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Abstract—Cellular networks (LTE, 5G, and beyond) are dra-
matically growing with high demand from consumers and more
promising than the other wireless networks with advanced
telecommunication technologies. The main goal of these networks
is to connect billions of devices, systems, and users with high-
speed data transmission, high cell capacity, and low latency, as
well as to support a wide range of new applications, such as vir-
tual reality, metaverse, telehealth, online education, autonomous
and flying vehicles, advanced manufacturing, and many more.
To achieve these goals, spectrum sensing has been paid more
attention, along with new approaches using artificial intelligence
(AI) methods for spectrum management in cellular networks.
This paper provides a vulnerability analysis of spectrum sensing
approaches using AI-based semantic segmentation models for
identifying cellular network signals under adversarial attacks
with and without defensive distillation methods. The results
showed that mitigation methods can significantly reduce the
vulnerabilities of AI-based spectrum sensing models against
adversarial attacks.

Index Terms—Adversarial machine learning, artificial intelli-
gence, spectrum sensing, cellular networks

I. INTRODUCTION

Cellular networks have experienced substantial attention
due to the enormous offerings, such as high-speed data
transmission, high cell capacity, and low latency, to support
a wide range of new applications. New application areas,
i.e., virtual reality, metaverse, telehealth services, online ed-
ucation, autonomous and flying vehicles, and many more,
require high data rate transmission with low latency. Next-
generation cellular networks can easily meet the high demand
from the users with advanced communication and computing
technologies, i.e., multiple-input multiple-output (MIMO), ar-
tificial intelligence (AI), and edge computing [1]. However,
the transmission frequency spectrum is a limited resource and
still one of the essential limitations in the advancement of the
wireless communication field. Therefore, the radio spectrum
is in high demand and has been divided among many ser-
vices [2]. That’s why spectrum allocation and sharing receive

considerable attention for utilizing the limited spectrum fully.
Thus, spectrum sensing is one of the research fields to tackle
the drawbacks of the limited frequency spectrum [3].
Prior studies propose various techniques for complicated
spectrum sensing problems in the literature. Cognitive Radio
(CR) techniques are adopted for spectrum sensing to ease
the scarcity of spectrum resources [4]. Conventional methods
often need to full or limited prior information about primary
users. In addition, CR sensing methods are susceptible to
noise uncertainty, leading to lower sensing precision [5].
Besides traditional CR methods, new ways to monitor wireless
spectrum are developed with the introduction of AI into the
5G and beyond wireless communication. AI models could
untangle complicated feature extraction and learning tasks.
The study in [6] proposes a spectrum sensing model consisting
of an information geometry and a deep learning (DL) classifier.
Their model outperforms traditional models by reaching better
sensing precision. The authors in [7] present a DL-based
spectrum sensing model that utilizes structural information of
the modulated signal without any prior knowledge of channel
state. The proposed model also yields better performance in
comparison with traditional sensing techniques. Although the
adoption of AI provides simpler but powerful solutions to
complex problems, the security aspect of these implementa-
tions has not been explored deeply [8]. AI-powered models
are prone to attacks that can cause security [9], [10] and
privacy violations [11]. The adversaries could also poison pre-
trained AI models to take the place of legitimate models [12].
To overcome these security threads, adversarial attacks and
training methods should be developed and adopted.

This study presents vulnerability analysis of AI-based spec-
trum sensing, i.e., CNN-based semantic segmentation model,
to identify cellular network signals for spectrum monitoring.
This analysis also includes the comparison of adversarial
attacks along with a mitigation method to evaluate the models’
robustness.
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II. PRELIMINARIES

A. Spectrum Sensing

In wireless communication, the radio spectrum is one of the
key resources. However, it is limited, and not fully used due to
several reasons, such as region-based regulations or technical
difficulties. Fortunately, the existing radio spectrum has more
been allocated to consumers along with the high demand in
the last decades. A large part of the existing radio spectrum
is also licensed and allocated for service providers, such as
cellular communication, television broadcasting, radio, mili-
tary applications, etc. According to the report released by the
Federal Communications Commission (FCC), some parts of
the spectrum are barely utilized, e.g., the spectrum utilization
in the 0–6 GHz band is between 15% and 85% [13]. Therefore,
FCC recommends that free bands can be used by the secondary
user(s) until they do not cause any issues with primary users’
communication. The spectrum exploring for free bands is
called “Spectrum Sensing”. It is the process of periodically
checking a specific frequency band to identify the occupied
frequency bands for users or services. Spectrum sensing is also
a fundamental problem for cognitive radio (CR), which has
become a novel form of wireless communications. CR is an
intelligent wireless communication method using three main
steps, (1) sensing the outside electromagnetic environment, (2)
learning from the surroundings, and (3) adapting the internal
states and operating parameters, such as transmit power, carrier
frequency, modulation strategy, etc.

In the literature, there are satisfactory studies in spectrum
sensing and related topics. For example, the study [14]
provides a comprehensive analysis of spectrum sensing
techniques for CR, namely the optimal likelihood ratio test,
energy detection, matched filtering detection, cyclostationary
detection, eigenvalue-based sensing, joint space-time sensing,
and robust sensing methods. It also indicated that the source
signal and the propagation channel are two important factors
for the spectrum sensing along with the selected methods to
provide better performance. Although there have been many
methods proposed for spectrum sensing, they are still suffering
due to uncertainty of the nature of the communication channel
and some issues, including narrow-band noise, spurious signal
and interference, fixed point realization, wide-band sensing,
and complexity. Fortunately, AI methods have been started
to use in communication systems, especially wireless ones,
for spectrum sensing to overcome the challenges existing
spectrum sensing techniques suffer.

B. Adversarial Machine Learning Attacks

Most machine learning models are highly vulnerable to
Adversarial Machine Learning (AML) attacks. The adversarial
attack is one type of widely used cyberattacks to poison a
model during the training phase. It provides misleading data,
i.e., manipulated input with a slight difference or adversarial
examples (AEs), to reduce the model performance in terms of
accuracy. An AE cannot usually be noticeable by a human;

however, it can cause the misclassification and misdirection
of the model. This study focuses on the most popular three
adversarial attacks, (1) Fast Gradient Sign Method (FGSM),
(2) Basic Iterative Method (BIM), and (3) Projected Gradient
Descent (PGD).

• FGSM is the most popular and one of the simplest AML
attacks to generate adversarial inputs, which was first
introduced by Goodfellow et al. in [15]. This attack uses
gradient information, i.e., the partial derivative of the
model output for the input data, to determine the direction
of the perturbations. FGSM computes the gradients of
a loss function (e.g., mean-squared error or categorical
cross-entropy) and generates adversarial examples by
adding the gradient sign to the input data. The general
formula of the FGSM is defined as follow:

xadv = x0 + ε · sign(∇xJ(θ, x0, y0)) (1)

where xadv: the adversarial example, x0: the legitimate
input data, y0: the true label of x0, J(θ, x0, y0): the
loss function, ∇xJ(θ, x0, y0): the gradient of the loss
function.

• BIM is an improved or an iterative version of the FGSM,
which was introduced by Kurakin et al. in [16]. Instead
of taking one large step like FGSM, a BIM attack gener-
ates adversarial examples using an iterative approach by
applying FGSM iteratively many times with small steps,
i.e., α. This process continues by misleading the model
or reaching the allowed maximum perturbation. A BIM
attack can be defined as follow:

xt+1 = Clipx,ε{xt + α · sign(∇xJ(θ, xt, y0))} (2)

where: Clip is the function to limit the maximum pertur-
bance, t is the iteration index, α is the step size which is
set to be 1 to minimize the number of iterations.

• PGD is similar to the BIM attack. However, its capability
is more than both FGSM and BIM, and stronger in terms
of first-order attack, and a bit slower as expected. Instead
of initializing to the original point like BIM, it initializes
the search for an adversarial example at a random point
within the allowed norm ball to find adversarial examples
[17]. The formula of the PGD attack is defined as follows:

xt+1 = Clipx,ε{xt + α · sign(∇xJ(θ,Clipx,ε{xt}, y0))}
(3)

C. Convolutional Neural Networks

The CNN is one of the key computer vision technology that
facilitate feature extraction with its ability of capturing spatial
and temporal dependencies by utilizing various filters [18].
Images consist of pixels that can be treated as two-dimension
matrices, x. A convolution operation between the image and
a filter, W, can be defined as :

y = W ∗ x =

W∑
i=1

H∑
j=1

Wi,jxi−s,j−s, (4)



where the width and height of the image x are defined as W
and H with the number of strides, s.

Several layers are used in a CNN, such as convolution,
pooling, and fully connected layers. The combination of these
layers is used to create state-of-the-art computer vision models
with varying parameters. The convolutional layer benefits from
different filters to extract divergent features. The pooling layer
generalizes the extracted features and lowers the size of the
output by either pooling the max or mean values of a pixel
group. In the last part of CNN, fully connected layers are used
to combine all the features, and a special softmax layer is
deployed to convert numbers to probabilities which enhances
the classification tasks.

D. Knowledge Distillation

Knowledge distillation (KD) [19] is utilized to transfer
knowledge from a teacher to student model by lowering the
output entropy. Hard labels will guide in making of teacher
model. However, soft labels (probabilistic labels) are employed
to train student network which increase the capacity and
efficiency. The general KD technique is defined as:

LKD = LCE(fs(x), y) + λLKL(fs(x), ft(x)) (5)

where the cross entropy loss and Kullback–Leibler divergence
are written as LCE , and LKL, respectively. The softmax
outputs of the teacher and student models are ft(·) and
fs(·), respectively with the λ as the weighting parameter. The
Kullback–Leibler divergence is given as:

LCE(fs(x), y) = −
c∑
i=1

yi log(fs(x)i). (6)

The c and yi are the number of classes for the ith element
of the label vector. The LKL is specified as:

LKL(fs(x), ft(x)) = −
c∑
i=1

fs(x)i log(
ft(x)i
fs(x)i

). (7)

Defensive distillation (DD) is a way to defend the CNN
model against adversaries by utilizing the KD idea [20]. This
method prevent finding AEs for the distilled network, even if
the teacher network is compromised. The formula for the DD
is given as:

LDD = LCE(fs(x), y) + λLKL(fs(x), ft(x)). (8)

Figure 1 shows the overall steps for this technique. The
knowledge distillation process consists of two steps: (1)
training the teacher model and (2) distilling the knowledge
from the teacher to the student. According to the figure,
the distillation can be performed using the teacher model’s
output probabilities, the teacher model’s activations, or the
intermediate representations of the teacher model. Finally, the
robust student model would be deployed to the base stations
for spectrum sensing.

III. DATASET DESCRIPTION, SPECTRUM SENSING
SCENARIO, AND PERFORMANCE METRICS

A. Dataset Description

In this study, the synthesized dataset is utilized and gen-
erated by using two MATLAB toolboxes, i.e., 5G signals in
5G Toolbox and LTE signals in LTE Toolbox [21]. Then, the
generated dataset, including LTE and 5G signals, is divided
into the training and testing datasets with a ratio of 80/20%,
respectively. Each frame of 40 ms is randomly shifted in the
frequency domain. It is assumed that LTE and 5G signals are
in the selected band range, and the network performance is
evaluated based on distinct random bands. In this example,
the sampling rate is 61.44 MHz, which is adequate to process
LTE and 5G signals. Respective 256 by 256 RGB spectrogram
images are generated from complex baseband signals using
an FFT (Fast Fourier Transform) length of 4096. The class
imbalance occurs as there is a vast noise filling the background
and larger bandwidth of 5G than LTE. It is rectified using class
weighting to mitigate training bias towards dominant classes.

B. Spectrum Sensing Scenario

Spectrum sensing implies the detection of white spaces and
the characterization of the frequency spectrum. The CNN-
based model identifies the cellular signal(s). Parameters of
both LTE and 5G signal generation are indicated in Table
I. In the table, SCS presents the sub-carrier spacing, SSB
presents the single sideband, while BW is bandwidth. CNN-
based spectrum sensing model identifies the type of the cellular
network signal, i.e., 4G, 5G, or noise, based on the created
spectrogram images from complex baseband signals. Each
pixel of the image is labeled as one of the type signals, i.e.,
LTE, 5G or noise, for the class name mapping. The optimized
neural network model is trained once and does not need to be
further trained and optimized for weights.

TABLE I: The parameters of LTE and 5G signals

Channel Parameter Value Unit
5G BW [10 15 20 25 30 40 50 ] MHz
5G SCS [15 30 ] kHz
5G SSB Block Pattern [”Case A” ”Case B’] -
5G Period [20] ms
LTE Reference Channel [”R.2”, ”R.6”, ”R.8”, ”R.9”] -
LTE BW [10 5 15 20 ] MHz
LTE Dublex Mode FDD -
Channel SNR [40 50 100] dB
Channel Doppler [0 10 500] Hz

C. Performance Metrics

The performance of the models is evaluated and compared
with the following metrics.

Accuracy: It is the correctly classified pixel percentage.
Recall: Recall or sensitivity metric gives the completeness

of positively identified pixels compared to the number of actual
positive pixels.

False Positive Rate (FPR): This rate is the ratio between
wrongly identified negative pixels over the total number of
actual negative pixels.



Fig. 1: Overview of knowledge distillation.

Precision: It measures the purity of the positively identified
pixels in proportion to the number of actual positive pixels.

Specificity: It is also called true negativity rate, and measures
the correctly identified negative pixel ratio over the total
number of actual negative pixels.

F-Score: It is the harmonic mean of the precision for a better
evaluation.

Intersection of Union (IoU) : It is the percentage of overlap
between the target mask and predicted output.

IV. EXPERIMENTS

The proposed approach is implemented in the Python pro-
gramming language. The CNN-based segmentation method,
i.e., semantic segmentation, is based on RESNET50 and re-
trained using the dataset generated by using the LTE and 5G
toolboxes of the MATLAB R2022a. The Rmsprop optimizer
is used for training the model. The cross-entropy is used as
the loss function. The training and validation data split ratio is
80/20%, respectively. The base model is trained in two phases
using the proposed approach (1) designed to train the base
model and (2) designed to defend the base model against
the AML attack. The base model is trained with the cross-
entropy loss function. The proposed approach is designed to
train the distilled network with the loss of a combination of
cross-entropy and KL divergence, which is called defensive
distillation. The model architecture of the spectrum sensing
model, as shown in Figure 2. In the Figure 2 and 3, NR (New
Radio) represents 5G or 5G NR.
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Fig. 2: CNN model architecture

Figure 3 shows one of the example instances from the
dataset. Figure 3a is the received spectrogram (i.e., the input
for the CNN model), Figure 3b is the true signal labels (i.e.,
the real output of the input), Figure 3c is the prediction of
the CNN-based spectrum sensing model with the received

spectrogram, and Figure 3d is the confusion matrix of the
prediction.
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Fig. 3: Example sample to identify LTE and 5G signals in the
spectrogram

Table II shows the initial prediction performance results of
the CNN-based spectrum sensing model without attacks with
different metrics for LTE, 5G, and noise.

For experiments, the second step is to attack the CNN model
with FGSM, BIM, and PGD attacks. The ε values of the
FGSM, BIM, and PGD attacks are selected from 13, 26, 38,
51, 64, 76, 89, 102, 115, to 128. The number of iterations
involved in the BIM and PGD attacks is 2000.



TABLE II: Initial prediction performance results

Average 5G LTE Noise
Accuracy 0.967200 0.976256 0.978675 0.979470
Recall 0.967473 0.944062 0.990233 0.968123
Precision 0.954690 0.971999 0.945672 0.946400
Specificity 0.984998 0.998104 0.976199 0.980692
F-Score 0.953455 0.951235 0.959088 0.950043
FPR 0.015002 0.001896 0.023801 0.019308
IoU 0.934285 0.941315 0.937662 0.923879

Table III - IV together show the prediction performance
results of the defended and undefended CNN-based spectrum
sensing models against the attacked for three ε values, i.e., 13,
64, 128, along with different metrics for LTE, 5G, and noise.
According to the tables, the defended CNN model has a higher
prediction performance when compared to the undefended
model.

TABLE III: Undefended

ε Metrics FGSM BIM PGD

13

Accuracy 0.999485 0.999107 0.999485
Recall 0.999418 0.998906 0.999418
Precision 0.999316 0.998817 0.999316
Specificity 0.999771 0.999604 0.999771
F-Score 0.999365 0.998857 0.999365
FPR 0.000229 0.000396 0.000229
IoU 0.998733 0.997723 0.998733

64

Accuracy 0.999367 0.859735 0.920404
Recall 0.999514 0.862166 0.908336
Precision 0.998738 0.837363 0.905915
Specificity 0.999733 0.940058 0.965371
F-Score 0.999111 0.813058 0.883668
FPR 0.000267 0.059942 0.034629
IoU 0.998253 0.722727 0.817422

128

Accuracy 0.999678 0.817982 0.845656
Recall 0.999688 0.825223 0.863721
Precision 0.999568 0.789182 0.814875
Specificity 0.999855 0.914792 0.933859
F-Score 0.999626 0.761299 0.803141
FPR 0.000145 0.085208 0.066141
IoU 0.999256 0.668107 0.715293

IoU metric values of the defended, i.e., robust student
model, and the undefended model, i.e., without mitigation
method, are shown in Figure 4a and Figure 4b, respectively.
The X-axis indicates the ε values of the FGSM, BIM, and PGD
attacks, while Y-axis indicates the IoU values of the defended
and undefended models. As shown in the figures, the defended
model has higher IoU metric values when compared to the
undefended model.

The trendlines are also shown in the figures, and the slopes
of these trendlines show the defended model has a lower
decrease rate when compared to the undefended model. The
first obvious result is that the defensive distillation-based mit-
igation method can significantly reduce the vulnerabilities of
AI-based spectrum sensing models against adversarial attacks
in cellular networks. Figure 5-7 show the histogram plots
of the IoU metric values for each attack of defended and
undefended models. For the defended model, the IoU values
are clustered around 1.0, which means the CNN model can
correctly recognize the LTE, 5G, and noise signals.

TABLE IV: Defended

ε Metrics FGSM BIM PGD

13

Accuracy 0.999485 0.999107 0.999485
Recall 0.999418 0.998906 0.999418
Precision 0.999316 0.998817 0.999316
Specificity 0.999771 0.999604 0.999771
F-Score 0.999365 0.998857 0.999365
FPR 0.000229 0.000396 0.000229
IoU 0.998733 0.997723 0.998733

64

Accuracy 0.999559 0.938550 0.944829
Recall 0.999418 0.999170 0.938213
Precision 0.999064 0.930787 0.941644
Specificity 0.999811 0.972697 0.974934
F-Score 0.999102 0.919045 0.930235
FPR 0.000189 0.027303 0.025066
IoU 0.998237 0.881291 0.896488

128

Accuracy 0.998690 0.882667 0.904468
Recall 0.998900 0.865154 0.9067030
Precision 0.997399 0.880294 0.910402
Specificity 0.999467 0.934967 0.956826
F-Score 0.998007 0.840553 0.884733
FPR 0.000533 0.065033 0.043174
IoU 0.996308 0.802265 0.844832
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Fig. 4: IoU metric values of the adversarial attacks
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Fig. 5: FGSM
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Fig. 6: BIM
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Fig. 7: PGD

V. DISCUSSION

The results show that CNN-based spectrum sensing models
are vulnerable to adversarial attacks. The IoU metric is also
pretty much low, i.e., 0.72, under a lower power attack (ε
equals 64, i.e., 0.25 of the maximum input value). Fortunately,
the mitigation method provides a better performance against
higher-order adversarial attacks, and the IoU metric value
goes up to 0.87. According to the results, adversarial attacks
on CNN-based spectrum sensing models and the use of the
defensive adversarial mitigation method can be summarized:

Observation 1: The CNN-based spectrum sensing models
are vulnerable to adversarial attacks.

Observation 2: There is a strong negative correlation be-
tween the attack power ε and the model performance.

Observation 3: The proposed mitigation method offers a
better performance against adversarial attacks. Observation 4:
The defended model has a lower decrease rate when compared
to the undefended model.

VI. CONCLUSION

With advanced computing and AI methods, new spectrum
sensing approaches have been used for better spectrum man-
agement in cellular networks. However, an AI-based model
can be poisoned by adversarial attacks where malicious users
inject fake training data with the aim of corrupting the learned
model. This paper provides a vulnerability analysis of the
spectrum sensing approach using AI-based models for iden-
tifying cellular network signals under adversarial attacks and
training methods. It also presents the model performance with
and without a mitigation method, i.e., defensive distillation,
for adversarial attack. The results showed that the defen-
sive distillation can defend the CNN-based spectrum sensing
models against adversarial attacks in cellular networks. The
CNN-based spectrum sensing model can identify the type of
cellular signal, whether LTE, 5G, or noise. Simulation result
show that the original CNN-based spectrum sensing model is
significantly vulnerable to adversarial attacks, especially high-
order ones. Fortunately, the proposed defensive distillation
mitigation method can improve the performance of the spec-
trum sensing model and provide better results against higher-
order adversarial attacks.
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