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Abstract—This paper addresses the problem of enabling inter-
machine Ultra-Reliable Low-Latency Communication (URLLC)
in future 6G Industrial Internet of Things (IIoT) networks. As
far as the Radio Access Network (RAN) is concerned, centralized
pre-configured resource allocation requires scheduling grants to
be disseminated to the User Equipments (UEs) before uplink
transmissions, which is not efficient for URLLC, especially in case
of flexible/unpredictable traffic. To alleviate this burden, we study
a distributed, user-centric scheme based on machine learning
in which UEs autonomously select their uplink radio resources
without the need to wait for scheduling grants or preconfiguration
of connections. Using simulation, we demonstrate that a Multi-
Armed Bandit (MAB) approach represents a desirable solution to
allocate resources with URLLC in mind in an IIoT environment,
in case of both periodic and aperiodic traffic, even considering
highly populated networks and aggressive traffic.
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I. INTRODUCTION

With early 5th generation (5G) deployments already rolled
out, the research community is discussing use cases, re-
quirements, and enabling technologies towards 6th generation
(6G) systems [1]. Among other services, 6G will introduce
new communication interfaces and innovative architectures to
support the Industrial Internet of Things (IIoT) in 2030 and
beyond, where the 6G network connects sensors and machines
in factories, plants, mines, to enable analytics, diagnostics,
monitoring, asset tracking, as well as process, regulatory,
supervisory, and safety control [2]. In this context, the need
for robots to complete cooperative operations that require high
precision and coordination in real time comes with its own set
of requirements, e.g., in terms of reliability (up to 99.99999%)
and latency (below 1 ms, or even 0.1 ms, in the radio
part), making it crucial to support Ultra-Reliable Low-Latency
Communication (URLLC) in the industrial domain [3]. The
factory of the future will further operate to support high-
density deployments of machines and end users.

In this context, the time introduced by the Radio Access
Network (RAN) operations, from routing and scheduling to
resource allocation and modulation, represents one of the
most impactful latency components. Specifically, a central-
ized pre-configured scheduling protocol usually requires the
prior exchange of scheduling requests (grants) to (from) the

Next Generation Node Base (gNB), which is not compatible
with URLLC in IIoT scenarios [4], [5]. To partially address
this issue, 3GPP NR supports semi-persistent and grant-free
communication in the uplink (UL) [6], in which the network
pre-allocates radio resources, thereby eliminating the need for
User Equipments (UEs) to wait for network grants before
transmission. However, reserving resources to dedicated UEs
can be inefficient if traffic demands are aperiodic [7], and it is
not possible to anticipate when resources will be needed [8].

Another solution is to design a user-centric architecture
(as foreseen in 6G [9]) in which end machines make au-
tonomous decisions, “disaggregated” from the network [10].
Along these lines, in this paper we explore the feasibility of a
decentralized/distributed scheduling algorithm that, exploiting
machine learning (ML) technologies, allows UEs to optimize
their UL transmission strategies by autonomously selecting the
available physical resources. This framework is able to learn
from the application, and could work well even considering
architectures for IIoT scenarios in which communication is on
the sidelink, with no or limited support from the gNB [11].

Despite this potential, however, distributed scheduling may
create collisions during communication, raising the question
of whether this approach is compatible with URLLC applica-
tions. To this aim, we apply the Multi-Armed Bandit (MAB)
theory [12] to evaluate how autonomous machines should
select transmission resources based on previous scheduling
decisions and the effect they produced on the network in
terms of reliability. While the MAB approach is well known,
most related work focused on downlink (DL) [13], cellu-
lar [14], or IoT [15] networks. In turn, we consider a UL
scenario modeled according to the “Motion Control” 5G-
ACIA geometry (in which a remote server sends commands
to control the moving parts of machines), thus ensuring that
our results are representative of a typical IIoT environment.
Other notable papers consider vehicular scenarios [16], [17],
where the target is to enable URLLC for vehicle-to-vehicle
communications via Deep Reinforcement Learning (DRL).
However, we argue that for IIoT use cases, state-of-the-art
MAB algorithms may better exploit the strong correlation
typical of the industrial environment while, at the same time,
reducing the computational complexity and training time to
converge to optimal solutions, compared to more sophisticated
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Fig. 1: Transmission structure.

DRL alternatives.
We perform simulations with both periodic and aperiodic

traffic, and as a function of the UEs’ density and spatial
distribution, the traffic periodicity (thereby modeling aggres-
sive or conservative applications), and the transmit power,
thus considering a low-power performance regime. From our
results, we conclude that the Thompson Sampling agent [18]
is a promising candidate method to minimize the collision
probability even in the presence of unscheduled transmissions.

The rest of the paper is organized as follows. In Sec. II we
present the distributed resource allocation problem, in Sec. III
we introduce possible ML methods based on MAB to solve it,
and in Sec. IV we describe our simulation setup and discuss
our main results. Finally, Sec. V concludes our work with
suggestions for future research.

II. PROBLEM FORMULATION AND SYSTEM MODEL

We consider an Orthogonal Frequency Division Multi-
plexing (OFDM) system in which devices, also denoted as
agents in machine learning parlance, are located in a factory
environment, and have to autonomously choose the orthogonal
channel to be used for UL transmissions. The time domain
is discretized into intervals of duration equal to the OFDM
symbol (with a Scheduling Unit (SU) consisting of 7 OFDM
symbols), whose duration depends on the adopted NR nu-
merology. The frequency domain is also discretized into K
orthogonal channels, whose size depends on the available
bandwidth B and the subcarrier spacing ∆f .

At the beginning of each SU, the agents make their schedul-
ing decisions, that is the channel to be used for transmission,
as shown in Fig. 1. Unlike in a centralized pre-configured
resource allocation approach, in which radio resources are
scheduled by the gNB via scheduling grants, we study the
feasibility of a decentralized algorithm based on ML in which
each agent autonomously optimizes its channel selection pol-
icy relying only on the gNB feedback, without prior ad hoc
message exchange with the gNB itself. The rationale behind
this scheme is to exploit the underlying correlations typical
of the IIoT traffic to avoid the transmission of centralized
scheduling grants, thus reducing the end-to-end latency and
promoting URLLC.

If multiple agents use the same physical channel during a
specific SU, we assume that their packets are lost due to a
collision event. At the end of each SU, the gNB broadcasts a

message indicating in which channel(s) data were successfully
received. This message is used by the pool of agents to
optimize their subsequent decision strategies, and achieve
coordination without communication.

We formalize the problem using the MAB framework,
which is used to model many sequential decision processes
in computer science and engineering [12]. In this particular
multi-agent scenario, there are N agents, i.e., the N UEs,
interacting with the same environment. Whenever an agent
n ∈ {1, . . . , N} generates a new packet during SU t, it
schedules its transmission at the beginning of SU t + 1,
choosing one among the K available channels, which will be
used for transmission for the whole SU duration. According
to the MAB notation, we refer to the action of using channel
k ∈ K = {1, . . . ,K} as “playing the arm” k. At the end of
SU t+ 1, the message received from the gNB is converted
into a reward rn,t, indicating whether or not the transmission
was successful, i.e., rn,t = 1 or rn,t = 0, respectively: max-
imizing the reward implies transmitting the data successfully
in low latency, as there is no need to exchange scheduling
grants between the UEs and the gNB, leading to the URLLC
objective. In our model, we assume that the reward behind
each action is sampled from a Bernoulli distribution with
unknown parameter µn(kn,t), which depends on the action
taken by the agent, and captures the probability of the other
agents transmitting at the same time. Thus, in each SU t,
agent n samples an action k ∈ K according to its policy
πn : Ht−1 → ∆K , which is, in general, a map from history
Hn(t− 1) = {(k1,n, r1,n) , . . . , (kt−1,n, rt−1,n)} ∈ Ht−1 to a
probability distribution over the action set K, where ∆K

denotes the K-simplex. The history vector Hn(t−1) is used by
the agent to optimize its policy πn, so as to maximize the ex-
pected cumulative reward R(πn, T ) = Eπn

[∑T
t=1 µn (kn,t)

]
.

III. MULTI-ARMED BANDIT (MAB) AGENTS

To solve the problem in Sec. II and maximize the reward,
many algorithms have been proposed in the literature over
the past years [12]. In this paper, we study the performance
of different MAB agents to solve the problem of distributed
resource allocation, in the specific context of URLLC for IIoT.

a) Random Agent (RA): It implements the simplest de-
cision scheme, and is used as a lower bound. Nonetheless,
it represents well the case of 5G NR grant-free scheduling,
where the access decision is random, and re-transmissions are
optimized to achieve reliability [19]. In particular, in each SU,
the RA selects uniformly, at random, one of the K arms, and
no learning is involved.

b) UCB Agent (UCB-A): It implements the Upper Con-
fidence Bound (UCB) algorithm [20], i.e., the agent plays, in
each SU t, the arm kt such that

kt = argmaxk∈K

[
Qt(k) + c

√
log t

nt(k)

]
, (1)

where Qt(k) is the empirical average at step t of the experi-
enced rewards for arm k, nt(k) is the number of times arm
k has been played until time step t, and c is an exploration



parameter to be optimized. In Eq. (1), Qt(k) represents the
exploitation part, as it is related to the past experience, while√

log t/nt(k) quantifies the uncertainty around the empirical
average, and decreases as we collect more samples, i.e., as
nt(k) increases. The larger this second term for an action k,
i.e., the uncertainty of its performance, the higher the probabil-
ity of choosing that arm, meaning that we need more samples
to have a good estimate of its related reward. This principle
is also known as “optimism in the face of uncertainty.”

c) Thompson Sampling Agent (TS-A): The agent adopts
a Bayesian inference approach to identify the most promising
arms. In particular, TS-A builds a distribution for each reward,
thus modeling not only its mean, but the whole statistics [18].
Given that our problem includes a binary reward {0, 1} behind
each arm, it is quite natural to model the rewards according to
a Bernoulli distribution, which is parameterized by the success
probability vector µ = (µ1, . . . , µK), where µk represents the
average unknown reward behind arm k ∈ K. Following the
Bayesian framework, parameter µk of arm k is modeled as a
Beta(αk, βk) random variable, where αk counts the number of
successful transmissions after playing arm k, and βk represents
the number of collisions. Therefore, the mean of µk is equal to
αk/(αk+βk). The Beta distribution parameters are initialized
to {αk = 1, βk = 1} for all k ∈ {1, . . . ,K}.

As the TS-A collects more data, αk and βk are updated
accordingly, inducing biased probabilities for the different
arms. These informed distributions are also called posterior
probabilities, in Bayesian parlance. Whenever the agent makes
a decision, i.e., it chooses a physical channel based on the
probability of that channel not being accessed by other agents
in that time interval, it samples a vector µ = (µ1, . . . , µK),
and plays the arm k∗ such that k∗ = argmaxk{µk}. This algo-
rithm is known as the Thompson Sampling (TS) algorithm [18]

d) Neural Agent (NA): The NA is equipped with a small-
size Neural Network (NN) used to represent its decision
policy. In particular, the agent receives, as an input, context
information st ∈ S from the environment, thus the problem
is formulated as a contextual MAB, i.e., the average reward
depends on the played arm kn,t, and on the state sn,t [20].
The NN input represents the feedback on the results of the
last transmission attempt, broadcast by the gNB. As such, the
input data is a vector of K + 1 entries: the first K values are
the results of the transmission attempts in the K orthogonal
channels, whereas the last value indicates whether it is a first-
time transmission or a re-transmission. Again, the 0/1 reward
given to failed/successful transmission, respectively, is used
by the NA to optimize the NN parameters, and maximize the
given rewards. The model is an adaptation of that in [21].

Remark. The UCB and TS algorithms exhibit good theoret-
ical properties in terms of convergence time to optimal strate-
gies, as long as some critical assumptions are satisfied [20]:

1) The rewards behind each action need to exhibit a sub-
Gaussian distribution. Any distribution with limited sup-
port has this property, which is also verified in our setting.

2) The reward samples after playing action k are i.i.d. This
assumption is more critical in real scenarios, and in

particular in our problem. In fact, each agent interacts
with many other devices, and so the rewards depend on
the actions of the other agents, which are continuously
learning and changing their decision schemes. This leads
to highly non-stationary environments, meaning that the
reward distribution may change over time. However,
empirical results show that state-of-the-art MAB algo-
rithms can still be applied even though the stationarity
assumption for the rewards is not satisfied [22].

In Sec. IV-B we compare the performance of the MAB
agents presented above, and provide guidelines towards the
best schemes to satisfy URLLC requirements for IIoT.

IV. PERFORMANCE EVALUATION

In this section, after introducing our simulation setup, we
evaluate the performance of the proposed distributed resource
allocation scheme implementing one of the MAB agents
described in Sec. III, in different IIoT scenarios.

A. Simulation Setup

End machines transmit at frequency fc = 3.5 GHz and with
a bandwidth of B = 20 MHz. The subcarrier spacing is set to
∆f = 30 KHz (i.e., 3GPP NR numerology 1), which results in
K = 55 orthogonal channels, and an OFDM symbols duration
of TOFDM ' 35.675µs [23]. With an SU of 7 OFDM symbols,
we get an SU duration of TSU ' 0.25 ms. We assume that,
whenever a packet is to be sent, it can be transmitted within
one SU. If two or more UEs select the same UL channel for
transmission in the same SU, we consider those packets to be
lost (due to a collision event). Assuming that the gNB feedback
(informing about the collision) is received within the current
SU, the retransmission can be scheduled in the subsequent SU.

The factory floor is characterized according to the 5G-ACIA
“Motion Control” scenario, as described in [11]. Hence, the
geometry is modeled as a parallelepiped of length ` = 15 m,
width w = 15 m, and height h = 3 m, and machines are
randomly and uniformly distributed inside the factory. The
gNB is located at the center of the ceiling, and communicates
with power PTX,DL = 30 dBm. The transmit power of
the UEs is set to PTX,UL ∈ {8, 10, 23} dBm. Also, we
consider omnidirectional transmissions, therefore the antenna
gain is fixed to G = 1 for both the UEs and the gNB. The
channel model is based on the 3GPP Indoor Factory (InF)
scenario [24], where UEs are assumed to communicate in Non-
Line-of-Sight (NLOS) if the joining line between the UE’s and
the gNB’s centers intersects one or more machines.

In our simulations, the traffic can be either periodic or quasi-
periodic. In the first case, packets are generated at constant
periodicity τ . In the second case, the application still generates
packets with periodicity τ , upon which a random component
toff of {−2,−1, 0,+1,+2} OFDM symbols is added.

The performance of the different MAB agents’ policies is
assessed in terms of successful transmission rate STX , which
indicates the ratio between the successfully received packets
and the total number of attempts within one SU, averaged
over 1 000 steps, as a function of the traffic periodicity τ , the



(a) Periodic traffic.

(b) Quasi-periodic traffic

Fig. 2: STX vs. the training time, for different MAB agents, with periodic
and quasi-periodic traffic, τ = 1.5, and N = 50.

number of UEs N , and the UL transmission power PTX,UL.
Notice that STX is inversely proportional to the number of
re-transmissions and, as such, represents well the theoretical
rewards rn,t of the MAB agents.

B. Numerical Results

Impact of the training. In Fig. 2 we analyzed the training
curve of the agents with periodic and quasi-periodic traffic,
with a periodicity τ = 1.5 ms, and considering N = 50 UEs
in the system, for a total training time of T = 240 s. For the
periodic case, we observe from Fig. 2a that TS-A is the best
performing agent. In particular, the TS agents are able to learn
their optimal strategy, achieving zero collisions (i.e., STX = 1,
our target for URLLC) in a very short training time (< 10 s).
NA achieves a similar performance to that of TS-A, though
after a longer training process. This is due to the fact that
NA needs more interactions with the system to optimize the
network parameters, thus slowing down the training phase. For
UCB-A, the exploration parameter c in Eq. (1) was set to 2, as
it showed the most stable configurations in our experiments.
Still, it results in an even slower convergence compared to NA,
due to the fact that it struggles to achieve coordination. Also,
UCB-A presents significant oscillations over time, due to the
impact of collisions and retransmissions. As expected, RA (our
baseline) performs poorly, and there is no improvement over
time, as feedback signals are not exploited by the algorithm
to adjust the access scheme.

For the quasi-periodic case, we observe from Fig. 2b
that TS-A presents again the best performance despite the
more complex scenario, converging to zero collisions within
15 s. Now, NA no longer achieves perfect convergence

Fig. 3: STX ± one standard deviation vs. N for different MAB agents, after
a training time of 60 s, with τ = 1.5 ms, with periodic (wide bars) and
quasi-periodic (narrow bars) traffic.

within the training time, suggesting that it cannot work well
in non-stationary multi-agent scenarios, or deal with non-
deterministic traffic requests. However, we believe that, with a
better tuned training process, and with more relevant context
information as input, the final performance would reasonably
improve. Finally, UCB-A and RA perform similarly to the case
of periodic traffic.

Impact of the number of users. In Fig. 3 we evaluate
the performance of the MAB agents as a function of N ∈
{25, 50, 75, 100}. In particular, we studied the statistics of
the successful transmission rate STX after 60 s of training,
where again the total training time is set to T = 240 s. First,
we observe that TS-A converges to the optimal scheme (i.e.,
STX = 1) within 60 s in all configurations, thus achieving
coordination without communication even in dense (N = 100)
networks. Second, NA outperforms UCB-A with periodic
traffic, but suffers with quasi-periodic traffic: notably, STX
decreases by 10% in the quasi-periodic case, for N = 100.
This is due to the fact that NA implements and exploits an NN
to optimize its decisions, thus the learning phase can take more
time in the most complex scenarios. Interestingly, compared to
other agents, UCB-A’s performance is less sensitive to N , and
eventually outperforms NA’s approach in the most crowded
scenarios. On the downside, it exhibits wider oscillations, i.e.,
higher standard deviation in Fig. 3, an indication of a less
stable behavior of the agent in non-stationary environments.

Impact of the traffic periodicity. Fig. 4 explores the effect
of the traffic periodicity τ on the successful transmission
rate STX . As expected, the more aggressive the traffic, the
more difficult for the agents to achieve convergence, which
is also highlighted by the increased standard deviation in all
MAB configurations. Again, TS-A is the best agent, and can
converge to the optimal scheme regardless of the value of τ .
Eventually, NA is also able to achieve zero collisions (i.e.,
STX = 1) when τ = 5 ms in case of periodic traffic. Even the
RA approach (our baseline) achieves a successful transmission
rate of around 0.9 as τ grows, i.e., considering less bandwidth-
hungry applications, thanks to the lower collision probability
as the contention on the channel becomes less intense. Notably,
UCB-A is the only method that improves the average accuracy
as τ decreases: the shorter traffic periodicity implies more
transmission attempts within the training time, which in turn



Fig. 4: STX ± one standard deviation vs. τ for different MAB agents, after
a training time of 60 s, with N = 100, with periodic (wide bars) and quasi-
periodic (narrow bars) traffic.

Fig. 5: STX ± one standard deviation vs. PTX,UL for different MAB agents,
after a training time of 60 s, with N = 100 and τ = 1.5 ms, with periodic
(wide bars) and quasi-periodic (narrow bars) traffic.

provides more data to the agent to optimize its decisions.
However, oscillations become significant when τ = 1.5 ms.

Impact of the UL transmission power. IIoT devices,
such as industrial sensors, may be subject to battery life-
time constraints. In light of this, we studied the impact of
the UL transmission power PTX,UL ∈ {8, 10, 23} dBm on
the MAB convergence. While decreasing PTX,UL promotes
energy savings and mitigates interference, it may also lead
to communication outage when the Signal to Interference
plus Noise Ratio (SINR) goes below a pre-defined sensitivity
threshold, set to −5 dB in our simulations. In Fig. 5, with
PTX,UL = 23 dBm, the outage probability is very small,
leading to STX ≈ 1 in most configurations (if convergence is
achieved). As PTX,UL starts decreasing, outage events, besides
collisions, lead to additional packet losses, and to a more
complex environment. Unlike TS-A and NA, UCB-A is less
sensitive to this effect. The reasons are twofold. On one side,
NA converges slowly, and is more exposed to retransmissions.
At the same time, TS-A converges quickly to a specific
solution, meaning that unpredictable outage events may break
the environment statistics underlying the TS algorithm, and
lead to unexpected negative feedback from the gNB. On
the contrary, UCB-A initially explores more, and can better
adapt to new configurations in more dynamic scenarios. When
PTX,UL = 8 dBm, UCB-A is the best performing agent, and
achieves +16% STX compared to TS-A.

TS-A performance. In view of the above results, we further
analyzed TS-A’s convergence time to the optimal solution

Fig. 6: STX vs. the training time and as a function of N , for TS-A with
periodic traffic, and τ = 1.5 ms. The curves report mean ± standard deviation
over the simulation runs.

Fig. 7: STX vs. the training time and as a function of τ , for TS-A with
periodic traffic, and N = 100. The curves report mean ± standard deviation
over the simulation runs.

(where no collisions are experienced) as a function of (i) the
number of users N , and (ii) the traffic periodicity τ . In Fig. 6,
we observe that, as N increases, the TS algorithm takes more
time to converge to the best solution, as expected. Notably, the
curve with N = 100 presents the highest variance, due to the
fact that many users are learning an individual policy, leading
to a highly non-stationary environment.

In Fig. 7, we see that when τ decreases the convergence
time grows accordingly, even though the gap among different
configurations is relatively small (convergence is achieved
after ∼ 8 s). This is due to the fact that, on the one hand,
when the traffic periodicity is short, the problem becomes more
complex, as more packets have to be allocated. On the other
hand, the agents receive more feedback signals within the same
time interval, thus leveraging more data for the training.

C. Final remarks

Our initial experiments confirm that there exists a MAB
configuration for which distributed resource allocation can
achieve zero collisions in low latency, i.e., without gNB
scheduling grants, thus supporting URLLC.

In particular, TS-A is the best performing approach in case
of both dense systems and aggressive aperiodic traffic (where
conventional semi-persistent/grant-free NR schedulers may
fail). Consequently, our experiments suggest that the Bayesian
formulation, together with the exploration strategy of TS, are
good starting points to build distributed resource allocation
in real IIoT environments, reducing the latency introduced
by centralized protocols. Interestingly, UCB-A works well in



complex scenarios, or when UEs communicate with limited
power, thus supporting energy efficiency at the expense of
some collisions. Moreover, the superior performance in terms
of STX of the MAB schemes against RA shows that machine
learning can dramatically reduce, if not completely eliminate,
the burden of re-transmissions introduced by 5G-NR-like
grant-free access scheduling schemes [19].

However, distributed resource allocation requires longer
training time before convergence, which in real IIoT sys-
tems may not be negligible. Still, the training could be run
offline, which does not affect the real-time performance of
the system (it can be executed when the machine is turned
off, e.g., during the calibration of the electro-mechanical
processes, or before the service is activated); once active, the
service can run rapidly and without significant computational
overhead. Moreover, our analysis evaluates the training time
when the system starts the optimization process from scratch:
faster adaptation can be achieved if the system faces limited
changes with respect to the initial training scenario, e.g.,
some components join or leave the system. Nevertheless, the
trained model still requires retraining when data distributions
have deviated significantly from those of the original training
set, which involves additional overhead [25]. This motivates
further explorations in the case of more dynamic systems, that
will be carried out as part of our future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied the design of user-centric (rather
than gNB-centric) distributed (rather than centralized) resource
allocation in IIoT scenarios. This approach does not involve
scheduling grants to be disseminated before UL transmissions,
and is thus positioned to better support URLLC compared to
conventional scheduling methods. We explored different state-
of-the-art MAB agents, for the first time applied to the context
of URLLC for IIoT, and identified TS-A as the best performing
implementation, achieving zero collisions in our experiments.
TS-A scales well with the number of users in the system
compared to other MAB methods, and still achieves perfect
accuracy even considering aperiodic traffic. Notably, UCB-
A showed superior performance when the UEs communicate
with low power, despite some collision events.

This work opens up new interesting research directions. For
example, we will evaluate whether federated learning, which
optimizes the scheduling policies based on the interaction
among the UEs, would result in faster convergence than MAB.
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