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Abstract—This paper investigates the massive multi-input
multi-output (MIMO) system in practical deployment scenarios,
in which, to balance the economic and energy efficiency with
the system performance, the number of radio frequency (RF)
chains is smaller than the number of antennas. The base
station employs antenna selection (AS) to fully harness the
spatial multiplexing gain. Conventional AS techniques require
full channel state information (CSI), which is time-consuming
as the antennas cannot be simultaneously connected to the RF
chains during the channel estimation process. To tackle this issue,
we propose a novel joint channel prediction and AS (JCPAS)
framework to reduce the CSI acquisition time and improve the
system performance under temporally correlated channels. OQur
proposed JCPAS framework is a fully probabilistic model driven
by deep unsupervised learning. The proposed framework is able
to predict the current full CSI, while requiring only a historical
window of partial observations. Extensive simulation results show
that the proposed JCPAS can significantly improve the system
performance under temporally correlated channels, especially for
very large-scale systems with highly correlated channels.

Index Terms—Channel estimation, antenna selection, partial
CSI, massive MIMO, deep learning.

I. INTRODUCTION

Massive multiple-input multiple-out (MIMO) system has
been considered as a most promising technology which offers
significant improvements on both spectral and energy effi-
ciencies for the next-generation communication system [|1]].
Massive MIMO is able to serve multiple users with the same
time-frequency resources by deploying a large-scale antenna
array at the base station (BS). Since the expensive equipment
is only required to be deployed at the BS, the user devices can
thereby be relatively inexpensive. Moreover, the performance
of massive MIMO systems is generally less sensitive to unfa-
vorable propagation environments [2]]. These potential benefits
of massive MIMO, however, heavily rely on the knowledge of
the complete channel state information (CSI) via transmission
of known pilot signal in the channel estimation phase [1]-
[3]]. During the channel estimation process, the antennas need
to be connected to radio frequency (RF) chains for signal
detection and measurement. In massive MIMO systems with a
very large number of antennas, equipping each antenna with a
dedicated RF chain is inefficient from both economical and
energy efficiency perspectives [1]]. Therefore, in practice a
massive MIMO BS usually has a number of RF chains smaller

than the number of antennas, which is also the scenario of our
interest. In order to fully reap the spatial multiplexing gain, the
BS employs antenna selection (AS) before applying precoding
techniques to serve the users.

AS has been proposed to significantly reduce the required
number of RF chains, by activating only a small subset of
all the available antennas at each instant [4]. Specifically,
AS adopts simple RF switches to achieve a low hardware
cost and power consumption while still benefiting from the
spatial diversity gain of antenna arrays [1f]. Low-complexity
AS algorithms have recently been extensively studied for mas-
sive MIMO systems [4]-[7]. For instance, a self-supervised
learning based Monte Carlo tree search (MCTS) method was
proposed in [5]], which solves the AS problem for large-scale
systems with achieving near-optimal performance. In [4]], a
learning-based joint AS and precoding design was proposed
to maximize the system sum-rate subject to a transmit power
constraint and quality of service (QoS) requirements.

It is worth noting that the above-mentioned AS techniques
are only applicable when full CSI is known at the BS, meaning
the channel states are complete and fully observable. Getting
full CSI in massive MIMO can be a prohibitive task, especially
when the number of antennas exceeds the number of the
RF chains. One may consecutively switch the RF chains to
a subset of antennas during channel estimation phase. This
method, however, incurs extra channel estimation overhead
and results in a less effective data transmission phase.

In order to tackle this issue, one promising approach is
to incorporate channel prediction into the channel estimation
phase to avoid extra channel estimation overhead. In practical
massive MIMO environments, wireless channels are often
dominated by a small number of propagation paths. For low
mobility users, the channels will have strong temporal corre-
lation which can be exploited for channel prediction. [8[]-[10].
From this perspective, many channel prediction methods have
recently been investigated in [11[]-[13]]. A machine learning
(ML)-based time-division duplex scheme was proposed in
[11], where full CSI is obtained by leveraging the temporal
channel correlation that is applied to both low and high mo-
bility scenarios. To predict channels smart high-speed railway
communication networks, the authors of [13]] proposed a chan-
nel prediction scheme based on convolutional neural network



(CNN) and long short-term memory network (LSTM) which
predicts full CSI in a multi-step ahead manner by exploiting
the channel correlations. Nevertheless, the prediction methods
in [TI]]-[13] require the fully observed channels history and
are not applicable to the case of partial observation, especially
when the number of antennas exceeds the number of RF
chains. Recently, AS with partial CSI has been proposed
in based on multi-armed bandit (MAB) and Thompson
sampling technique to reduce the channel estimation overhead.
This approach, as we will show later, performs poorly when
the number of RF chains is significantly smaller than the
number of antennas, since the history of partial observations
is not exploited.

In this paper, we investigate the massive MIMO downlink
in practical scenarios, in which the channel coefficients are
temporally correlated and the number of antennas surpasses
the number of the RF chains. In order to select antennas with
partially observed channel states while keeping a minimum
channel estimation time, we propose a novel joint channel
prediction and AS (JCPAS) framework to simultaneously
minimize the channel estimation time and harness the spatial
multiplexing gain. The core idea of the proposed JCPAS
is to exploit the channel temporal correlation so that the
current full CSI can be predicted based on the past incomplete
observations. To summarize our work, the main contributions
of this paper are as follows,

e The proposed JCPAS framework is a unsupervised learn-
ing based probabilistic model. Thus, only channel sam-
ples are needed rather than the statistics to capture the
potential correlations.

o In contrast to the existing literature, our approach does
not require the knowledge of full CSI. Instead, we only
need to estimate partial CSI at each instant, thus reducing
the channel estimation overhead and improving the effec-
tive achievable rate. To the best of our knowledge, our
proposed approach is the first attempt in the literature to
predict channel states only based on the past incomplete
observations.

o The performance of the proposed JCPAS is demonstrated
via extensive simulation results, which can save about
45% in energy cost in very large-scale systems and
achieve nearly the performance bound with highly cor-
related channels.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a massive MIMO system downlink consisting
of a BS, equipped with NV, antennas and Ny < N; RF chains,
and N, single-antenna users, as in Fig.

For each frame block, we denote H € CNu*Nt a5 the
full CSI matrix, and let h;, € C**™t be the corresponding
full channel vector for user k. Since the number of RF
chains is smaller than the number of antennas, BS has to
select Ny out of N; antennas for transmitting data. For
convenience, let @ = [a1,a2,- - ,a4, -+ ,an,] be the AS
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Fig. 2. Block diagram of one transmission block.

vector satisfying a; € {0,1} and Z;V:‘I a; = Ny, with
a; = 1 indicating the j-th antenna is selected and a; = 0
otherwise. Denote A as the set of all possible subsets of Ny
antennas such as |A| = (ﬁ;), where () = #lk), is the
binomial coefficient. For each AS vector a € A, we denote
hi.(@) = [Pk,ays s Pka;, s Pkay,] as the active channel
vector of user k, where hkya]. represents the a;-th element of
hy.. Furthermore, let wy(a) € CN7*1 denote the precoding
vector for user k with antenna combination a. The received

signal vector at user k can be expressed as
Yr = hi(a@)wi(a)zy + Z#khj (@wj(a)zy +nk, (1)

where zj is the transmit symbol for user k£ and nj; ~
CN(0,0?) is the additive white Gaussian noise (AWGN)
with zero mean and variance o2. By considering the inter-
user interference as well as the noise, the effective signal-
to-interference-plus-noise ratio (SINR) is given as SINRy =

> ¢,J7il:£?i1f££?i|)72 +5=- Then, the effective achievable rate for

user k£ with antenna combination a is given by

Ri(a) = (1 - TT) Blog, (1 + SINRy), 2)
where B is the channel bandwidth. For each frame, the
effective system capacity with antenna combination a can be
bounded by Zg;l Ry (a), and the total power consumption
for transmitting data at each frame is 211221 |lwy(a)]?.

B. Antenna Selection with Incomplete CSI

Because there are only Ny < N; RF chains, the BS
must select a best subset of Ny antennas for downlink data
transmission. For the AS problem, a common objective is to
optimize a generic objective function F(a) while obeying
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Fig. 3. Diagram of the proposed joint channel prediction and antenna selection
framework.

the total transmit power and minimimum QoS requirements.
Mathematically, the AS problem can be formulated as

Ny,
minimize Z ]-'k (a) 3

subject to Z

where 75 is the QoS requirement for user k, P, is the
total power, and Fi(a) is the objective function of interest.
For example, Fi(a) = ||wg(a)||? in the energy minimization
problem, and Fj(a) = —Rj(a) in the sum rate maximization
problem.

Solutions to problem have been well studied in the
literature [4]], [6], [7], [L11]-[13] under the complete CSI
assumption, meaning that the wireless channel is fully observ-
able. Since the number of RF chains is less than the number
of transmit antennas at BS, obtaining complete CSI requires

Jull N (L&) +1) cu. in the channel estimation phase.
With fixed Ny and N, we can see that the channel estimation
overhead increases significantly for large [V; if we obtain the
full CSI. This extra pilot overhead can be very large in massive
MIMO and result in reduced effective transmision rate, as
shown in (2). For this reason, obtaining the full CSI is thereby
a very inefficient strategy for massive MIMO systems, which
motivates us to study the AS problem in the presence of only
incomplete (or partial) CSI.

||wk ||2 < Pt0t7 Rk( ) Z 771<:7Vk7

III. PROPOSED LEARNING-BASED JOINT CHANNEL
PREDICTION AND ANTENNA SELECTION FRAMEWORK

In this section, we will introduce the proposed learning-
based joint channel prediction and AS framework, which can
operate without fully estimating the channel states.

A. Channel Prediction with Incomplete CSI

As we have mentioned before, a key observation on the
practical massive MIMO system is that the wireless channel
is often temporally correlated, which indicates that predicting
the full CSI based on the incomplete observation history
becomes a possible approach to reduce the channel estimation
overhead. Inspired by this, we propose to employ a proba-
bilistic generative neural network (GNN) to predict the full

CSI from the history (of partial CSI). Mathematically, a GNN
that predicts the full CSI based on the history can be regarded
as a probabilistic model p(H|®;) conditioned on the history
® & {Hi pmi1(ai—mi1), - Hi—1(a;—1),Hi(a;)} with a
fixed length m. Note that the missing history will be replaced
by zero matrices if ¢ < m. Though it is hard to know the
unknown distribution p(H|®;) exactly, one can still use the
maximum likelihood approximation method to estimate it.

In order to estimate the unknown distribution p(H;|®;), we
first need to choose an appropriate model gg(H;|®;), which
is parameterized by 6, where ®, is the history before ¢. Then,
we collect a training data set D = {H;,®;}L_,. Our training
objective is to maximize the likelihood of the collected training
samples on the chosen model which is given by

£(6) —argmm Z

Obviously, @) quantifies how Well the chosen distribution
fits the samples drawn from the unknown distribution H; ~
p(H¢|®:). In particular, this objective achieves its minimum
if go(H|®,) perfectly approximates p(H|®;). On the other
hand, the objective enlarges if the chosen model deviates
from the unknown distribution. Unfortunately, choosing an
appropriate model gg (H;|®;) requires prior knowledge on the
unknown distribution, which is typically difficult in practice.
Therefore, we employ a conditional normalizing flow to ap-
proximate the underlying distribution.

As a kind of GNN, normalizing flow can efficiently infer
the latent variables. Instead of directly computing the log-
likelihood, it computes the corresponding log-likelihood us-
ing the rule of change of variable [15]. Given a complete
observation H; ~ p(H.|®:), we assume that it relies on
a latent variable Z, with entries z; ; following a tractable
distribution conditioned on the history. Thus, the latent space
is also conditioned on the history Z; ~ pz(Z:|®;), and the
generative model is given by

Zt ~ pZ(ZT|¢t) and Ht = ge(Zt)7 (5)

where gg(-) is a invertible function with parameter 6. The
latent variables can be obtained efficiently by applying the
inversion Z = fo(H) = g, (H). Then, the unknown
distribution can be approximated by

log (@) = log pz (Jo (H1) ) + log| det (). ©)

—log g Ht|‘1>t) 4

where det ( dI’;) denotes the determinant on the Jacobian

matrix. Assume that the invertible function f(-) can be further
factorized as L invertible sub-functions as f(-) = fi(-) ®
fo()® -+ fu(-) -+ ® fr(). Then, latent variables Z can be
computed by

EENy JRRLN jANELN N Ny %
Denoting Uy £ H, and U, £ Z,, (6) can be rewritten as
log go (H¢|®;) =log pz(fo(H¢)|®r<t,)
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Algorithm 1 The Proposed joint Channel Prediction and
Antenna Selection (JCPAS) Algorithm
1: Set &5 = {ONuXN” "'?ONuXNt};
2. fort=1,2,---T do
3: Uniformly select a random AS vector a; € A to
estimate the current partial CSI H;(a¢);
4 ® ={Hi m+1(at—m+1), - ,Hi-1(ar—1), Hi(ar)}
5: H; ~ qo(H;|®;) R
6: ANTENNASELECTION(H )
7
8
9

PRECODING(H ) N
: DATATRANSMISSION(H ;)
: end for

Thus, each sub-function becomes a small step of the complete
flow, and thereby we build a conditional normalizing flow for
approximating the unknown distribution.

B. The Proposed Learning-Based Framework

Since now we have qg (H|®;) =~ p(H|®,), it is straightfor-
ward to select antennas for data transmission after predicting
the full channel based on the history. In order to fulfill it,
we hereby introduce a general joint channel prediction and
antenna selection (JCPAS) framework, which jointly uses the
GNN g (H|®;) together with any existing AS algorithms to
improve the system performance under temporally correlated
channels. The structure of the proposed JCPAS framework
is illustrated in Fig. [3] As shown in this figure, we firstly
randomly obtain the partial observation of the current channel,
denoted by H,(a.). Then, we update the observation history by
Setting Qt = {Ht—m+1(at—m,+1)a c 7Ht—1(at—1)7Ht (at)}-
After tl/lgt, we predict the full channel via the well-trained
GNN H; ~ qo(H|®;). Since we have the estimation of
the full channel, we just need to employ a specific antenna
selection algorithm to select antennas for both precoding and
data transmission. To summarize the process, the pseudo code
of the proposed framework is detailed in Algorithm 1] It should
be noted that the proposed framework is a general framework
which aims to help reduce the channel estimation overhead
for massive MIMO systems. The choice of AS algorithms
and precoding designs are determined based on the available
resources for different scenarios.

C. Implementation Details

The network structure employed by the proposed framework
is illustrated in Fig. §] As we have introduced in Sec.
the most important thing to implement a GNN is to ensure
that the sub-functions represented by each building block are
fully invertible. Generally, such invertible sub-functions are
implemented by normalization layers, invertible convolutional
layers and affine coupling layers, where the details can be
found in [16] and [15]], respectively. By using these invertible
layers, we are able to construct a invertible network for infer-
ring latent variables. Specifically, we construct the invertible
network with L flow steps, and each flow step contains three
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Fig. 4. The network structure for the proposed JCPAS framework.

layers: activation normalization layer, invertible convolutional
layer and affine coupling layer.

Since the latent random variable Z is conditioned on
the history ®, we still need to implement the conditional
distribution pz(Z;|®;). In order to fulfill it, we consider
Z ~ CN(Z;pu(®:),2(®;)), where the mean u(®;) and
variance X (®;) are determined by the history ®;. Specifically,
the mean and variance are computed by two separated CNNss,
which can be expressed asp(®) = CNN1(®) and X(®;) =
exp(CNN2(®)). The two CNNs have the same network struc-
ture, and they are only composed by convolutional layers and
rectified linear units (ReLU) [[15]. It should be noted that we
use zero-padding to keep each H:(a;) having the shape of
N, x Ny in order to retain the spatial information.

D. Computational Complexity

The normalizing flow is composed by three different types
of invertible layers, and the computational complexity of
these invertible layers is dominated by element-wise oper-
ations and log-determinants [3]], [15]], [16]. Hence, for the
computational complexity of normalizing flow, it relies on
the input size, which is given by O((LN;N,). For a CNN
with L. layers, we denote the convolutional kernel size
and number of convolutional kernels at the ¢-th layer as s;
and n;. Therefore, the computational complexity of CNN
is given by O(YF, n; 152N, N,n;) [17]. As to the total
computational complexity of the proposed framework, it not
only depends on the normalizing flow and CNNs, but also
depends on the chosen AS and precoding algorithm. If we
denote the computational complexity of the chosen AS and
precoding algorithms as O(P). Then, the total computa-
tional complexitzl of the proposed framework is given by

IV. PERFORMANCE EVALUATION
A. Environment Setup

In order to demonstrate the performance of the proposed
framework, we perform simulations on various massive MIMO
systems with different system scales and different channel con-
ditions. In addition, we employ a conventional AS algorithm
which successively select antennas based on the column norms



of the provided CSI matrix [[18]]. Moreover, we adopt the zero-
forcing precoding algorithm in the simulation [4].

As to the initial state, we assume that users are randomly
located around BS. The channels are time-varying and we
apply the Jakes model [[19] to generate the channel matrix with
the normalized Doppler frequency fp = 0.1. In addition, the
following temporal correlation model is employed, which is
given by

H,=./pH;, 1 + /1 — pG, 9

where p € [0, 1] is the correlation coefficient, and G, is a time
independent random matrix whose entries g; ; ~ CAN(0,1).
In particular, p = 1 implies that the channel is completely
correlated while p = 0 implies that the channel is independent
for different time slots.

As to the network structure, we employ a normalizing flow
with L = 16 flow steps, and each CNN contains L. = 6 layers
where the number of convolutional kernels and the kernel size
of each layer are {64, 32, 32,16, 64,128} and {3, 9, 3, 3, 3,9},
respectively. Other parameters are as follows: Ny = 16, NV,, =
10, Piot = 10W, m = 64, 0 = 1, B = 100 MHz, T' = 512
c.u., N; € [32,160], and the QoS n = 1 € [350,400] Mbps,
Vk.

B. Competing Algorithms

In order to show the effectiveness of the proposed frame-
work, we compare the proposed JCPAS framework with var-
ious competitive algorithms. Before discussing the simulation
results, we first need to introduce the following abbreviations,

e JCPAS: The proposed JCPAS framework, which ran-
domly estimates partial CSI H(a) € CNe*Ns at the
channel estimation stage of each transmission block, and
recovers the full CSI H € CV«*Nt based on the history.

o OAS [14]: The online antenna selection (OAS) algorithm
introduced in [14]. Instead of exploiting the history, this
algorithm obtains partial CSI by modeling the problem
as a MAB problem.

o Perfect: This scheme performs simulations by consider-
ing that the full CSI can be perfectly recovered from the
history. The performance of this scheme can serve as the
performance upper bound of the proposed JCPAS.

o Full: This scheme uses maximum channel estimation
overhead to obtain full CSI.

« Random: This scheme randomly selects antennas for data
transmission, which can be seen as the lower bound.

It should be noted that the above schemes employ the same
AS and precoding algorithms for a fair comparison.

C. Simulation Results and Discussion

Fig. ] illustrates the power consumption comparison versus
the temporal correlation coefficient p for the aforementioned
algorithms, where Ny = 128, i, = 400MHz, Vk. Besides, the
correlation coefficient p varies from 0 to 1.0. It is shown that
the proposed JCPAS outperforms the other schemes when p >
0.5, and the performance gap between the proposed JCPAS
framework and the “Full” scheme enlarges with the increasing
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coefficient p, where Ny = 128, Ny = 16 and N, = 10.
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correlation level. Specifically, when p = 0.9 where the channel
is highly correlated, the proposed JCPAS framework can save
nearly 45% and 50% in energy costs with comparison to
the “Full” and “Random” schemes. Moreover, we can also
find that the proposed JCPAS framework can approach the
upper bound performance in highly correlated scenarios, which
demonstrates the effectiveness of the proposed framework.

Fig. [f] demonstrates the power consumption comparison
versus the number of antennas N;, where p = 0.8 and
M = 400 MHz. From this figure, we can observe that the
power consumptiosn of the “Full” scheme raises rapidly with
the increasing number of transmit antennas. This is because
the channel estimation overhead will increase rapidly for very
large-scale systems, where the effective ratio for getting the
full CSI decreases from around 0.941 to 0.785. This indicates
that the system needs to allocate much more energy to satisfy
the QoS requirements, which is obviously inefficient for very-
large scale systems. In contrast, the effective data transmission
time of the partial CSI is fixed as 0.98, since the 7.5, remains
the same for different system scales. On the other hand,
the proposed JCPAS consumes less power as [V; increases,
which confirms the effectiveness of the CSI prediction of
JCPAS. In addition, we can find that it performs bad as the
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system scale growing, and JCPAS still outperforms the OAS
algorithm as well as the “Full” and “Random” schemes. The
performance gap between the proposed JCPAS framework and
the “Perfect” scheme remains unchanged for very-large scale
systems. Since OAS does not exploit the history, it performs
bad when the channel is non-static. This indicates that the
proposed JCPAS can efficiently and accurately recover the full
CSI from the partially observed history, which further verifies
the effectiveness of the proposed framework.

Fig. [7] depicts the energy consumption comparison versus
the QoS requirements. It is shown from Fig. that the
proposed JCPAS outperforms the OAS algorithm as well as the
“Full” and “Random” schemes for different QoS requirements.
Specifically, for the QoS requirement of 400 Mbps, JCPAS is
able to save around 32%, 36% and 40% in energy costs with
respect to the “Full”’, OAS and “Random” schemes. These
results show that for very large-scale systems with partial
CSI, the proposed JCPAS can reduce the energy cost and still
satisfy different QoS requirements, which further verifies the
effectiveness of the proposed JCPAS framework.

V. CONCLUSION

In this paper, we have investigated the AS problem for
massive MIMO systems by considering only a portion of the
full CSI is available for each transmission block. In order to
reduce the channel estimation overhead for massive MIMO
systems, we have proposed to employ a deep conditional
normalizing flow to recover the full channel from the history
of partial observations. By utilizing the proposed conditional
normalizing flow, we have further established a general joint
channel prediction and antenna selection framework, which
can help improve the performance of other AS algorithms
in the presence of massive MIMO systems and practical
CSIL. Since the practical systems often suffer from temporal
correlations, we believe that the proposed JCPAS framework
can effectively improve the robustness of massive MIMO
systems in practical scenarios.

This

by

ACKNOWLEDGEMENT

work is
project ERC

supported in
AGNOSTIC,

parts
ref.

EC/H2020/ERC2016ADG/742648/AGNOSTIC and project
FNR DisBUS, ref. FNR/BRIDGES19/1S/13778945/DISBusS.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
overview of massive MIMO: Benefits and challenges,” IEEE journal of
selected topics in signal processing, vol. 8, no. 5, pp. 742-758, 2014.
E. Bjornson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO:
Ten myths and one critical question,” IEEE Communications Magazine,
vol. 54, no. 2, pp. 114-123, 2016.

K. He, L. He, L. Fan, Y. Deng, G. K. Karagiannidis, and A. Nallanathan,
“Learning-based signal detection for MIMO systems with unknown
noise statistics,” IEEE Transactions on Communications, vol. 69, no. 5,
pp. 3025-3038, 2021.

T. X. Vu, S. Chatzinotas, V.-D. Nguyen, D. T. Hoang, D. N. Nguyen,
M. Di Renzo, and B. Ottersten, “Machine learning-enabled joint antenna
selection and precoding design: From offline complexity to online
performance,” IEEE Transactions on Wireless Communications, vol. 20,
no. 6, pp. 3710-3722, 2021.

J. Chen, S. Chen, Y. Qi, and S. Fu, “Intelligent massive MIMO antenna
selection using monte carlo tree search,” IEEE Transactions on Signal
Processing, vol. 67, no. 20, pp. 5380-5390, 2019.

Q. Hu, Y. Liu, Y. Cai, G. Yu, and Z. Ding, “Joint deep reinforcement
learning and unfolding: Beam selection and precoding for mmWave
multiuser MIMO with lens arrays,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 8, pp. 2289-2304, 2021.

Z. Liu, Y. Yang, F. Gao, T. Zhou, and H. Ma, “Deep unsupervised
learning for joint antenna selection and hybrid beamforming,” IEEE
Transactions on Communications, vol. 70, no. 3, pp. 1697-1710, 2022.
G. J. Byers and F. Takawira, “Spatially and temporally correlated
MIMO channels: Modeling and capacity analysis,” IEEE Transactions
on Vehicular Technology, vol. 53, no. 3, pp. 634-643, 2004.

K. Huang, R. W. Heath, and J. G. Andrews, “Limited feedback beam-
forming over temporally-correlated channels,” IEEE Transactions on
Signal Processing, vol. 57, no. 5, pp. 1959-1975, 2009.

Z. Gao, L. Dai, Z. Lu, C. Yuen, and Z. Wang, “Super-resolution
sparse MIMO-OFDM channel estimation based on spatial and temporal
correlations,” IEEE communications letters, vol. 18, no. 7, pp. 1266—
1269, 2014.

J. Yuan, H. Q. Ngo, and M. Matthaiou, “Machine learning-based channel
prediction in massive mimo with channel aging,” IEEE Transactions on
Wireless Communications, vol. 19, no. 5, pp. 2960-2973, 2020.

C. Wu, X. Yi, Y. Zhu, W. Wang, L. You, and X. Gao, “Channel prediction
in high-mobility massive mimo: From spatio-temporal autoregression to
deep learning,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 7, pp. 1915-1930, 2021.

T. Zhou, H. Zhang, B. Ai, C. Xue, and L. Liu, “Deep-learning based
spatial-temporal channel prediction for smart high-speed railway com-
munication networks,” IEEE Transactions on Wireless Communications,
2022.

Z. Kuai and S. Wang, “Thompson sampling-based antenna selection
with partial csi for tdd massive MIMO systems,” IEEE Transactions on
Communications, vol. 68, no. 12, pp. 7533-7546, 2020.

D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” Advances in neural information processing systems,
vol. 31, 2018.

L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 5353-5360.

T.-W. Ban and B. C. Jung, “A practical antenna selection technique in
multiuser massive MIMO networks,” IEICE transactions on communi-
cations, vol. 96, no. 11, pp. 2901-2905, 2013.

W. C. Jakes and D. C. Cox, Microwave mobile communications. Wiley-
IEEE press, 1994.



	Introduction
	System Model and Problem Formulation
	System Model
	Antenna Selection with Incomplete CSI

	Proposed Learning-Based Joint Channel Prediction and Antenna Selection Framework
	Channel Prediction with Incomplete CSI
	The Proposed Learning-Based Framework
	Implementation Details
	Computational Complexity

	Performance Evaluation
	Environment Setup
	Competing Algorithms
	Simulation Results and Discussion

	Conclusion
	References

