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Abstract—Federated learning (FL) is particularly useful in
wireless networks due to its distributed implementation and
privacy-preserving features. However, as a distributed learning
system, FL can be vulnerable to malicious attacks from both
internal and external sources. Our work aims to investigate the
attack models in a FL-enabled wireless networks. Specifically,
we consider a cell sleep control scenario, and apply federated
reinforcement learning to improve energy-efficiency. We design
three attacks, namely free rider attacks, Byzantine data poisoning
attacks and backdoor attacks. The simulation results show that
the designed attacks can degrade the network performance and
lead to lower energy-efficiency. Moreover, we also explore possible
ways to mitigate the above attacks. We design a defense model
called refined-Krum to defend against attacks by enabling a
secure aggregation on the global server. The proposed refined-
Krum scheme outperforms the existing Krum scheme and can
effectively prevent wireless networks from malicious attacks,
improving the system energy-efficiency performance.

Index Terms—Federated learning, deep reinforcement learn-
ing, security, radio access networks, attacks, defense.

I. INTRODUCTION

With the deployment of the 5G and beyond 5G (B5G)
networks, the increasing traffic demand for cellular commu-
nications has reached an unprecedented level [1]. To meet
diverse service requirements and facilitate intelligent wireless
communications, various machine learning (ML) techniques
have been used to solve problems in wireless networks [2].

Reinforcement learning (RL) is a widely applied ML tech-
nique that provides automated solutions for high-complexity
optimization problems [3]. Meanwhile, federated learning (FL)
is another emerging ML technique that enables collaborative
learning with local training in distributed systems, without
sharing data. Federated reinforcement learning (FRL) is pro-
posed as a combination of FL and RL and has proven effective
in many wireless communication scenarios. For example,
in [4], FRL is used to allocate power resources and radio
resources in network slicing. However, these achievements of
using FRL are mainly accomplished in fully secure environ-
ments without considering malicious attacks.

Due to the inherently distributed implementation, FL is
more vulnerable to malicious attacks than other centralized
ML techniques. Distributed participants in FL are easier to
be attacked and manipulated, and the parameter sharing and
updating between local and global servers may expose the FL

to potential risks [5]. As a result, it is crucial to investigate
security issues in FL.

There are some existing studies about attacks and defenses
for FL algorithms [6]. However, most research focuses on
supervised learning and cannot apply to FRL models. In this
work, we study the security problem in an FRL-enabled cell
sleep control scenario. As the traffic load grows, improving
network energy-efficiency and reducing energy costs become
critical goals for wireless networks [7]. Performing sleep
control to base stations (BS) to reduce energy consumption is a
feasible way to improve energy-efficiency and make networks
sustainable [8]. However, attacks on cell sleep control may
cause different levels of system performance degradation. For
example, it may waste system energy by making BSs never
sleep or produce low throughput by keeping BSs in sleep
mode.

In this paper, we first design an FRL-based cell sleep control
scenario and BSs will cooperatively learn sleep control strate-
gies through FL. Then we assume some BSs are malicious
participants. Specifically, we propose three attack models,
namely free rider, Byzantine data poisoning, and backdoor
attacks specifically for the given cell sleep control scenario.
To the best of our knowledge, this is the first work that applies
the backdoor attacks to a wireless network control application.
The simulation results show that the designed attacks will
lower system energy-efficiency. Meanwhile, we also propose
a defense scheme called refined-Krum to defend against these
attacks. Compared with the existing Krum defense scheme,
it can achieve a better defense effect without knowing the
number of attackers.

The rest of the paper is organized as follows. Section II
introduces related works, and Section III shows our system
model. Section IV introduces FRL-based sleep control sce-
nario, and Section V presents the designed attacks and the
proposed defense model. Finally, Section VI shows simulation
results, and Section VII concludes this work.

II. RELATED WORKS

There have been many studies that design attacks and
defenses towards breaches in FL algorithms. In [10], data
poisoning attacks are performed on FL-based image clas-
sification problems. [11] performs backdoor attacks on the
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Fig. 1. System Model.

FL system with single or multiple malicious participants. [9]
proposes secure aggregation methods to defend Byzantine data
poisoning attacks in the FL system. These works are only
designed for supervised learning and do not apply to RL
models. [12] and [13] proposes data poisoning attacks and
defenses for FRL. However, these works are only tested with
ready-to-use data sets and have some limitations if applied to
complicated wireless network scenarios.

Meanwhile, other works study attacks on FL in wireless
networks. [14] designs attacks specific to the wireless traffic
prediction models in centralized and distributed scenarios.
However, this work also uses a supervised learning model, and
its attack method cannot be directly applied to other wireless
network control applications that typically use RL. In [15],
over-the-air jamming attacks on the uplink and downlink of
FL in wireless networks are studied. But it only focuses on
external attacks and fails to study the internal attacks in FL.

There are also some studies on cell sleep control for
energy saving. [8] improves energy-efficiency of small cell
networks by switching BSs to different modes. In [16], an RL-
based traffic adaptive sleep mode control algorithm for BSs
is proposed. However, these works are accomplished in fully
secure environments and fail to consider attacks and defense.
Different from existing studies, our work designs attacks to the
specific FRL-based cell sleep control scenario. We focus more
on vulnerabilities of FRL models related to realistic wireless
environments and evaluate the effectiveness of attacks based
on wireless network performance metrics.

III. SYSTEM MODEL

The system model is shown in Fig. 1. We consider a
heterogeneous cellular network consisting of multiple BSs.
There is one macro BS (MBS) cell and N small BS (SBS)
cells cooperatively serving M distributed user equipment (UE)
and handling traffic loads. The MBS is always active to ensure
coverage and is responsible for controlling data services.

To effectively save energy costs of the system, we adopt
three different sleeping modes for SBS cells, which are active,
sleep, and deep sleep [8]. Active means SBSs are in full
operation and consume the most energy. Sleep means SBSs

temporarily stop transmitting data for the UEs but can be easily
waken up and decide whether to continue sleeping in the next
iteration. Deep sleep means more components are deactivated
to save more energy, and SBSs take longer time to wake up.
If a SBS turns to sleep, the arriving traffic will be offloaded to
the MBS. SBSs sleeping at inconvenient intervals can cause
low energy efficiency or data congestion in MBS traffic, thus
degrading system performance.

This scenario considers a downlink orthogonal frequency-
division multiplexing cellular system. The link capacity be-
tween the mth UE and the nth SBS can be given as follows:

Cn,m = δn
∑
r∈Rn

Brlog2(1 + SINRn,m,r), (1)

where δn is a binary indicator to denote whether the nth SBS
is active or sleeping. Rn denotes the set of available resource
blocks of the nth SBS and Br denotes the bandwidth of the rth

resource block. SINRn,m,r denotes the signal to interference
noise ratio (SINR) between the mth UE and the nth SBS on
the rth resource block, which can be given as:

SINRn,m,r =
βn,m,rgn,mP t

n∑
n′∈N,n′ ̸=n

∑
m′∈Mn′

βn′,m′,rgn′,mPn′ +BrN0
,

(2)
where βn,m,r is a binary indicator to denote whether the rth

resource block of the nth SBS is allocated to the mth UE.
gn,m is the channel gain of the transmission link, which is
decided by a free space propagation model. P t

n denotes the
transmission power of the nth SBS and N0 denotes the noise
power density.

We assume that UEs can support dual connectivity and can
simultaneously connect to the MBS and SBS [17]. If the SBS
is active, the UE will be served by the SBS. Otherwise, it will
be served by the MBS. The energy-efficiency of the system
can be defined as:

EE =

∑
m∈M bm∑

n∈N Pn + P0
, (3)

where bm denotes the throughput of the mth UE, which is
decided by both link capacity and arriving traffic. P0 and
Pndenotes the power consumption of the MBS and the nth

SBS.
The optimization objective of the sleep control application

is to achieve high energy-efficiency. Here we formulate the
problem as:

max
an

EE −
∑
m∈M

ϵm, (4)

s.t. (1)− (3)

an ∈ {0, 1, 2}, ∀n ∈ N (4a)

δn =

{
= 1, if an = 0,

= 0, else
(4b)

Pn =


Pw, if an = 0,

0.5Pw, if an = 1,

0.35Pw, else

(4c)



where ϵm denotes the packet drop rate of the mth UE. A
packet will be dropped if it exceeds the transmission delay
constraint [18]. an denotes the sleeping modes of the nth

SBS. an = 0 indicates the SBS is in the active mode,
an = 1 indicates the SBS is in the sleep mode, and an = 2
indicates the SBS is in deep sleep mode. Pw denotes the
energy consumption of the SBS in active mode. The sleep
mode can reduce energy consumption by 50%, and the deep
sleep mode can reduce it by 65% [8].

To solve this problem, we use federated reinforcement
learning (FRL) to promote privacy-preserving collaborative
training. Each SBS holds a local deep reinforcement learning
(DRL) model, which observes states and rewards from the
environment and selects actions by choosing an adequate
sleeping mode. The MBS serves as a global server in FRL,
collecting local models from SBSs for model aggregation
and distributing the global model as feedback. To attack the
system, we suppose Nmali out of the N SBSs are malicious
and can cause system performance degradation by updating
malicious local models to the global server.

IV. FEDERATED REINFORCEMENT LEARNING-BASED CELL
SLEEP CONTROL

This section introduces the FRL-based cell sleep control
application. Here DRL is applied in each SBS as a local model,
and the optimal actions are selected by maximizing the long-
term expected rewards.

The Markov decision process (MDP) of each local DRL is
defined as follows:

• State: The state includes the sleeping mode of the SBS
and the traffic load of the SBS and the MBS in the past 5
transmission time intervals which can be used to estimate
the upcoming traffic load. It also includes the current
delay and throughput of the SBS, which can be given
as:

sn = {δn, Ln, L0, dn, bn},∀n ∈ N, (5)

where Ln denotes the traffic load of the nth SBS. L0

denotes the traffic load of the MBS. dn and bn denote
the delay and the throughput.

• Action: The action of sleep control is to choose an
adequate sleeping mode for the SBS, which can be given
as:

an = {0, 1, 2},∀n ∈ N, (6)

• Reward: The reward function is defined as a combination
of both quality of service (QoS) related indicators and
the power consumption related cost, which can be given
as:

Rn = η1bn − η2ϵn − η3Pn,∀n ∈ N, (7)

where ϵn denotes the packet drop rate and bn denotes
the throughput. η1, η2 and η3 are the coefficients used to
balance different rewards. When obtaining a high reward
value, we expect the system to consume as little energy
as possible while ensuring a high throughput. Therefore,

Fig. 2. Attack and defense models.

maximizing the given reward value is equivalent to max-
imizing the energy-efficiency and minimizing the packet
drop rate.

On top of local models, we apply FRL to enable collabora-
tive training and accelerate learning while keeping data locally
and preserving privacy. In each FRL cycle, the local models
will first perform local training according to local experience,
which can be given as:

θt+1
n = θtn + α[rtn + γ max

a
Q(st+1

n , a; θtn)

−Q(stn, a
t
n; θ

t
n)]∇Q(stn, a

t
n; θ

t
n),

(8)

where θn denotes the local model parameters of the nth SBS,
α denotes the learning rate and γ denotes the discount factor.
Q(stn, a

t
n; θ

t
n) denotes the long-term expected reward of the

nth SBS choosing the action atn under the state stn. After local
training, the local models are uploaded to the global server for
model aggregation, which can be formulated as:

θt+1
G =

n=1∑
N

wnθ
t+1
n (9)

where θG is the parameters of the global model. wn is the
weight of the nth local model and it is decided by the number
of training samples. In the scenario of FRL-based cell sleep
control, we assume all the local models are equally weighted.

After the global model aggregation, the global model pa-
rameters are sent back to the SBSs and the local models
are updated by replacing the local parameters with global
parameters.

V. ATTACKS AND DEFENSE

This section presents the designed attack and defense mod-
els in the FRL-based cell sleep control scenario. Fig. 2 shows
the structure of the investigated attacks and the proposed
defense model. We proposed three attack models: free rider at-
tacks, Byzantine data poisoning attacks, and backdoor attacks.
We also proposed one defense scheme called refined-Krum.

A. Attack models.

1) Free rider attacks.: Free riders refer to the FL partic-
ipants who do not train their local models during the local
training step [19]. As shown in Fig. 2, a benign BS will keep
a memory buffer to store local experience and use it to train a



benign local model. In contrast, a free rider does not train its
local model and will submit the previously received global
model as its own local model. The free rider is a passive
attack method which means it will not actively destroy the
global model or other local models. However, free riders are
still malicious because they enjoy the resources and efforts of
collaborators without contributing their own experience and
training results during the collaboration. In this way, they can
break the fairness of the FL system, and when the proportion
of free riders increases, they will slow down the FL training.

2) Byzantine data poisoning attacks.: Byzantine data poi-
soning attacks are implemented by injecting poisoned data
into the local memory buffer of the malicious participants
and making participants train their local model in the wrong
direction [10]. As shown in Fig. 2, the poisoned local model is
trained with a mixture of local experience and poisoned data.

For our FRL model, we create poisoning data by giving the
model a larger reward if the SBS chooses to be active and a
smaller reward if the SBS chooses to sleep. The local model
training in Eq. (8) on the poisoned data can be reformulated
as:

θt+1
n = θtn + α[rtn + σRex + γ max

a
Q(st+1

n , a; θtn)

−Q(stn, a
t
n; θ

t
n)]∇Q(stn, a

t
n; θ

t
n),

(10)

where Rex denotes the extra reward and σ is an indicator to
denote whether to add an extra reward or to reduce the reward.
If atn = 0, σ = −1. Otherwise, σ = 1.

After local training, the poisoned local model will be
uploaded to the global server and the effect of poisoned data
will then be propagated to other local models during the global
model aggregation.

3) Backdoor attacks.: Different from regular data poisoning
attacks, backdoor attacks define backdoor tasks to make a
separation from the main tasks. Main tasks refer to the task
defined by the original training data. Backdoor tasks are
defined by the attacker, and they represent a special input data
pattern that rarely appears in the original training data. In FRL,
the backdoor tasks can be defined by specific states. Every time
the backdoor attackers want to attack the system model, they
can trigger the backdoor pattern and make the model select
abnormal actions.

In our sleep control scenario, we define the backdoor task as
an SBS with a very high traffic load. It can be easily triggered
by putting a UE with an extremely heavy traffic load into the
system, and the trigger result is defined as the SBS will turn
into deep sleep mode. As shown in 2, the backdoor-ed local
model is trained with the mixture of local experience data and
synthetic backdoor task training data.

Benefiting from separating the main and backdoor tasks, the
backdoor attacks are stealthy and difficult to detect. Since the
backdoor pattern is defined by the attacker and unknown to
others, the model owner will only test it with main tasks while
doing a security check. In this way, they could not find the
model had already been backdoor-ed.

B. Defense model.

We propose a refined-Krum defense model based on the
existing secure FL aggregation method Krum [9]. As shown
in Fig. 2, the refined-Krum is deployed at the global server
and will be performed before global aggregation during each
FL iteration. In this subsection, we first introduce the Krum
defense scheme and then illustrate how the refined-Krum
model is defined.

1) Krum defense: Krum is proposed in [9] and its core idea
is to assume that all benign local models are similar. Therefore,
the malicious models can be found by measuring the similarity
of all the local models by the Krum distance.

In the Krum defense, the Krum distance for each local
model is first calculated. In the first step, the Euclidean
distance between parameters of the nth local model and the
global model in the last FL iteration is calculated as:

Gt+1
n =

∥∥θt+1
n − θtG

∥∥
2

(11)

Then, the distance between the nth local model and kth

local model can be given as:

Dt+1
nk =

∥∥Gt+1
n −Gt+1

k

∥∥
2

(12)

The distance between each local model and all other local
models is then added. In this way, the Krum distance for each
local model can be obtained, which can be given as:

Dt+1
n =

∑
k∈N

Dt+1
nk (13)

Finally, the Krum defense will select the local model with
the smallest Krum distance and replace the global model with
the selected local model.

2) Refined-Krum: Although the Krum defense scheme is
proven to be effective in some cases, choosing only a local
model for global aggregation is quite unstable and it may
not get the full benefit of FL. Therefore, we designed a new
defense algorithm called refined-Krum. It can be concluded
into four steps, which are calculating the similarity gaps,
estimating the number of malicious participants, identifying
malicious participants and secure aggregation.

• Calculating the similarity gaps. In the first step of refined-
Krum, we calculate the Krum distance of each local
model to evaluate the similarities between models. But
instead of only selecting the local model with the smallest
Krum distance, we sort all the models by their Krum
distances from the smallest to the largest and calculate
the gap between two adjacent Krum distances.

• Estimating the number of malicious participants. With
the gap values calculated in the first step, we can then
estimate the number of malicious participants by finding
the maximum gap between the given distance list. This is
based on the assumption that most models are benign and
the malicious models are quite different from the benign
ones. So there will be a large gap between the similarities.



• Identifying malicious participants. If the maximum gap
is much larger than the average, we suppose it could
precisely separate malicious models from benign ones
and decide the threshold for the Krum distance. If the
Krum distance of the nth local model is larger than the
threshold value, the nth SBS is treated as a malicious
participant. Other SBSs are treated as benign participants.
On the other hand, if the maximum gap is close to the
average gap, we assume that the threshold cannot be
accurately determined and to mitigate the risk of being
attacked, only one benign model will be selected.

• Secure aggregation. After identifying the malicious par-
ticipants, we can perform secure aggregation by admitting
only benign models into the global model aggregation.
This prevents the malicious data from influencing the
global model and the benign SBSs. At the same time,
we will make MBS take over the sleep control for the
malicious SBSs and prevent attackers from controlling
these SBSs.

VI. NUMERIC RESULTS

A. Simulation settings.

In the simulation, we consider 8 SBSs, and each SBS has
10 UEs. The fixed power consumption of MBS and SBSs are
40W and 20W, respectively [17]. The radius of MBS and SBSs
are 400m and 100m, respectively. The available bandwidth for
each SBS is 20 MHz, and for MBS is 10 MHz. η1, η1 and
η1 are respectively 0.1, 1 and 0.01. During the simulation, we
change the average traffic load of each SBS from 30 Mbps
to 70 Mbps and compare the system energy-efficiency under
different attack and defense models. We simulate a 24-hour
typical residential area traffic pattern in each TTI, which is
given from [20].

For the free rider attacks, we include two free riders in the
network. For Byzantine data poisoning attacks and backdoor
attacks, we have one malicious SBS in the networks. We as-
sume the proportion of poisoned data or backdoor task training
data of malicious SBSs is 5%. Therefore, the proportion of
poisoned data in the total data of all the SBSs is 0.625%.

B. Simulation results

Firstly, we compare the simulation results of FL and in-
dependent learning-based cell sleep control in a fully secure
environment. Independent learning (IL) means there are no
collaborations between SBSs, and each SBS will train a DRL
model according to their local buffer data. Fig. 3 shows the
convergence curves of FL and independent learning when the
average traffic load of each SBS is 40 Mbps and in each TTI
we run 24-hour traffic. The FL algorithm we use during the
simulations is FedAvg. The FL performs much better than IL
and has higher rewards, which demonstrates the effectiveness
of the FL algorithm.

Then we add three different attacks to the FRL-based sleep
control scenario. The system energy-efficiency under free
rider attacks, data poisoning attacks, and backdoor attacks
are shown in Fig. 4. The system performance in a secure

Fig. 3. The convergence curves of FL and independent learning.

Fig. 4. The system energy-efficiency under different attacks.

environment with no attacks is also compared. It can be
observed that three kinds of attacks can degrade the system
performance to different levels. Backdoor attacks can be seen
as the most effective attacker. When the average traffic load is
70 Mbps, the backdoor attacks can reduce the system energy-
efficiency by 52%. Among the remaining two attacks, the data
poisoning attacks are more effective than the free rider attacks,
even with fewer attackers. From this observation, we can also
conclude that while designing defense mechanisms for FRL, it
is more important to prevent malicious participants from being
involved in the aggregation than to ensure that the benign
participants are involved in the aggregation. When the average
traffic load is 70 Mbps, a malicious SBS with poisoning attacks
can reduce the system energy-efficiency by 18%.

When it comes to defense, the system energy-efficiency
under our proposed refined-Krum defense scheme is shown
in Fig. 5. We only defend against poisoning and backdoor
attacks because even if we can detect free riders, we cannot
force them to contribute to the model. As it can be observed,
for data poisoning attacks, the system energy-efficiency after
the defense is very close to the situations with no attack. We
can conclude that the defense can almost fully recover the
system from data poisoning attacks with a limited number
of attackers. The defense scheme can also significantly im-
prove system performance and increase energy-efficiency for



Fig. 5. The system energy-efficiency under the proposed defense scheme.

Fig. 6. The system energy-efficiency under the Krum defense scheme and
the proposed defense scheme.
backdoor attacks. However, the energy-efficiency defense is
still lower than the performance in a secure environment. This
indicates that our proposed defense scheme is quite effective
for some attacks but less effective for others.

In Fig. 6, we further compare our proposed refined-Krum
defense scheme with the existing Krum defense scheme. For
both kinds of attacks, our proposed refined-Krum defense
scheme can get a higher energy-efficiency compared with the
Krum defense scheme. Also, refined-Krum is more stable with
a smaller confidence interval.

VII. CONCLUSION

In this work, we studied how to attack a FRL-based cell
sleep control scenario in a wireless network. We considered
three types of attacks that could perform on wireless networks,
which are free riders, Byzantine data poisoning attacks and
backdoor attacks. According to the simulation results, these
attacks can degrade system performance with lower energy-
efficiency. We also proposed a defense scheme called refined-
Krum to defend against these attacks. The simulation results
show that our proposed defense scheme can effectively in-
crease the system energy-efficiency and prevent the system
from attacks. In our future research, we plan to investigate
more advanced attacks and improved defense schemes.
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