
A Microservices Identification Method Based on
Spectral Clustering for Industrial Legacy Systems

Teng Zhong1, Yinglei Teng1∗, Senior Member, IEEE, Shijun Ma1, Jiaxuan Chen1, and Sicong Yu2
1Beijing Key Laboratory of Work Safety Intelligent Monitoring,

Beijing University of Post and Telecommunications, Beijing, China
2Technology and Standards Research Institute,

China Academy of Information and Communications Technology, Beijing, China
Email: {lilytengtt∗, zhongteng, chenjiaxuan, mashijun}@bupt.edu.cn

Abstract—The advent of Industrial Internet of Things (IIoT)
has imposed more stringent requirements on industrial software
in terms of communication delay, scalability, and maintainability.
Microservice architecture (MSA), a novel software architecture
that has emerged from cloud computing and DevOps, presents
itself as the most promising solution due to its independently
deployable and loosely coupled nature. Currently, practitioners
are inclined to migrate industrial legacy systems to MSA, despite
numerous challenges it presents. In this paper, we propose an
automated microservice decomposition method for extracting
microservice candidates based on spectral graph theory to
address the problems associated with manual extraction, which
is time-consuming, labor-intensive, and highly subjective. The
method is divided into three steps. Firstly, static and dynamic
analysis tools are employed to extract dependency information
of the legacy system. Subsequently, information is transformed
into a graph structure that captures inter-class structure and
performance relationships in legacy systems. Finally, graph-based
clustering algorithm is utilized to identify potential microservice
candidates that conform to the principles of high cohesion
and low coupling. Comparative experiments with state-of-the-art
methods demonstrate the significant advantages of our proposed
method in terms of performance metrics. Moreover, Practice
show that our method can yield favorable results even without
the involvement of domain experts.

Index Terms—Industrial Networks, Microservice Architecture,
Program Analysis, Spectral Clustering, Cloud Computing

I. INTRODUCTION

With the deep integration of IT and OT, the industry is
reconsidering the challenges faced by the Industrial Internet
of Things (IIoT). The traditional industrial software, which
follows a monolithic architecture (MA), falls short in meeting
the new requirements of the industrial network regarding
communication delay and reconfigurability due to its poor
maintainability and scalability. In recent years, the advance-
ment of cloud computing technology has brought attention
to an innovative software architecture named Microservice
Architecture (MSA) [1]. Studies and practical experience have
demonstrated that the MSA exhibits characteristics such as
small and autonomous services, a lightweight communication
protocol, and compatibility with various technology stacks.
Consequently, it has emerged as a promising approach for
refactoring industrial software.

Despite companies having recognized the diverse benefits
offered by MSA, there remain many industrial legacy systems

that continue to operate under MA. The reasons are manifold,
the most significant one being that legacy systems have been
operating under the MA for an extended period. Personnel
within the company perhaps have extensively expressed dissat-
isfaction with this system, citing critical issues like redundant
code, intricate logic, and even a lack of design documenta-
tion. However, developing a distributed software system from
scratch, with the aim of emulating the functionalities of the
original system, would be impractical with the aspect of the
required investment and human effort involved. Therefore,
most refactoring methods involve starting from the legacy
code base of the industrial legacy systems and extracting a set
of software artifacts based on MSA design principles before
deploying them as microservices [2]. The extraction process
is referred to as microservice candidates identification.

In recent years, how to extract microservice candidates in an
elegant manner has been a prominent issue that has garnered
attention from both industry and academia. Currently, the
prevalent approach in the industry involves manually iden-
tifying candidates based on predefined rules. However, such
methods heavily rely on the expertise of practitioners and are
often limited to specific legacy systems, lacking universality.
On the other hand, the academic community tends to utilize
various technologies to extract relevant characteristic informa-
tion from the system to be migrated. The extracted information
is then used as input for microservice candidates identification
algorithms. This type methodology has the advantage of being
adaptable to various type of legacy systems. Nevertheless,
its effectiveness is contingent upon the richness of feature
information and the algorithm employed.

The use of microservice candidates extraction algorithms
can be traced back to [3]. Gysel et al. manually analyzed the
legacy system and transformed it into system specification
artifacts. The generated artifacts were then inputted into a
graph clustering algorithm to generate microservice candidates
that satisfy their proposed coupling criteria. Another approach
was taken by Zhang et al. [4], who collected functional
logs and non-functional logs from the legacy system using
dynamic analysis tools. They employed a genetic algorithm
with three objectives to identify the optimal result for service
identification. Agarwal et al. [5] conducted a search for seed
classes within legacy systems by utilizing formal concept

ar
X

iv
:2

31
2.

12
81

9v
1

 [
cs

.S
E

]
 2

0
D

ec
 2

02
3

Call relationship log

Performance log

Feature graph(method)

6e

e e
e e e

e

e
e

e
e

e
e e

e

6e

e e
e e e

e

e
e

e
e

e
e e

eMonolithMonolith

L O GL O G

L O GL O G

[]

[]

[]

[]

[]

[]

[]

[]

[]
[]

[]

[]

[]

[]

[]

[]

[]

[]

[]
[]

Static Analysis

Dynamic Analysis

Feature graph(class)

Feature graph with vertex and edge

attributes(class)

Feature graph with new edge

attributes(class)

1MS

2MS

3MS

1MS

2MS

3MS

Microservice candidates

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

e

e

e

e
ee

e

e
e

e

e

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

e

e

e

e
ee

e

e
e

e

e

e

e e

e
ee

e

e
e

e

e

e

e e

e
ee

e

e
e

e

e

Weight Fusion Spectral Clustering

Step 1:

Program Analysis Log Collection

Step 2:

Program Feature Graph Generation

Step 3:

Microservice Candidates Extraction

Fig. 1. The overview of our spectral clustering microservice candidate extraction method

analysis. They then used the density clustering algorithm to
extract microservice candidates, as well as unassigned and
non-functional groups. Desai et al. [6] utilized static program
analysis tools to obtain entry points and structural dependen-
cies of legacy programs, which were transformed into graph
structures with vertex attributes. They then used graph convo-
lution neural networks and a step-by-step training method to
modify the loss function and extract microservice candidates.
Li et al. [7] performed microservice candidate extraction using
knowledge graphs based on AKF principles. Zaragoza et al.
[8] extracted microservice candidates by analyzing the layer
architectures of the legacy system. Although these methods
employ algorithms for extracting microservice candidates, they
still require manual analysis or the involvement of domain
experts to extract feature information. These human interven-
tions remain time-consuming, labor-intensive, and dependent
on the expertise of operators. While certain approaches have
utilized automated feature extraction tools to obtain feature
information, a critical issue is that the incomprehensiveness
of the extracted information still exists.

To address the time-consuming and laborious issue of
manually extracting microservice candidates, we propose an
automated microservice candidate extraction method based on
the principle of high cohesion and low coupling. Our approach
encompasses a comprehensive set of operational procedures,
starting from the legacy system code base. By employing
static and dynamic program analysis tools, we automatically
extract extensive feature information from the legacy system.
During the phase of microservice candidate identification, we
model corresponding optimization goals, perform mathemati-
cal derivations, and utilize a machine learning algorithm based
on spectral graph theory to automatically identify potential mi-
croservice candidates. To the best of our knowledge, our team
is the first to utilize this theory for automatic microservice
candidate identification. Experimental results demonstrate that
our proposed method achieves superior performance metrics

compared to current state-of-the-art approaches.
The remainder of the paper is structured as follows: Section

II details our proposed method. Section III shows the experi-
mental results. Section IV concludes the paper.

II. METHODOLOGY

In this section, we propose a spectral clustering microservice
candidate extraction method based on both static and dynamic
program analysis. As illustrated in Fig. 1,the whole process
includes three main steps. In step I, call relationship logs
and performance logs are acquired from the legacy system
using both static and dynamic analysis tools. In step II,
we represent the legacy system as a graph with attributes
for both edge and vertex, thereby exploiting the inherent
graph structure of software systems. These attributes are then
merged to create a new graph structure that is suitable for
the content-insensitive clustering algorithm. In step III, the
spectral clustering algorithm is utilized to generate a set of
microservice candidates that adhere to the software design
principle of high cohesion and loose coupling. We will provide
detailed illustrations to these three steps in the rest of section.

A. Program Analysis Log Collection

To exemplify our approach, we utilize an open-source Java
web program jpetstore-61 as demo. The static analysis tool
we first employed to gather structural dependencies within
the legacy system. Using the system source code as input,
this tool generates a log that includes method call pairs and
input parameters. We collated it to call relationship log Lc,
as portrayed in Eq. 1. Each line of the call relationship log
corresponds to a six-tuple lc, encompassing the caller and
callee methods, the corresponding Java classes, and the input
parameters of the method definition.

lc ∈ Lc, lc = {mi,mj , ci, cj , pi, pj}. (1)

1https://github.com/mybatis/jpetstore-6

...

...
org.mybatis.jpetstore.web.actions.OrderActionBean.setOrderId(int)

org.mybatis.jpetstore.domain.Order.setOrderId(int)

-->

org.mybatis.jpetstore.service.AccountService.updateAccount(org.mybatis.jpetstore.domain.Account) -->

org.mybatis.jpetstore.mapper.AccountMapper.updateAccount(org.mybatis.jpetstore.domain.Account)
...

...
org.mybatis.jpetstore.web.actions.OrderActionBean.setOrderId(int)

org.mybatis.jpetstore.domain.Order.setOrderId(int)

-->

org.mybatis.jpetstore.service.AccountService.updateAccount(org.mybatis.jpetstore.domain.Account) -->

org.mybatis.jpetstore.mapper.AccountMapper.updateAccount(org.mybatis.jpetstore.domain.Account)

...

Public class Account implements Serializable {

private static final long serialVersionUID = 8751282105532159742L;

private String username;
private String password;
private String email;
private String firstName;
private String lastName;
private String status;
private String address1;
private String address2;
private String city;
private String state;
private String zip;
private String country;
private String phone;
private String favouriteCategoryId;
private String languagePreference;
private boolean listOption;
private boolean bannerOption;
private String bannerName;
...

Public class Account implements Serializable {

private static final long serialVersionUID = 8751282105532159742L;

private String username;
private String password;
private String email;
private String firstName;
private String lastName;
private String status;
private String address1;
private String address2;
private String city;
private String state;
private String zip;
private String country;
private String phone;
private String favouriteCategoryId;
private String languagePreference;
private boolean listOption;
private boolean bannerOption;
private String bannerName;
...

Public class Account implements Serializable {

private static final long serialVersionUID = 8751282105532159742L;

private String username;
private String password;
private String email;
private String firstName;
private String lastName;
private String status;
private String address1;
private String address2;
private String city;
private String state;
private String zip;
private String country;
private String phone;
private String favouriteCategoryId;
private String languagePreference;
private boolean listOption;
private boolean bannerOption;
private String bannerName;

(int)ije APIestimate=

()ij

p Account

e APIestimate p header member variables+ padding


= = +

Fig. 2. Calculation rule of remote call overhead (take jpetstore-6 as an example).

Tag field

(8 bytes)

Padding

(placeholder)

Member variables

Array object-specific

field

(4 bytes)

Object pointer

(4 bytes)

Object header

Object actual data

Align padding

Java Object

Instance

Fig. 3. Java object instance diagram under 64-bit operating system.

In addition to capturing structural dependencies through
static analysis, dynamic analysis tool was adopted to capture
the runtime characteristics of the legacy system. By utilizing
the stress testing tool Jmeter2 and the performance monitoring
tool Jvisualvm3 in conjunction, we can acquire the runtime
characteristics of software artifacts within the legacy system.
Inspired by [9], we analyze the business functions of the legacy
system to design comprehensive test scenarios that contains as
many functions as possible. The scenarios are then executed
for functional testing, with the operations being recorded into
thread groups using Jmeter’s script recording function, allow-
ing for repeated execution. During the execution of thread
groups, Jvisualvm monitors the performance information of
the software artifacts involved in the functional testing. We
transform this information into the performance log Lp as

lp ∈ Lp, lp = {ci, ti, ri}, (2)

where ci represents the corresponding class identifier, ti de-
notes the CPU runtime of ci during functional testing, and ri
represents the average retained memory size occupied by ci
during functional testing.

2https://github.com/apache/jmeter
3https://github.com/oracle/visualvm

TABLE I
THE MEMORY SIZE OCCUPIED BY BASIC VARIABLES.

Data type byte short int long char float double boolean
Size(byte) 1 2 4 8 2 4 8 4*
* When a boolean variable is declared alone, the JVM considers it as an int type,

occupying 4 bytes. If it’s declared within an array, the JVM considers it as a
byte type, occupying 1 byte.

B. Program Feature Graph Generation

Through analysis of the static information from Lc, we
establish method-level structural dependencies from the legacy
system and represent it as a weighted directed graph. The edge
weights are defined as the communication overhead caused by
remote calls when methods are deployed in different services
in the MSA. We quantify the edge weights based on the input
parameters of callee pj , as depicted in Eq. 3. To calculate the
overhead of each parameter p in pj , we define the APIestimate
function. Its calculation rule we refer to the memory size
occupied by various types of variables in the Java virtual
machine (JVM) [10]. The memory sizes of basic variable types
are outlined in Tab. I. For reference variable types in object-
oriented languages, we refer to the structure diagram of Java
object instances in the HotSpot JVM, as illustrated in Fig. 3.
In 64-bit operating system, a Java object instance comprises
three components: the object header, the object’s actual data,
and alignment padding. The object header, which consists of a
tag field, an object pointer, and an array object-specific field,
occupies 12 to 16 bytes. The memory size occupied by the
object’s actual data depends on the member variables present
in the object instance. The purpose of alignment padding is to
insert placeholders, ensuring that the memory size occupied
by the entire Java object instance is always a multiple of 8
bytes. We demonstrate this rule using a portion of the call
relationship log extracted from jpetstore-6, as depicted in Fig.
2.

eij =
∑
p∈pj

APIestimate(p) + 1. (3)

After collecting Lc, we represent the legacy system as a
directed graph. In this graph, the methods serve as vertices, the
structural dependencies serve as edges, and the communication
overhead caused by remote calls serves as edge weights.

This data structure contains the structural information of the
legacy system, which can be used as input for the subsequent
algorithm to extract microservice candidates. However, there
are two important considerations: First, when migrating a
legacy system to MSA, architects should avoid making internal
changes to the original software artifacts of the legacy system.
Second, generating microservice candidates at the method
level would require significant time and labor costs for soft-
ware engineers during the actual deployment. To address these
concerns, we increase the granularity of the program feature
graph to the class level. The rules for increasing granularity
are shown in Eq. 4.

e′ij =
∑

mi∈ci,mj∈cj ,i̸=j

eij . (4)

We then enhance the class-level feature graph using the
performance log Lp. Specifically, we add the CPU runtime
ti and the average retained memory size ri as attributes
to the vertex corresponding to ci. This process results in a
weighted graph structure with both edge attributes and node
attributes. However, the subsequent algorithm we utilize is
content-insensitive, meaning that if we directly use the class-
level graph as input, the algorithm will only extract the
edge attributes. In order to address this, we employ the skill
proposed by [11] to fuse the edge and node attributes of the
graph and create a new graph structure that is suitable for
content-insensitive algorithms, expressed as

e′′ij = e′ij × (tj + rj + 1). (5)

Without deleting any vertices from the original graph, we fuse
the edge and node attributes to generate new edge weights for
the graph. Ultimately, we obtain a class-level fusion graph
with e′′ij as the edge weight. We represent this graph structure
as Equation 6.

G = (V,E), V = {ci}, E = {e′′ij}. (6)

C. Microservice Candidates Extraction

In this step, the process of extracting microservice candi-
dates from a legacy system is modeled as a min-cut problem
in the program feature graph. The objective is to generate
connected components that adhere to the principles of high
cohesion and low coupling. The optimization goal is depicted:

min Cut(A1, A2, . . . , AK) =
1

2

K∑
k=1

W (Ak, Ak),

s.t.


G = (E, V), E = [e′ij], V = {v1, v2, . . . , vN},
Ak = {vi | vi ∈ V }, V =

⋃K
k=1 Ak,

∀i, j ∈ {1, 2, . . . , N}, Ai ∩Aj ̸= ∅,
1 ≤ i ≤ N, 1 ≤ k ≤ K.

(7)
In Eq. 7, Ak is the connected component that represents
a microservice candidate, and W (Ak, Ak) is the cut of the

connected component and its complement.The entire optimiza-
tion objective is transformed into Eq. 8 through mathematical
derivation and relaxation processing.

Ŷ = argmin
Y ∈RN×K︸ ︷︷ ︸

subject to

tr
(
Y TLY

)
s.t. Y TY = I, (8)

where Y is an indicator matrix used to signify the result
of graph vertex division, and L is a Laplacian matrix that
stores the detail information of the graph’s edge weight matrix,
W . The solvability of the objective function in polynomial
time is proven by the Rayleigh-Ritz theorem. Moreover, the
objective function is consistent with the objective function
of the spectral clustering algorithm. Therefore, we employ
the graph-based spectral clustering algorithm [12] to extract
microservice candidates.

This algorithm offers several advantages compared to tradi-
tional prototype clustering algorithms: 1) Spectral clustering
can naturally handle the min-cut problem in graph theory
when the affinity matrix coincides with the graph’s adjacency
matrix, making it more suitable for datasets with connectivity,
such as legacy systems. 2) As the core principle of spectral
clustering involves using Laplacian feature mapping to reduce
the dimension of samples, only an affinity matrix is needed
as input to generate clustering results. 3) This algorithm
also executes faster than prototype clustering algorithms. The
pseudocode for our method is presented in Algorithm II-C,
where K is the expected number of microservice candidates
to be extracted, C is the label set of the legacy program class
files, Ms is the set of microservice candidates, and Wm, Wc,
W

′

c are adjacency matrices of program feature graphs.

III. EXPERIMENT AND DISCUSSION

In this section, we first introduce two questions inspired by
our proposed method.

RQ1: Will a content-insensitive graph structure improve
the clustering results of our proposed method?

RQ2: Does our microservice candidate extraction method
outperform the baselines in terms of performance?
The remainder of this section is organized as follows: we first
introduce the evaluation metric used to assess the cohesion and
coupling degrees of the microservice candidate set. Next, we
provide an overview of the legacy systems used in the extrac-
tion of microservice candidates. Finally, we conduct relevant
experiments to answer the raised questions and demonstrate
the superiority of our proposed method.

A. Metric for Assessing Cohesion and Coupling

We utilize the modularity quality (MQ), introduced by Man-
coridis et al. [13], to evaluate the effectiveness of microservice
candidate extraction. MQ is widely used for evaluating graph
partitioning result, as shown in Eq. 9. Specifically, it consists
of two parts: average intra-connectivity within subgraph and
average inter-connectivity between subgraphs. The variables
included in Equation. 9 are explained as follow: N refers to
the number of graph partition, Ni is the number of vertices

Algorithm 1 Microservice Candidates Extraction Algorithm

Input: Call relationship log Lc, Performance log Lp, Number
of microservice candidates k.

Output: Microservice candidates set Ms.
1: // Obtain the similarity matrix for clustering
2: Sort out the method-level adjacency matrix Wm from Lc.

3: Increase the granularity of Wm to obtain the class-level
adjacency matrix Wc according to Eq. 4.

4: Obtain the adjacency matrix W
′

c of the content-insensitive
graph structure according to Lp and Eq. 5.

5: // The procedure of Spectral Clustering
6: Using W

′

c to compute the unnormalized Laplacian L.
7: Compute the first k eigenvectors u1, . . . , uk of L.
8: Let U ∈ Rn×k be the matrix containing the vectors

u1, . . . , uk as columns.
9: for i = 1, . . . , n do

10: Let yi ∈ Rk be the vector corresponding to the i-th row
of U .

11: end for
12: Cluster the points (yi)i=1,...,n in Rk using the K-Means

algorithm into Microservice candidates set Ms.

within a subgraph, coh and cop are the degree of cohesion
and coupling, u and v are the number of edges within
and between subgraphs respectively. A higher value of MQ
indicates a better community structure, characterized by higher
intra-connectivity and lower inter-connectivity. In the context
of microservice candidate extraction, a larger MQ value for
the microservice candidate set confirms that the extracted
candidates adhere to the software design principle of high
cohesion and low coupling.

MQ =
1

N

N∑
i=1

cohi −
1

N(N − 1)/2

N∑
i̸=j

copi,j ,

cohi =
ui

N2
i

,

copi,j =
σi,j

2(Ni ×Nj)
.

(9)

Directly using Eq. 9 to calculate MQ for weighted graph
structure results in exceeding the defined range, rendering the
metric ineffective in its evaluative capacity. We modify it to
be suitable for weighted graph calculation and term it as the
weighted modularity quality (MQw), presented in Eq. 10. Our
modification principle is to preserve the value range of MQ
from -1 to 1, while keeping the definition rules of coh and
cop unchanged.

TABLE II
DETAIL INFORMATION OF LEGACY SYSTEMS.

Legacy system Version C#* LOC**
JPetstore-6 6.10 24 1409
SpringBlog 1.0 46 1539

Solo 4.40 139 13501
* Number of class files.
** Lines of code.

MQw =
1

N

N∑
i=1

coh′
i −

1

N(N − 1)/2

N∑
i ̸=j

cop′
i,j ,

coh′
i =

u′
i

N2
i + u′

i − u
,

cop′
i,j =

σ′
i,j

2(Ni ×Nj) + σ′
i,j − σi,j

.

(10)

B. Dataset and Baseline

This subsection presents the legacy systems and baselines
utilized in our experiments for microservice candidate extrac-
tion. Due to the planned application of the method to IIoT’s
legacy systems and the necessity for experiment reproducibil-
ity, we selected open-source Java Web programs from GitHub
as the datasets for our microservice candidate extraction exper-
iments. Three open-source programs were selected: JPetstore-
6, SpringBlog4, and Solo5. JPetstore-6 is a pet store system,
whereas the other two are blog systems. Detailed information
about these three legacy systems is presented in Tab. II. In
selecting the experimental baseline methods, we compare our
proposed method with the state-of-the-art methods MEM [14],
FOSCI [9]. As an additional baseline approach, we incorporate
a method using spectral clustering but solely relies on static
analysis tools, named Static.

C. Experiment Result

For RQ1, we perform microservice candidate extraction us-
ing both the Fusion and Static methods on the aforementioned
three datasets. After carefully considering the sizes of the
three datasets, we set the desired number of candidates to
be between 2 and 10. Each dataset underwent 100 epochs
of experiments for every expected number of candidates.
Subsequently, we compute the median of the MQw values
obtained from the 100 epochs of experiments and present a
line graph for comparison, illustrated in Fig. 4. The result in
this figure shows that the dynamic and static fusion method
yields higher MQw values than the method that solely relies
on static analysis tools, regardless of the expected number
of candidates across the three datasets. This demonstrates
that the skill of fuse vertex attributes with edge attributes
can indeed lead to improved results in graph partitioning.
When using methods that solely rely on dynamic analysis

4https://github.com/Raysmond/SpringBlog
5https://github.com/88250/solo

2 3 4 5 6 7 8 9 10
Set Number of Microservice Candidates

0.0

0.2

0.4

0.6

0.8

M
Q

w
Solo

fusion
static
dynamic

2 3 4 5 6 7 8 9 10
Set Number of Microservice Candidates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
Q

w

SpringBlog

fusion
static
dynamic

2 3 4 5 6 7 8 9 10
Set Number of Microservice Candidates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
Q

w

JPetStore

fusion
static
dynamic

Fig. 4. Performance comparison experiments under different analysis tools.

TABLE III
COHESION AND COUPLING TABLE.

Subject coh′ cop′ MQw

Fusion Static MEM FOSCI Fusion Static MEM FOSCI Fusion Static MEM FOSCI
JPetStore 0.992 0.991 0.215 0.211 0.379 0.633 0.115 0.039 0.613 0.358 0.1 0.172

SpringBlog 0.682 0.65 0.195 0.535 0.003 0.004 0.092 0.153 0.679 0.646 0.103 0.382
Solo 0.846 0.816 0.219 0.487 0.026 0.038 0.088 0.148 0.82 0.778 0.131 0.339

JPetStore SpringBlog Solo
Legacy programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
Q

w

Fusion
Static
FOSCI
MEM

Fig. 5. Performance comparison experiments between baseline methods.

tools to generate graph structures, the resulting candidates
exhibit significantly lower modularity quality compared to the
previous two analysis strategies. Consequently, relying solely
on dynamic analysis strategies for identifying microservice
candidates in legacy systems can introduce significant errors.
Concurrently, adhering to the software design principle of high
cohesion and low coupling, we determine the optimal number
of microservice candidates for each dataset as the one with
the highest MQw value. It will serve as a reference for setting
essential parameters in subsequent experiments.

Next, we address RQ2 through a comparative experiment.
The baselines are shown in the previous subsection. Consider-
ing the inadequate performance of the microservice candidate
identification method solely relying on dynamic analysis, we
excluded this strategy from the experimental comparison. We

use MQw as the evaluation metric among the baselines. Our
approach for selecting the number of candidates for each
baseline in the microservice candidate extraction process is
to have each method extract its optimal number of candidates.
Based on Fig. 4, we can determine the optimal number of
candidates for the proposed Fusion and Static methods in
three datasets: 2, 6, and 9, respectively. The optimal number
of candidates for MEM and FOSCI is determined based on
the experiment code and supplementary material they provide.
Finally, the comparison is conducted by creating a histogram,
as illustrated in Fig. 5. In this figure, we can see the Fusion
extraction method, as depicted exhibits significant superiority
over the other two baseline methods in terms of the cohesion
and coupling metric. This demonstrates that the proposed
method is capable of extracting microservice candidates that
adhere more closely to the software design principle of high
cohesion and low coupling. Conversely, for the other baseline
methods, MEM produces sets of microservice candidates with
lower modularity quality across all three datasets. FOSCI
demonstrates a stronger extraction effect in datasets with a
large number of class files, such as SpringBlog and Solo. To
further demonstrate the superiority of our proposed method
in terms of performance metrics, we calculated the average
cohesion coh′ and average coupling degree cop′ of various
microservice extraction methods for each legacy system under
the optimal number of candidates, and organized them into
Table III. We can see that our proposed Fusion method
outperforms in the cohesion comparison. The Static method
using only static analysis can also achieve high cohesion
scores, but is not as good as Fusion on coupling metrics,
especially if the legacy system is small. Since MEM is

domain-focused, it underperforms on cohesion metrics in all
three datasets. As we speculate, the FOSCI approach can
be highly cohesive in identifying microservice candidates for
large legacy systems, but it cannot achieve optimal perfor-
mance because it requires comprehensive optimization across
multiple objectives. In summary, our proposed Fusion method
surpasses other baseline methods in terms of extracting highly
modular microservice candidates.

IV. CONCLUSION

In this paper, we present an automated method to identify
microservice candidates utilizing a graph-optimized clustering
algorithm. In contrast to current state-of-the-art approaches,
our method is less susceptible to the influence of legacy
systems and subjective judgments, allowing for easier im-
plementation. Experimental results showcase the superiority
of our method in extracting candidates that adhere to the
principles of microservice architecture design.

In our future work, we aim to enhance our approach by
considering multiple design principles in the microservice ar-
chitecture and incorporating graph neural networks to identify
microservice candidates for multi-objective optimization. Ad-
ditionally, we will employ our proposed method to identify mi-
croservice candidates for the legacy industrial software in the
actual industrial line. The identified microservice candidates
will undergo refactoring and be deployed on a container-based
end-edge-cloud interconnection platform for comprehensive
functional and performance testing.

ACKNOWLEDGEMENTS

This work was supported in part by the National Key R&D
Program of China (No. 2021YFB3300100), and the National
Natural Science Foundation of China (No. 62171062).

REFERENCES

[1] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.
[2] S. Adjoyan, A.-D. Seriai, and A. Shatnawi, “Service identification based

on quality metrics object-oriented legacy system migration towards
soa,” in SEKE: Software Engineering and Knowledge Engineering.
Knowledge Systems Institute Graduate School, 2014, pp. 1–6.

[3] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition,” in Service-
Oriented and Cloud Computing: 5th IFIP WG 2.14 European Confer-
ence, ESOCC 2016, Vienna, Austria, September 5-7, 2016, Proceedings
5. Springer, 2016, pp. 185–200.

[4] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated microservice
identification in legacy systems with functional and non-functional
metrics,” in 2020 IEEE international conference on software architecture
(ICSA). IEEE, 2020, pp. 135–145.

[5] S. Agarwal, R. Sinha, G. Sridhara, P. Das, U. Desai, S. Tamilselvam,
A. Singhee, and H. Nakamuro, “Monolith to microservice candidates
using business functionality inference,” in 2021 IEEE International
Conference on Web Services (ICWS). IEEE, 2021, pp. 758–763.

[6] U. Desai, S. Bandyopadhyay, and S. Tamilselvam, “Graph neural
network to dilute outliers for refactoring monolith application,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 1, 2021, pp. 72–80.

[7] Z. Li, C. Shang, J. Wu, and Y. Li, “Microservice extraction based
on knowledge graph from monolithic applications,” Information and
Software Technology, vol. 150, p. 106992, 2022.

[8] P. Zaragoza, A.-D. Seriai, A. Seriai, A. Shatnawi, and M. Derras,
“Leveraging the layered architecture for microservice recovery,” in 2022
IEEE 19th International Conference on Software Architecture (ICSA).
IEEE, 2022, pp. 135–145.

[9] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, vol. 47, no. 5, pp.
987–1007, 2019.

[10] E. Jendrock, R. Cervera-Navarro, I. Evans, K. Haase, and W. Markito,
The Java EE 7 Tutorial: Volume 1. Addison-Wesley Professional, 2014.

[11] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community detection
in large networks using content and links,” in Proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 1089–1098.

[12] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, pp. 395–416, 2007.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code,” in Proceedings. 6th International Workshop on Program
Comprehension. IWPC’98 (Cat. No. 98TB100242). IEEE, 1998, pp.
45–52.

[14] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices
from monolithic software architectures,” in 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 524–531.

	Introduction
	Methodology
	Program Analysis Log Collection
	Program Feature Graph Generation
	Microservice Candidates Extraction

	Experiment and Discussion
	Metric for Assessing Cohesion and Coupling
	Dataset and Baseline
	Experiment Result

	Conclusion
	References

