce a
pre-decoding processing step that updates log-likelihood ratio
(LLR) reliability information to reflect inferences in the presence
of a jammer, enabling improved decoding performance for
any soft detection decoder. The proposed method requires no
alteration to the decoding algorithm. Simulation results show that
the method correctly infers a significant proportion of jamming
in any received frame. Results with one particular decoding
algorithm, the recently introduced ORBGRAND, show that the
proposed method reduces the block-error rate (BLER) by an
order of magnitude for a selection of codes, and prevents complete
DoS at the receiver.

I. INTRODUCTION

Jammers typically aim to cause a denial of service (DoS) or
reduction of quality (RoQ) at the receiver [1] without getting
detected. They exploit the wireless transmission by mixing
their signals with legitimate communication. As a result, the
received frame becomes undecodable, which causes anoma-
lies such as increased repeat requests, reduced throughput,
prolonged delays, or a complete breakdown [2]. Powerful
jammers that blast channels with unrestrained amounts of
energy can be detected easily by the receiver. More subtle
jammers, on the other hand, might seek to inject short bursts
or lower levels of energy to disrupt communication while
circumventing their detection, causing a DoS. In general, jam-
mers must demonstrate high energy efficiency, low detection
probability, high levels of DoS, and resistance against physical
layer (PHY) anti-jamming techniques.

From an information-theoretic perspective, uniform jam-
mers are the most effective for reducing the channel capacity
and the code rate [3]. However, emerging techniques such as
rate-adaptation algorithms propose efficient countermeasures
for such jammer attacks [4]. On the other hand, bursty

jammers [5] can be an effective approach for increasing the
block-error rate (BLER), where an adversary jams a burst of
bits in a transmitted frame. Bursty jammers become more
effective in increasing the BLER when their burst patterns
are unpredictable to the receiver. With increased BLER, the
receiver must compensate by reducing the code rate, which
sacrifices information throughput. Therefore it is essential to
study countermeasures to such jammer attacks.

Most traditional security approaches for wireless technolo-
gies are applied to upper layers in the protocol stack [6].
However, with the rapid growth in use cases and network
density, maintaining security for 5G-and-beyond technologies
has become a challenge [7]. PHY-layer security is an emerging
solution to threats that arise with evolving adversaries [8].
Under such adversarial behavior, machine learning-based ap-
proaches [9], [10] and spectrum sensing-based approaches [11]
have been proposed to counter jamming. Our paper specifically
focuses on jamming attacks on soft-information decoders, a
topic that has received scant attention in the literature. Our
anti-jamming approach applies to general coding schemes
and can be effortlessly supported on the physical layer with
minimal computational overhead.

In this work, we consider a smart, reactive jammer that
is bursty and only active during a fraction of the trans-
mission. It is assumed that transmission parameters, such
as the modulation and the subcarrier frequency, are known
to the adversary. To counter such an attack, we propose a
modified log-likelihood ratio (LLR) computation that takes
the conditional probability of jamming into account for each
index of the received frame. The computation of this posterior
probability is performed in two steps. First, an initial value is
calculated based on the received signal strength. Anchor points
in the received frame, for which the conditional jamming
probability is high, are then used to inform the jamming esti-
mates of neighbouring points, based on Markov state transition
probabilities. The proposed method is general to any receiver
and carried out before decoding. Simulation results show that
the proposed method unveils a significant amount of the attack,
and therefore the attacker cannot maintain their deniability.
Using the universal ORBGRAND algorithm [12], [13], it is
shown that an order of magnitude of BLER performance can
be recovered with the proposed method and a complete DoS is
prevented, using different codebooks, i.e. random linear codes
(RLCs) and 5G cyclic redundancy check-aided Polar codes
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(CA-Polar).
The rest of the paper is organized as follows. In Section II,

preliminaries are detailed. In Section III, the smart bursty jam-
mer model and proposed LLR approach with the conditional
jamming probability computation is presented. Section IV
explains how to approximate the conditional probability of
jamming. Results are presented in Section V, followed by
concluding remarks in Section VI.

II. PRELIMINARIES

A. PHY Jammer Models

Protection against an adversary is not possible if the ad-
versary has unlimited resources. Hence, we assume that the
adversary must operate under a set of constraints. A fully mod-
eled adversary must have assumptions, goals, and capabilities
[14]. Although there are numerous categorizations of jammers
in the literature, the PHY jammer models can be summarized
in the following two categories [2], [15].

1) Constant jammers: As their name suggests, constant
jammers continuously emit disruptive signals over the com-
munication medium. Constant jammers are primitive and often
can be detected through the radio signal strength indicator
(RSSI) component of the receiver. Simple measures such as
frequency hopping can be taken as a precaution against these
types of jammers [16]. Moreover, constant jammers are power
inefficient, which limits their ability to be mobile.

2) Reactive jammers: As a power-efficient and more in-
telligent alternative, reactive jammers emit signals only when
it senses a legitimate transmission taking place. This type of
jammer causes a signal collision at the receiver that disrupts
either part of or all of the frame. Prevention techniques for
these types of jammers include interference and RSS sampling
[17]. Carefully engineered, smart, reactive jammers are the
most challenging type of jammer [18].

Usually, the error correction algorithms embedded in the
PHY can be considered as a first response against such
undesired attacks. However, as the error-correcting codes
(ECCs) are standardized, their error correction capability is
known to the adversary. Therefore, a jammer can corrupt just
enough amount of transmission to cause the decoding to fail,
eventually causing a DoS.

B. Channel model

Every soft-information decoder requires LLR as an input
which determines the hard output value of each received sig-
nal, and also acts as a measure of reliability for those signals.
In regular conditions, a larger LLR magnitude indicates more
confidence in the received signal.

Let bn, a binary channel input of length n, be modulated
using binary phase-shift keying (BPSK) with the mapping

bn ∈ {0, 1}n → xn ∈ {+1,−1}n,

where xn is the modulated channel input variable sequence.
Assuming equiprobable symbols and IID noise, given a real-
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Fig. 1. Two-state Markov chain model for the reactive jammer model, with
transition probabilities b and g. The state of the chain for bit i is denoted Si.

ization of the received signal, yn = (y0, y1, · · · , yn−1), the
LLRs can be calculated per-bit as

L(yi|A) =
2yi
σ2
A

, for each i ∈ {1, . . . , n}, (1)

where i indicates the bit index of the received frame, the
conditioning on A indicates it is an AWGN channel without
jamming, and σA is the standard deviation of the channel
noise.

III. EVALUATING LLRS UNDER JAMMING

A. Threat Model

The adversary is modeled as a jammer which disguises itself
by injecting zero-mean Gaussian noise into the system. It is
assumed that the smart jammer can retrieve the modulation and
subcarrier frequency of operation and therefore injects jammer
signals at the legitimate transmission frequency. In order not
to alert RSSI of the transmission system, the jammer interferes
only a fraction of the time and does so randomly in a bursty
fashion. The occurrence of jamming is modeled as a Markov
chain at the level of transmitted bits.

Fig. 1 depicts the two-state Markov chain for the jammed
channel model. The state A is AWGN only with zero mean
and variance σ2

A. The J state denotes that jamming is present
in the channel, with total variance σ2

J :

σ2
J = σ2

V + σ2
A. (2)

Here, σ2
V is the variance of the signal introduced by the

jammer, which is an independent Gaussian random variable.
The state transitions are modeled to occur per-bit. The state
transition parameters b and g denote the probabilities of
passing from the AWGN state to the jamming state and vice
versa, respectively. The parameters b, g, σ2

J , and σ2
A can be

estimated, and so are assumed known to the receiver.

B. LLR Calculation Under Jamming

Given that a received signal yi is certainly affected by
jamming, then its noise is independent from that impacting
other bits and the LLR would be

L(yi|J) =
2yi
σ2
J

(3)

instead of (1), where σ2
J is obtained using (2). In practice,

however, the receiver does not have certainty on whether
a signal has been impacted by jamming and that induces
hidden Markov dependencies in the calculation of the LLRs.



Regardless, the decoder will treat the LLR of each bit as being
an independent random variable and so the objective is to
provide the best marginal estimate of the LLR of each bit
given the jamming uncertainty.

Let {Si} denote the Markov state process, with Si taking
values of A for the AWGN state and J for the jamming state.
Then, the conditional probability of the transmitted binary
variable Bi at index i being a 0 can be computed as

pBi|Y n(0|yn) =
∑

sn∈{A,J}n
pBi,Sn|Y n(0, sn|yn)

=
∑

sn∈{A,J}n
pBi|Sn,Y n(0|sn, yn)pSn|Y n(sn|yn)

(4)

taking the entire received signal into account and accordingly,
its marginal LLR would be

L(yi) = ln
pBi|Y n(0|yn)
pBi|Y n(1|yn)

(5)

which can be expanded to incorporate the jamming uncertainty
using equation (4).

Given the received signal sequence yn, the conditional
probability of a jamming sequence sn ∈ {A, J}n can be
computed as

pSn|Y n(sn|yn) =
fY n|Sn(yn|sn)pSn(sn)

fY n(yn)
. (6)

where f is the probability density function (PDF). As the noise
is independent of the channel states, we have that

fY n|Sn(yn|sn) =
n∏

i=1

fY |S(yi|si). (7)

Incorporating (7) into (6), we get

pSn|Y n(sn|yn) =
∏n

i=1 fY |S(yi|si)pSn(sn)

fY n(yn)
, (8)

where sn ranges over 2n possible jamming sequences. The
probability of a received signal at an arbitrary index i being
in the J state can be evaluated from (6) as

pSi|Y n(J |yn) =
∑

sn∈{A,J}n:si=J

pSn|Y n(sn|yn). (9)

The brute force evaluation in (9) requires a burdensome 2n−1

computations, so in the following section we propose an
efficient estimation technique for the marginal probability of
jamming. Moreover, for reduced computation, we employ a
linear approximation to the full LLR computation uncondi-
tioned on jamming state:
L̂(yi) = L(yi|A)pSi|Y n(A|yn)+L(yi|J)pSi|Y n(J |yn). (10)

IV. APPROXIMATING THE CONDITIONAL PROBABILITY OF
JAMMING

A. The Impact of False Positives/Negatives on BLER

The collected statistical data, which is the received signal
in our case, may lead to incorrect conclusions in terms of
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Fig. 2. The quantified impact of (a) false positives and (b) false negatives
on the BLER performance, using RLC[128, 105] with the ORBGRAND
algorithm.

misidentifying the A and J states. Therefore, it is essential to
assess the impact of false positives and false negatives on the
BLER performance.

False positives occur when a non-jammed index is mistaken
for being jammed. In this scenario, L(yi|J) in equation (3) is
used instead of L(yi|A) in equation (1) for the mistaken index
i. False negatives occur when a jammed index is mistaken for
being non-jammed and L(yi|A) is used instead of L(yi|J) for
the mistaken index i.

To understand and quantify the impact of mistaking the
events on the BLER performance, a set of genie-aided sim-
ulations is carried out. A random linear code RLC[n, k] =
RLC[128, 105] is used as an example where n denotes the
code length and k denotes the code dimension, and the
universal ORBGRAND algorithm is used to derive the BLER
performance. The state information for each received bit is
provided to the genie-aided decoder, therefore, L(yi|A) is
used for indices belonging to state A, and L(yi|J) is used
otherwise. To quantify the impact of false positives, BLER is
measured when L(yi|J) is used for a proportion of indices
that belong to state A. Similarly, to quantify the impact of
false negatives, BLER is measured when L(yi|A) is used for
a proportion of indices that belong to state J .

Fig. 2 presents the simulated BLER performance for the
percentage of false positives (a) and false negatives (b). The
SNRs for the AWGN channel and the jammer are selected
as SNRA = 12 and SNRJ = 0 dB, respectively. In both
performance assessments, it can be observed that the BLER
performance degrades as the number of errors increases. How-
ever, the degradation with false negatives is far more severe
than the degradation with false positives. For instance, 5% of
false negatives has the same amount of impact on BLER per-
formance as about 40% of false positives. This means that the
correct identification of jammed indices is far more important
than the incorrect identification of the non-jammed indices,
and our algorithm should prioritize identifying jammed indices
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Fig. 3. pSi|Yi
(J |yi) as a function of received signal magnitude, |yi|, based

on (12). The SNR of the AWGN channel is fixed at SNRA = 12 dB, and
several probabilities are depicted based on various jamming SNRs.

correctly.

B. Calculating the Jamming Probability

The estimation of probability of jamming is performed in
two steps. In the first step, an initial estimate of the probability
that the i-th bit experienced jamming, pSi|Y n(J |yn), is derived
based on the marginal distribution given yi alone pSi|Yi

(J |yi).
Then, using the Markov state transition probabilities, the
probability of jamming for specific indices neighboring those
with high jamming likelihoods are recomputed to improve the
estimates of their probabilities.

The sign of a received signal yi does not have an impact
on pSi|Yi

(J |yi). Hence, we consider a new random variable,
|Y |, that is based on the magnitude of Y . In this case, the new
random variable is a folded Gaussian distribution with PDF,
f|Y |(|yi|), equal to

1

σ
√
2π

(
exp

(−(|yi| − 1)2

2σ2

)
+ exp

(−(|yi|+ 1)2

2σ2

))
(11)

for 0 ≤ i < n. In the first step, our estimate of pSi|Y n(J |yn)
is

pSi|Yi
(J |yi) =

f|Y ||Si
(|yi|

∣∣J)pSi
(J)

f|Y |(|yi|)
. (12)

The conditional PDF expression in (12) can be obtained by
substituting the jamming variance in the expression in (11).
Using the law of total probability, the PDF at the denominator
in (12) is expanded as

f|Y |(|yi|) =
∑

si∈{A,J}

f|Y ||Si
(|yi||si)pSi

(si). (13)

Substituting (11) and (13) into (12), the first approximation
for the conditional probability of bit i having experienced
jamming can be calculated.

Fig. 3 presents pSi|Yi
(J |yi) as a function of the received

signal magnitude |yi|. It is minimized at the absolute value
of the BPSK constellation point, 1, and is maximized as the
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Fig. 4. LLR magnitudes based on AWGN only (1), jamming only (3), and
proposed approach (10) using the first approximation to marginal conditional
jamming probabilities. The SNRs of the AWGN channel and the jamming
channel are fixed at 12 dB and 0 dB, respectively.

received signal magnitude drifts away from the constellation.
Note that the pSi|Yi

(J |yi) takes the stationary probability of
jamming at the constellation point since there is always a
chance that the received signal could be a result of jamming.

Fig. 4 depicts LLR magnitude trend lines based on AWGN
and jamming conditions, as well as the proposed LLR compu-
tation (10) when the first approximation pSi|Yi

(J |yi) (12) is
incorporated. With increasing signal magnitude, the proposed
method switches from the AWGN LLR trend line toward the
jamming LLR trend line. This behavior reduces the strength of
the LLRs at higher magnitudes as a result of the suspicion of
jamming, which is then evaluated at soft-information decoders
as a less reliable bit index. Consequently, such indices are
naturally prioritized for correction, in attempts to identify the
transmitted codeword.

When the jammer yields signal magnitude that is great
enough to come under suspicion pSi|Yi

(J |yi) is a good es-
timate of pSi|Y n(J |yn), as demonstrated in Fig. 3 and Fig. 4.
On the other hand, solely relying on the signal magnitudes
would not allow us to detect a substantial portion of the
jammed indices as indices with signal magnitudes close to
the constellation point would mostly be inferred to be as non-
jammed, which is a major limiting factor on the performance
improvement.

To tackle this issue, we take advantage of the burstiness of
the two-state Markov chain. If an index i has a low initial
pSi|Yi

(J |yi) value, but is neighboring an index i ∓ 1 that
has sufficiently high value, as governed by a threshold, then
our estimate of pSi|Yi

(J |yi) is increased using a heuristic.
This is illustrated in Fig. 5 for a sequence of signals. On
the top, the sequence Sn represents the Markov state of a
series of indices and is hidden from the receiver. The receiver
calculates pSi|Yi

(J |yi), from which it determines a subset
of indices that have a relatively high values. The indices
at which pSi|Yi

(J |yi) yields a significantly high value are
called anchor indices. Using the Markov chain state transition
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Fig. 5. Example state transition probability and their associated pSi|Yi
(J |yi).

Indices with high pSi|Yi
(J |yi) values are designated as anchor indices

(represented with the anchor symbol) and Markov chain state transition
probabilities are used to recalculate pSi|Yi

(J |yi) for the neighboring indices
resulting in a better estimate, p̂Si|Y n (J |yn).

probabilities, the pSi|Yi
(J |yi) for the indices adjacent to these

anchor indices can be recalculated recursively. As a result, we
derive a new, improved set of jamming probability estimations,
p̂Si|Y n(J |yn) for i ∈ {0, . . . , n− 1}.

In order to reconsider the jamming probability of an index,
it must either be neighboring to an anchor index or be
sandwiched between two distinct anchor indices. Otherwise,
the initial pSi|Yi

(J |yi) is used.
1) Index Neighboring to a Single Anchor Index: In the first

case, the index of interest neighbors an anchor index on one
side and a non-anchor index on the other. For simplicity, let us
consider the subject index i and the anchor index i−1. Using
the Markov property, we create an updated p̂Si|Y n(J |yn) from
its anchoring neighbour. Assuming the anchor is in the i− 1
position, using the Markov property we set

p̂Si|Y n(J |yn) =
bpSi−1|Yi−1

(A|yi−1) + (1− g)pSi−1|Yi−1
(J |yi−1). (14)

2) Index Neighboring to Two Anchor Indices: Similar to
(14), we derive the updated jamming probability for an index
that is in between two anchor indices. For the subject index
located at i, the anchor indices are at i− 1 and i+ 1. Unlike
the previous case, the new probability is conditioned on two
different states. Based on the values of pSi−1|Yi−1

(J |yi−1),
pSi+1|Yi+1

(J |yi+1), b and g values, again using the Markov
property p̂Si|Y n(J |yn) is expressed as:

p̂Si|Y n(J |yn) =
(1− g)(1− g)

(1− g)(1− g) + bg
pSi−1|Yi−1

(J |yi−1) pSi+1|Yi+1
(J |yi+1)+

(1− g)
(1− g) + (1− b)

pSi−1|Yi−1
(A|yi−1)pSi+1|Yi+1

(J |yi+1)+

(1− g)
(1− g) + (1− b)

pSi−1|Yi−1
(J |yi−1)pSi+1|Yi+1

(A|yi+1)+

bg

bg + (1− b)(1− b)
pSi−1|Yi−1

(A|yi−1)pSi+1|Yi+1
(A|yi+1).

(15)
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Fig. 6. Simulated p̂Si|Y n (J |yn) based on the received signal magnitude,
when S = J (top) and S = A (bottom). The SNR of the AWGN channel is
fixed at SNRA = 12 dB. All parameters are kept the same as in Fig. 3.

One possible drawback of estimating pSi|Y n(J |yn) from
(pS1|Y1

(J |y1), . . . , pSn|Yn
(J |yn)) based on temporal correla-

tion is the risk of increasing the number of false negatives,
especially at non-jammed indices neighboring jammed indices.
These false negatives could potentially have a negative impact
on performance. However, as discussed in Section IV-A and
as presented in Section V, their impact on BLER performance
is negligible.

V. SIMULATION RESULTS

The proposed jamming-aware LLR calculation using
p̂Si|Y n(J |yn) is evaluated. The state transition probabilities
are set to b = 0.01 and g = 0.25, referring to an overall
stationary jamming probability of b

b+g = 3.84%. The SNR
for the AWGN state is set as SNRA = 12 dB. An empirical
threshold probability of 0.2 is used to derive the anchor in-
dices, and the neighboring indices are re-evaluated recursively,
i.e. until the estimates p̂Si|Y n(J |yn) of pSi|Y n(J |yn) of the
neighboring index fall below the threshold.

Fig. 6 visualizes p̂Si|Y n(J |yn) when the ground truth is
S = J (top) and S = A (bottom) with respect to the received
signal magnitude of an arbitrary index i. Distinct than Fig. 3,
the statistics from states A and J states are kept separate
to demonstrate the impact of Markov state transitions. All



other parameters are kept the same as in Fig. 3. Compared
to Fig. 3, the estimate of pSi|Y n(J |yn) near the constellation
point has increased significantly for all considered SNRJ

values when S = J . This means that the amount of false
negatives that originally arise with using (12) solely has
decreased significantly. In return, the estimate of pSi|Y n(J |yn)
when S = A has not changed significantly compared to the
first approximation in Fig. 3. Therefore, false positives due to
leveraging temporal correlation with the neighboring indices
is negligible.

Fig. 7 presents the BLER performance comparison using
RLC[128, 105] and 5G NR CA-Polar[128, 105]. The ORB-
GRAND algorithm [12], [13] is selected to evaluate the
performance of selected codes, since it is a universal soft-
information decoder that allows to evaluate distinct codebooks.
Moreover, despite its recent introduction to the literature,
several works report the practicality of its algorithm family
with demonstrated circuit implementations [19]–[21]. The
jammer SINR represents the legitimate transmission power to
the jammer interference power ratio, i.e. low SINR indicates
a powerful jammer. For both comparison scenarios, the per-
formance using the regular LLR approach (1) is the baseline
BLER. The red curves represent the proposed approach using
p̂Si|Y n(J |yn). The BLER performance for pSi|Yi

(J |yi) with-
out using Markov chain state transitions in (14)-(15) is also
shown as a reference. The baseline performance shows that a
strong jammer yields a BLER close to 1, i.e. almost no packets
can be decoded, therefore causing a DoS. The proposed LLR
computation (10) using p̂Si|Y n(J |yn) is shown to improve
the baseline BLER performance by an order of magnitude
at the DoS region, i.e. about 9 out of 10 packets can be
decoded correctly despite the strong jammer interference. The
proposed approach demonstrates 2.7 dB SINR gain at a BLER
of 10−2 and 0.75 dB gain at a BLER of 10−6 for both codes.
Note that the high SINR values indicate weak jammers which
are not typical since they can only degrade the performance
marginally and cannot cause a DoS. Nonetheless, the proposed
approach is shown to outperform the baseline even in the high
SINR region.

VI. CONCLUSION

In this work, a novel and general physical layer security
approach against a smart bursty jammer is developed. First, the
adversary is modeled as disguised in the channel as a Gaussian
variable with zero mean. In addition, the overall active duration
for the jammer is determined by a two-state Markov chain
with low interference time to avoid RSSI detection. To tackle
this challenging model, we proposed a new approach based
on LLR calculation under adversarial constraints, to improve
the BLER performance. The new LLR calculation is based
on a conditional probability of jamming, calculated using
the received signal and the Markov chain state transition
probabilities. The proposed approach is implemented prior
to decoding and works with any soft-information decoder.
Simulation results with the universal ORBGRAND algorithm
using RLC[128, 105] and 5G CA-Polar[128, 105] codes show
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Fig. 7. BLER comparison of the proposed approach against conventional
LLR, with respect to jammer SINR, using RLC[128, 105] (top) and 5G
CA-Polar[128, 105] (bottom) codes. The SNR of the AWGN channel is fixed
at SNRA = 12 dB.

that the proposed solution can substantially improves the
reliability estimates for the received signals, preventing denial
of service, and yields a substantial SNR gain of up to 2.7
dB. Future work includes further improvement of jamming
detection accuracy, and comparing with other available soft-
information decoders.
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