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Abstract

The increasing connectivity of medical devices along
with the growing complexity, heterogeneity and at-
tack surface of healthcare ecosystems has lead to nu-
merous severe cyber-attacks. This paper proposes a
novel collaborative security platform for threat as-
sessment, intelligent detection and autonomous mit-
igation. The solution leverages machine learning
(ML) and federated learning for detecting and pre-
venting sophisticated multi-stage attacks, as well
as blockchain for supporting integrity verification
and accountability to defend against advanced per-
sistent threats. The solution uses a distributed
edge approach, performing intensive computations
at the edge of the network, where information is
generated, to achieve real-time processing of se-
curity events. The prevention capabilities employ
autonomous decision-making with optimal response
strategies towards cyber-attacks and run-time adap-
tation; these rely on dynamic risk-based models that
use real-time information about security incidents.

Keywords: Cyber-security; Intrusion detection; In-
trusion response; Machine learning; Internet of med-
ical things.

1 Introduction

The Internet of things (IoT) is comprised of a vast
number of interconnected devices processing and
sharing vast amounts of possibly sensitive or criti-
cal data with the goal of improving the quality of
our life. Sensors, embedded systems, and other IoT
devices, which are utilized in industrial IoT (IIoT)
environments, complex healthcare ecosystems, and
other sectors, become increasingly connected to sup-
port novel services and delivery models. In particu-
lar, this is evident in the healthcare sector, where
the rapidly increasing connectivity gave plenty of
room for diverse types of cyber-attacks. Indeed, the
majority of the attacks targeting Internet of medi-
cal things (IoMT) devices have medium-to-significant
severity and have rather become the norm in con-
nected healthcare ecosystems [11]. Exploitation of
insecure IoMT devices by hackers can potentially lead
to all kinds of harm, putting patients’ data and lives
at risk — in addition to other impacts these attacks
could have. Although the baseline security capabili-
ties can typically be assured, they cannot address the
numerous ways that IoMT devices are used and in-
terface with the time-varying healthcare ecosystem,
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as well as, how these security risks could result into
unacceptable safety issues [22].

Intrusion detection systems (IDS) constitute the
basic line of defense against attacks, as they can
detect possible malicious activity and provide infor-
mative security alerts. The detection engine relies
on signatures or machine learning (ML) models, or
a combination, classifying an IDS into rule-based,
anomaly-based, and hybrid respectively [10]. How-
ever, IDSs that have been deployed at various net-
work locations and are operating in a standalone fash-
ion cannot detect complex and multi-stage network
attacks. Therefore, the new paradigm of collaborative
intrusion detection networks (CIDN) has been devel-
oped [20] allowing various collaboration mechanisms
among IDS peers to be implemented so as to increase
their detection capabilities. A CIDN consists of sev-
eral nodes that collect and process traffic to detect
security events as well as nodes that analyze such
data to raise alerts and extract cyber-threat intelli-
gence (CTI) information [30]; sharing among CIDN
peers may occur at any level. This collaboration has
also been explored in the context of federated learn-
ing (FL), where ML model updates are exchanged in
a privacy-preserving manner [14,23].

In this paper, we proceed beyond the notion of
the CIDN towards the complete high-level design of
an intelligent mitigation platform for advanced cyber-
threats (IMPACT) that is well-suited for the increas-
ingly connected complex healthcare ecosystem. The
proposed solution offers advanced cyber-threat mod-
eling and reaction capabilities (see e.g. [9,12]) that al-
low to effectively respond against sophisticated multi-
stage attacks targeting critical healthcare informa-
tion systems and sensitive patients’ health data [11];
the mitigation actions of the intrusion response sys-
tem (IRS) can be optimal with respect to a well-
defined objective function that balances between se-
curity and availability of healthcare infrastructure
[21, 27]. The threat modeling is built upon graph-
based network security models (GNSM), whereas the
IRS decision-making process relies on game-theoretic
solution concepts. An ML-based IDS, sharing data
with other CIDN peers via FL, is used for providing
alerts (observations) to the IRS.

The paper is organized as follows: related work

is presented in Section 2, whereas the proposed so-
lution’s architecture is outlined in Section 3. The
IDS/IRS design and deployment options for health-
care environments are given in Section 4. Finally,
Section 5 provides the concluding remarks.

2 Related work

This section provides background on collaborative in-
trusion detection, intrusion response, and blockchain
solutions for the healthcare sector.

Intrusion detection systems are an infrastructure’s
first line of defense against attacks. They are sub-
divided into network based (NIDS) and host based
(HIDS) depending on whether the network traffic of
all local area network (LAN) hosts or the operating
system’s processes of a specific host are monitored [2].
Since an IDS alone is not always able to identify large-
scale attacks, the use of CIDNs has been proposed [7].
A CIDN consists of many IDS workers that collect
and share security events, as well as analysis units
for correlating events and extracting useful threat in-
telligence information [30]. The architectures that
CIDNs adopt can be classified as centralized, decen-
tralized, and distributed; they are discussed in [16]
along with trust management schemes and use of
blockchain to deal with insider and other prominent
attacks. Many works have proposed intrusion detec-
tion systems for the IoT ecosystem; a detailed re-
view and classification of the detection techniques,
features’ selection, evaluation methodologies, and de-
ployment options is provided in [10]. The superiority
of anomaly-based techniques in detecting unknown
attacks and their ability to adopt to the operational
environment makes them ideal for the IoMT ecosys-
tem. Several intelligent intrusion detection systems
have been proposed relying on different ML or deep
learning (DL) algorithms [1,3,19,25]. Recent studies
have also considered using FL approaches to improve
IDS performance for the IoMT — see e.g. [18,24] and
the references contained therein.

Intrusion response systems improve security
against cyber-attacks as they can compute optimal
mitigation actions at real time. A comparative anal-
ysis of IRS designs was performed in [12], where the
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generation of responses from the IDS alerts were clas-
sified as static, dynamic, and cost-sensitive. A sur-
vey of intelligent intrusion response approaches was
conducted in [15] emphasizing on the added value
that game theory brings in modeling the interactions
between defenders and attackers. The protection of
healthcare infrastructures is a hard task. To obtain
accurate threat models, a deeper understanding of
the systems involved, their vulnerabilities, and their
dependencies is required [13]. GNSM models, and
more precisely the attack graphs (AG), allow correlat-
ing vulnerability exploitations so as to model multi-
stage attacks and define attackers’ targets; scalability
problems can be dealt with variants, like Bayesian at-
tack graphs (BAG) [9]. Multi-criteria approaches can
also be built on top of such models to provide an IRS
the ability to choose from a set of actions, such as
firewall rules and other mitigation actions defined in
MITRE’s D3FEND framework1, in an optimal fash-
ion [26].

Blockchain and distributed ledger technologies
(DLT) have found extensive applications in all do-
mains under the umbrella of IoT since they provide
the means for creating far more secure decentral-
ized solutions [6]. Access control to electronic health
records (EHR), and healthcare information systems,
is probably among the first and most prominent ap-
plications of blockchain in healthcare [29], in addition
to ensuring integrity of EHR data. Towards this di-
rection, many applications rely on blockchain to se-
curely store audit logs [5], or to safeguard IoT / IoMT
devices’ critical files [17].

3 Proposed architecture

This section presents the primary concepts of the
proposed platform, called IMPACT (intelligent miti-
gation platform for advanced cyber-threats), which
is based on three main pillars: distributed artifi-
cial intelligence, software-defined networking (SDN)
and multi-access edge computing (MEC). In the
MEC paradigm devices are categorized as: resource-
constrained end IoMT devices, computationally ca-
pable edge nodes (close to end users), and the cloud

1https://d3fend.mitre.org/

platform. The high-level architecture is illustrated in
Fig. 1 and is structured in four layers (bottom to
top): the physical layer, the MEC layer, the applica-
tion/service layer, and the access layer.

• Physical layer. Includes IoMT devices and net-
working equipment (gateways); the connectivity
options are: connection to an edge node via an
IoMT gateway; direct connection to the edge
node, e.g. for computation offloading; and di-
rect connection to the platform.

• MEC layer. Includes the edge nodes that pro-
vide a subset of the cloud platform’s security ser-
vices in real-time and semi-autonomous fashion.

Figure 1: High-level architecture of the proposed IM-
PACT platform.
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Core functionality provided by the edge nodes
includes: security services to end-devices and
edge nodes; local aggregation of ML models used
by the intelligent IDS; and other services, like
DLT-based integrity verification mechanisms.

• Application layer. Includes the security solutions
provided as-a-service to end-users by the cloud
platform and the management of the platform
itself — these are further elaborated next.

• Access layer. Delivers the services of the plat-
form to healthcare and security professionals,
hospitals, and other organizations related to
IoMT services.

SDN is a core enabling technology that dynamically
alters the network configuration (routing, switching)
to add flexibility to infrastructure deployment, op-
timally adapt to network events (e.g. node fail-
ures, congestion), and isolate security threats. This
flexibility also allows IMPACT to proactively em-
ploy cyber-deception and moving target defense tech-
niques (change the infrastructure’s attack surface)
against more sophisticated threats, like advanced per-
sistent threats (APT) and adaptive multi-stage at-
tacks. Complimentary to MEC, collaborative and
distributed ML moves the complexity of the ML en-
gines from the cloud towards edge nodes and end-
devices, depending on their capabilities. This allows
to balance the high demand for resources that are
needed by the computationally intensive ML algo-
rithms, by exploiting the availability of network re-
sources at the edge, while introducing autonomous
decision-making in critical operations. IMPACT re-
lies on FL (detailed in Section 4) for delivering a dis-
tributed intelligence model. The architectural pil-
lars presented above (MEC, SDN and FL) allow the
delivery of a platform, flexible to adapt to the het-
erogeneous and complex IoMT landscape and capa-
ble of providing real-time security services. Next, we
present the most prominent security components.

3.1 Healthcare ecosystem’s security
assessment

IoMT environments are highly dynamic and thus
medical devices should be identified and detailed
information about them must be collected. Addi-
tionally, unauthorized end-devices should also be de-
tected and accounted for as they might be indicators
of the physical infrastructure’s intrusion. In any case,
they increase the network’s attack surface and should
be treated accordingly. The ecosystem discovery and
security assessment (EDSA) module is a set of tools
that collect, maintain, and store dynamically chang-
ing information on: a network’s topology; deployed
network security defenses; and protected assets and
devices. Its major objectives are:

• Network topology and host discovery. Continu-
ously scan a network to detect changes to its
topology or hosts, including network assets ded-
icated to the provisioning of important services;
such techniques can provide useful information
about the hosts (e.g. host names, IP addresses)
and their connectivity.

• Network monitoring. Perform network scans to
enumerate open network ports (and protocols
used) in medical devices and analyze the net-
work connections established.

• Device vulnerability assessment. Assess with a
sufficient level of automation the network hosts
to discover vulnerable software or misconfigura-
tions.

3.2 DLT-based integrity verification
of medical devices

Medical device integrity verification (DIV) relies on
the ability of blockchain to create secure, decentral-
ized and distributed networks of IoMT devices to con-
siderably reduce the ability of hackers to tamper with
reduced-security legacy IoMT devices. The goal is to
store a verified copy of files (e.g. firmware, OS kernel,
etc.) being critical for the devices’ reliable operation
and subsequent validation and remediation whenever
needed. The proposed approach will automatically
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Figure 2: Block diagram of the DLT-based integrity
verification.

enhance the overall security of the IoMT ecosystem
as it will also prevent insider attacks; e.g., even when
gaining administrative rights on a target medical sys-
tem, hackers will not be able to modify the informa-
tion on the blockchain without being noticed by the
validators.

The solution’s main building blocks are shown in
Fig. 2 and include: (a) the security policies dictat-
ing how to capture a medical device’s state (under
integrity protection) in the form of snapshots; (b)
the patch/update management services that manage
snapshots, perform verification against already col-
lected data, and securely manage updates or patches
of medical devices; and (c) the cryptographic services
gateway that allows to verify an IoMT device’s in-
tegrity.

4 Intelligent intrusion detec-
tion and response

This section describes the functionalities related to
the ML-based intrusion detection, the use of feder-
ated learning, as well as, the provisioning of advanced
intrusion response by leveraging GNSM threat mod-
els.

4.1 Collaborative intrusion detection

A decentralized CIDN architecture is adopted, which
allows IDS nodes to gain knowledge by sharing in-
formation, to meet the needs of complex healthcare

ecosystems and increase their resiliency against so-
phisticated attacks. The CIDN consists of nodes with
a topological structure (e.g. hierarchical), so that
the analysis units (IDS workers) work as filters for-
warding correlated data to the higher levels of the
architecture. Efficient schemes aiming at informa-
tion sharing within the CIDN via gossiping protocols
(using formats such as the IDMEF), and exploration
trust-based schemes supported via blockchain have
been implemented [16]. The detailed block diagram
of an IDS worker is illustrated in Fig. 3.

The intrusion detection engine of CIDN peers uses
both signature-based and anomaly-based detection
techniques for detecting known and potentially un-
known cyber-threats. The anomaly-based detec-
tion technique builds upon the approach proposed
in [28], where the ML module utilizes the Hilbert
space-filling curve as its primary clustering algo-
rithm; this is achieved by assigning specific colors to
each byte based on its ASCII code: blue / green / red
for printable / control / extended characters as well as
black / white for the characters 0x00 and 0xFF re-
spectively. These generated byte arrays are then
transformed into images retaining optimal locality
for pattern recognition, so as to be processed by
ML image classification models [4]; samples of mali-
cious network traffic were used to train the classifier.
Then, the trained classifier is used to analyze and
classify the output images as legitimate or malware.
In this context, DL neural networks and more pre-
cisely convolutional neural networks (CNN) are ideal
for processing 2D images and achieved promising re-
sults [28]. The ML-based detection algorithms have
been implemented so as to extend well-known open
source IDS tools (Suricata and Zeek).

The above described detection process has been ex-
tended to support FL for delivering a distributed in-
telligence model. Due to FL, the models are trained
in three steps: (a) the medical devices / edge nodes
with AI-based security operations receive the model
to train from the cloud platform; (b) the models are
trained using local data with model updates sent back
to the IMPACT platform; and (c) the platform aggre-
gates the received models and sends the updated pa-
rameters back to the medical devices/edge nodes. In
essence, this approach allows the collaborative train-
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Figure 3: Detailed block diagram of the FL-based
CIDN peer node.

ing of the various models used by the ML-based intru-
sion detection at the edge of the healthcare networks.
The options considered for training the ML models
include:

• Raw data training, in which the cloud platform
directly trains the ML models with data received
by the end devices; this training mode is best
suited for IoMT devices lacking the resources
to perform training and with no access to edge

nodes.

• FL at the edge node, in which the edge node
trains the model with data received by the end-
devices and sends the updated model to the
cloud platform for aggregation; as a form of
computational offloading, it is best suited for
resource-constrained IoMT devices with access
to an edge node.

• FL at end-devices, in which the devices train the
local models with their own data, and send the
updated ones to the IMPACT platform for ag-
gregation, possibly after having first performed
model aggregation at the edge nodes (this is the
case depicted in Fig. 3); this option requires high
computing power, typically not possessed by the
majority of IoMT devices and low-end network
equipment.

4.2 Dynamic risk management

The dynamic risk management (DRM) and decision-
making process for optimal mitigation actions aim at
defending against adaptive multi-stage cyber-attacks
in a fair and autonomous fashion. Simply relying on
anomaly-based detection methods, like deep packet
inspection or protocol and data analysis, traditional
NIDS fail to detect multi-stage or sophisticated at-
tacks — often employed by APT which are highly
motivated and have access to a significant amount of
resources. To address this challenge, DRM aims at
modeling the complex state of a network (been seen
as the relations between the end medical devices and
their vulnerabilities) and continuously analyze its se-
curity status. This is achieved by relying on GNSM
models, which have proven to be an extremely pow-
erful in security applications, and in particular on a
prominent type of GNSM referred to as attack graph
(AG). Such structures are used on computing an ac-
curate value of the risk associated with a medical
device (based on information about its vulnerabili-
ties, configuration, etc.) and the impact (technical or
business) a successful attack would have. The DRM
tool will communicate external repositories (e.g. im-
plemented by the MISP platform) on vulnerabilities,
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Figure 4: Detailed block diagram of dynamic risk
management.

threats, and indicators of compromise (IoC), to cal-
culate this risk at real-time, while automatically in-
dicating (or applying, depending on the settings) the
actions having been identified to optimally mitigate
the risk. This proactive choice of actions will not
be static, but will adapt to the particular health-
care environment that the DRM tool is being ex-
ecuted (more formally, the solution will be the re-
sult of a constraint optimization problem, where the
constraints are set by the operational healthcare en-
vironment). In addition, the DRM tool is able to
automatically update the values of the parameters
that are typically used in risk analysis models, like
an attack’s likelihood (whether an exploit is chosen
over others by an adversary) and the attack’s suc-
cess probability (whether the exploit succeeds into
exploiting a vulnerability) among others, by lever-
aging knowledge on cyber-security incidents having
been accumulated due to the contribution/sharing of
the CIDN peers. This will be used to update infor-
mation like attacker’s access privileges, exploits, vul-
nerabilities (resp. transitions from an attack’s pre-
condition to a post-condition) that could eventually
be utilized by AGs with a large number of implemen-
tation options.

The high-level architecture of the DRM tool is
shown in Fig. 4, illustrating its core parts but also
its link with other modules, like the EDSA (so as to
receive information about the healthcare network’s
topology), the dynamic repositories with CTI and
vulnerabilities (to get fresh information on vulner-

abilities having been reported or updated ones). The
proposed architecture is the base abstraction for a
number intrusion response system (IRS) implemen-
tations with the following added values:

• Dynamic (risk) assessment, whilst considering
the existence of attack scenarios with multiple
attack goals (e.g. multi-stage attacks).

• Identification of optimal defense actions, con-
sidering the possible attack paths (i.e. the AG
sub-graphs) that could be chosen by an attacker
with a high probability due to high successful
exploitation likelihood.

• Recognition of patterns non-detectable by tradi-
tional IDS (that possibly indicate novel attacks)
— especially if they are paired with intelligent
methods for attack modeling.

The tool has been evaluated in assisted living / smart
home scenarios [8] and also in IIoT domains with ex-
cellent results regarding its capability to respond (in
conjunction with the IRS of Section 4.3) to multi-
stage attacks; however, its evaluation in the IoMT
domain, following the specific architecture detailed
herein, is part of the ongoing research work.

4.3 Intelligent intrusion response

The IRS is tightly coupled with the DRM tool pre-
sented above and aims to hinder target identification
or further penetration of a healthcare network. This
is achieved by dynamically re-composing the network
topology of the healthcare infrastructure, thus chang-
ing its attack surface and adding to the attacker’s re-
quired workload. In the context of the proposed so-
lution, the IRS is applied both at the end-users’ net-
work (e.g. of the healthcare ecosystem), using more
basic methods like the application of firewall rules,
and also at the SDN level by recomposing the net-
work communication channels. Typical actions that
are supported by the IRS include:

• IP address shuffling : changing the IP address
of the network host to discourage/obstruct an
attacker.
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• Host connectivity changes: changing medical de-
vices’ interconnectivity by using the dynamic
routing capability of SDN or by issuing firewall
rules.

• Healthcare service changes: changing the avail-
ability of services or functions provided by a
healthcare network.

IRS actions are usually separated from cyber-
deception, as the former adds randomness to the
static network while the latter engages directly with
the attacker — although IRS actions can be used for
cyber-deception and vice versa. The IRS presented
in Fig. 3 is responsible for the dynamic, real-time
computation of the remediation actions based on the
network’s AG model; enforcement of the mitigation
actions will be carried out by the security mecha-
nism (software or hardware) that is consuming the
derived rules (Fig. 3 illustrates that these rules are
consumed by the IoMT gateway, but this could also
include IoMT devices capable of enforcing security
policies — e.g. rules for shaping the access control).

In principle, the IRS receives alerts (observations)
from the IDS peer of the CIDN to update its be-
lief about the current security status of the health-
care network (i.e. the capabilities that an attacker
might have acquired through the course of a multi-
stage attack). The system’s adaptivity also comes in
the form of optimizing the remediation actions to the
end-user’s needs a (e.g. in terms of the desired avail-
ability of certain healthcare network services that are
deemed to be critical for the network’s or certain sys-
tems’ operation). To optimally choose a remediation
action, the IRS uses a mathematical model of the
attack, which is based on discrete-time partially ob-
servable Markov decision processes (POMDP), and
simulates the possible adversarial actions an attacker
may take (towards exploiting vulnerabilities), so as to
predict the likelihood of compromise using the fore-
seen attack paths, or unknown ones with some prob-
abilistic model leveraging information computed via
the GNSM [8,21].

5 Conclusions

This paper proposed a novel collaborative security
platform for threat assessment, intelligent detection
and mitigation of attacks. The solution employed
ML/FL for detecting and preventing sophisticated
multi-stage attacks, as well as blockchain for sup-
porting integrity verification. Taking advantage of
the distributed cloud networking infrastructure and
especially of the data centers positioned across edge
locations, the proposed solution is capable to: (a)
accommodate computationally less-capable IoMT de-
vices, which are common in the healthcare ecosystem,
by offloading their computational needs to the closest
edge node; (b) provide real-time security services to
healthcare professionals, which is possible due to the
lower network communication latency between the
medical devices and the edge nodes; and (c) collab-
oratively adapt the platform’s dynamic ML models
and update its knowledge by using shared informa-
tion that is distributed across the network. Individ-
ual IDS, IRS systems’ evaluation results, which have
been reported in authors’ prior works, showcase the
proposed solution’s viability. The evaluation of the
overall solution in the IoMT domain is part of the
ongoing research work.
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