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Abstract—This paper aims to develop the intelligent traffic
steering (TS) framework, which has recently been considered as
one of the key developments of 3GPP for advanced 5G. Since
achieving key performance indicators (KPIs) for heterogeneous
services may not be possible in the monolithic architecture, a
novel deep reinforcement learning (DRL)-based TS algorithm
is proposed at the non-real-time (non-RT) RAN intelligent
controller (RIC) within the open radio access network (ORAN)
architecture. To enable ORAN’s intelligence, we distribute traffic
load onto appropriate paths, which helps efficiently allocate
resources to end users in a downlink multi-service scenario. Our
proposed approach employs a three-step hierarchical process that
involves heuristics, machine learning, and convex optimization to
steer traffic flows. Through system-level simulations, we show
the superior performance of the proposed intelligent TS scheme,
surpassing established benchmark systems by 45.50%.

I. INTRODUCTION

The emergence of fifth-generation (5G) cellular networks
has introduced new service classes, namely ultra-reliable low-
latency (uRLLC) and enhanced mobile broadband (eMBB)
services [1]. The current 5G architecture is inadequate to
support diverse and competing services with limited resources.
To overcome this challenge, a transition to a disaggregated
architecture is necessary for the advancement of 5G and
future sixth-generation (6G) networks. The open radio access
network (ORAN) has emerged as a promising solution, em-
phasizing intelligence and openness [2].

ORAN employs functional splitting, dividing the base sta-
tion functions into radio unit (RU), distributed unit (DU),
and central unit (CU) according to 3GPP standards. It also
integrates the near-real-time (near-RT) RAN intelligent con-
troller (RIC) and non-real-time (non-RT) RIC modules at the
management and control layers, introducing intelligence and
closed control loops for autonomous actions and periodic feed-
back. This enables RAN optimization and the implementation
of machine learning/artificial intelligence (ML/AI) solutions,
creating adaptive and intelligent radio access network (RAN)
layers within the ORAN framework. In 5G wireless networks,
the traffic steering (TS) scheme, as the first user-specific
ORAN intelligent handover framework, plays a crucial role
in connecting heterogeneous network frameworks to multiple
radio access technologies (RATs) and RAN components. It
allows intelligent handover decisions based on feedback-driven
analysis of network states and performance across various
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ORAN’s components. When considering traffic preferences,
the TS scheme offers great potential to improve overall net-
work performance.

Efficient data flow management is crucial in 5G networks
to meet diverse service requirements. To this end, this study
utilizes network slicing (NS) and multi-connectivity (MC)
technologies to improve data rates for eMBB services and
reduce latency for uRLLC services [3]. This research explores
the integration of mixed numerologies in the frequency do-
main, benefiting the mini-slots concept to support latency-
critical applications (i.e., uRLLC). This enhances the flexibility
of RAN slicing, enabling efficient and dynamic resource
management.

Despite extensive research on TS in 4G and LTE-advanced
networks, there is a lack of literature that specifically addresses
TS in 5G networks. The authors in [4] proposed the TS-based
MC scheme to improve the quality of experience of the eMBB
services while reducing network expenses. The reinforcement
learning (RL) was studied in [5] model network selection
and TS in 5G networks, focusing on load balancing and QoS
requirements. Additionally, the work [6] investigated a unified
TS scheme to optimize resource utilization. However, there has
been limited research on TS modeling specifically within the
ORAN architecture. In our previous work [7], we investigated
a slice isolation mechanism for allocating RAN resources in
the ORAN architecture to handle non-uniform traffic steering.

Existing research has overlooked the intricate challenges
associated with decision-making per time slot in the presence
of unknown channel state information (CSI). To bridge this
gap, we present a comprehensive TS framework that leverages
deep reinforcement learning (DRL). This framework empow-
ers automated networks to reduce computational complexity
by making decisions per frame instead of every time slot, while
addressing incomplete knowledge of CSI. DRL is developed as
an intelligent agent to efficiently manage traffic steering while
accommodating constraints of limited initial information and
the inherent computational complexity in the binary allocation
problem.

In this study, our goal is to develop a DRL-based TS
scheme that incorporates slice-aware RAN slicing, dynamic
MC technique, and mixed numerologies, aiming to achieve
the optimal steering of traffic flows. In summary, our key
contributions are outlined as follows:

• We formulate a joint optimization problem of flow-split
distribution, congestion control, and scheduling scheme
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Fig. 1: ORAN architecture and ML application workflow

befitting the ORAN architecture. The proposed problem
takes into account dynamic MC, slice-aware RAN slicing,
and mixed-numerologies in the frequency domain, subject
to QoS requirements of both eMBB and uRLLC traffics.

• To account for the mini-slot concept, the proposed prob-
lem is executed on two different time scales (frame
and mini-slot). This division results in two subproblems
(long-term and short-term), which are solved at non-RT
RIC and near-RT RIC, respectively. This paper introduces
a new approach to address the challenge of incomplete
information such as CSI and computational complexity.
The proposed solution involves the implementation of
a double deep Q-network (DDQN) model within the
non-RT RIC. This model aims to predict resource block
(RB) assignments for each frame instead of TTI, thus
improving efficiency and reducing complexity.

• Numerical results are presented and compared with
benchmark schemes. The effectiveness of our approach
is demonstrated through a notable performance improve-
ment of 45.50% in terms of throughput.

II. SYSTEM MODEL
As illustrated in Fig. 1, a downlink orthogonal frequency

division multiple access (OFDMA) system is considered in the
RAN layer, including a set of M multi-antenna RUs denoted
M ≜ {1, . . . ,m, . . . ,M}. Each RU serves a set of U single-
antenna users denoted as U ≜ {1, . . . , u, . . . , U}. Users are
divided into two non-overlapping sets of U em eMBB and Uur

uRLLC, i.e., U ≜ Uem ∪ Uur. This paper utilizes RAN
resource slicing and MC technology to achieve strict uRLLC
latency and high eMBB data rate, owing to different packet
sizes (i.e., large eMBB packet size Zem and small uRLLC
packet size Zur). This study incorporates mixed-numerology
multiplexing in the frequency domain and utilizes a mini-slot-
based framework, allowing each RU to allocate time-frequency
radio RBs to serve multiple users, thereby enhancing system
flexibility [8]. In the discrete-time system, each frame is
denoted by t ∈ {1, 2, . . . , T}. Within each frame, there are
Ti = ∆/δi transmission time intervals (TTIs) indexed as ti
in the i-th numerology, where ∆ and δi denote the frame
duration, and the duration of each TTI, respectively.

We consider two numerologies per slice, indexed as i = 1
and i = 2 for the eMBB and uRLLC services, respectively
[9]. The system bandwidth (BW) B is divided into two
independent BW parts by the split variable α ∈ (0, 1). This
makes two slices with BW of Bi|i=1 = (1 − α)B and
Bi|i=2 = αB − BG per slice including Fi = ⌊Bi/βi⌋ RBs,
where the guard band BG = 180 kHz helps reduce inter-
numerology interference within adjacent sub-bands. Let βi be
each RB’s BW.

To handle users’ packets, we employ the M/M/1 process-
ing queue model for service. Due to the MC configuration,
the u-th data flow is split into sub-flows by CU. These sub-
flows can be transmitted through a maximum of M paths
and then aggregated at the intended user. The global flow-
split decision, denoted by φ[t] ≜ {φu[t];∀u|

∑
m φm,u[t] =

1, φm,u[t] ∈ [0, 1]}, determines the portion of the data flow
routed to the user u via RU m in time-frame t. The flow-split

portion vector of user u is represented by φu[t] ≜
[
φm,u[t]

]T
,

with
∑

m φm,u[t] = 1 and φm,u[t] ∈ [0, 1] indicating the
proportion of data flow transmitted via RU m to user u per
time-frame t.

By applying the Shannon-Hartley theorem, the downlink
data rate of the u-the eMBB user served by RU m at ti can
be modelled as

Rem
m,u(p

em[ti]) =
∑
fi,i

βi log2

(
1 +

pemm,u,fi
[ti]gm,u,fi [ti]

N0

)
(1)

where N0 and gm,u,fi [ti] ≜ ∥hm,u,fi [ti]∥22 are the AWGN’s
power and the effective correlated channel gain, respectively;
pemm,u,fi

[ti] denotes the transmit power from RU m to eMBB
user u at sub-band fi and TTI ti. We denote by G[t] ≜
[gm,u,fi [ti]]

T the channel gain between all RUs’ RB(ti, fi)
to all users in time-frame t. Thanks to Big-M formulation
theory, we can avoid non-convexity issues in (1). We consider
the scheduling constraint: 0 ≤ pemm,u,fi

[ti] ≤ πem
m,u,fi,ti

[t]Pmax
m

to ensure that if πem
m,u,fi,ti

[t] = 0 then pemm,u,fi
[ti] =

0, where Pmax
m is the maximum available transmission

power of RU m. Besides, constraint
∑

ti,i
Rem

m,u(p
em[ti]) ≥

φm,u[t]λ
em
u [t]Zem∆ is refereed to eMBB QoS requirements,

where λem
u [t], and φm,u[t]λ

em
u [t]Zem [bits/frame] represent the

eMBB arrival traffics in time-frame t, and the sub-flow of
u-th eMBB user in RU m, respectively. It ensures that the
achievable data rate of u-th eMBB user from RU m meets the
estimated value of φm,u[t].

Note that πx
m,u,fi,ti

[t] ∈ {0, 1} denotes the binary variable
to indicate whether RB(fi, ti) associated with sub-band fi in
TTI ti of RU m in time-frame t is allocated to the user u-
th eMBB/uRLLC service, satisfying orthogonality constraints,
where x ∈ {em, ur}. If RB(fi, ti) is assigned to the u-th
eMBB/uRLLC user via RU m, we have πx

m,u,fi,ti
[t] = 1;

otherwise πx
m,u,fi,ti

[t] = 0. Let define the RB assigned matrix

as πx[t] ≜
[
πx

m,u[t]
]T

, where πx
m,u[t] ≜

[
πx
m,u,fi,ti

[t]
]T

for
the eMBB/uRLLC services.

The maximum achievable rate that the u-th uRLLC user
may achieve from RU m at a certain block-length and error



probability (Pe) is roughly represented by

Rur
m,u(p

ur[ti],π
ur[t]) =

∑
fi,i

βi

[
log2

(
1 +

purm,u,fi
[ti]gm,u,fi [ti]

N0

)
− log2(e)π

ur
m,u,fi,ti [t]Ψ

]
(2)

where Ψ ≜
√
V Q−1(Pe)√

δiβi
, V , and Q−1 are the channel disper-

sion and the inverse of the Gaussian Q-function, respectively.
Based on the Big-M formulation theory, we approximate
V ≈ 1 under the constraint uRLLC SNR Γ0 ≥ 5dB. In other
words, it follows that N0Γ0

gm,u,fi
[ti]

πur
m,u,fi,ti

[t] ≤ purm,u,fi
[ti] ≤

πur
m,u,fi,ti

[t]Pmax
m [10]. We define the power allocation vector

of eMBB/uRLLC traffic as px[ti] ≜ [pxm,u,fi
[ti]]

T . Similarly to
the eMBB service, the achievable data rate of the u-th uRLLC
user from RU m meets the estimated value of φm,u[t] as∑

ti,i
Rur

m,u(p
ur[ti],π

ur[t]) ≥ φm,u[t]λ
ur
u [t]Z

ur∆, where λur
u [t]

is the arrival traffics of the u-th uRLLC user in time-frame
t. It implies that every RB allocated to the u-th uRLLC user
must transmit a complete data packet of size Zur.

The queue length of the u-th data flow in RU m is defined as
qm,u[ti] =

(
qm,u[ti−1]+φm,u[t]λ

x
u[t]Z

x∆−Rx
m,u(p[ti])δi

)+
[bits]. Where, (x)+ ≜ max{x, 0}. To maintain a maximum
buffer size of qmax, we impose the constraint qm[t] ≤ qmax,
where qm[t] =

∑Ti

ti=1

∑
u qm,u[ti].

The uRLLC end-to-end (e2e) latency of the u-th uRLLC
user at time-frame t can be expressed as [7]

τuru [t] = τprocu [t] + τ txcu,du[t] + τprodu [t]

+ τ txdu,ru[t] + τ txru,u[t] + τproru [t] (3)
where τprocu [t], τprodu [t] and τproru [t] are the CU, DU and RU
processing times, respectively; τ txcu,du[t], τ

tx
du,ru[t] and τ txru,u[t]

are the transmission latency under the midhaul (MH), fronthaul
(FH) and RU-user communication latency at time-frame t,
respectively. Thanks to the RAN slicing concept, the pro-
posed system consistently possesses the necessary resources
to instantly serve the uRLLC upon arrival, thereby ensuring
that the uRLLC experiences fewer delays in queueing. Thus,
the transmission time of the RU-user links becomes the main
factor against reaching the tight uRLLC latency requirement.
The latency τ txru,u[t] = δi × argmaxti{π

ur
m,u,fi,ti

[t]} is calcu-
lated as the time difference (measured in TTI) between the
moment a uRLLC packet enters the buffer and the moment
it is scheduled and transmitted from the buffer. To satisfy the
minimum latency requirement for the u-th uRLLC user, the
end-to-end latency is constrained by a predefined threshold of
Dur, such that τuru [t] ≈ τ txru,u[t] ≤ Dur.

III. DEEP REINFORCEMENT LEARNING-AIDED
INTELLIGENT TRAFFIC STEERING

A. Problem Formulation

Utility function: We aim to optimize the performance of the
ORAN by jointly considering flow split distribution, conges-
tion control, and scheduling for eMBB and uRLLC services
subject to QoS requirements, power budget, slice awareness,
and other practical constraints. The utility function is designed
to simultaneously address eMBB throughput and worst-user

e2e uRLLC latency, i.e.,

ω
∑

u∈Uem

q̄emu
q0

+ (1− ω) max
u∈Uur

τ̄uru
τ0

(4)

where q̄emu ≜ limti→∞
1
ti

∑ti
τ=1

∑
m qm,u[τ ] and τ̄uru =

δi.Et{argmaxti π
ur
m,u,fi,ti

[t]} are the long-term average queue
length of u-th eMBB data flow and uRLLC latency of u-
th uRLLC data flow, respectively. Here, we introduce the
reference throughput q0 > 0 and the reference latency τ0 > 0
for eMBB and uRLLC, respectively, to balance two objective
functions. The priority parameter ω ∈ [0, 1] allows prioritiza-
tion between eMBB and uRLLC. Overall, the intelligent TS
optimization problem is mathematically formulated as

min
φ,π,p

ω
∑

u∈Uem

q̄emu
q0

+ (1− ω) max
u∈Uur

τ̄uru
τ0

(5a)

s.t. πx
m,u,fi,ti [t] ∈ {0, 1}; ∀t, x ∈ {em, ur} (5b)∑

m,u

(
πem
m,u,fi,ti [t] + πur

m,u,fi,ti [t]
)
≤ 1; ∀fi, ti (5c)

Dur/δi∑
ti=1

Fi∑
fi=1

πur
m,u,fi,ti [t] ≥ euru [t]; ∀u ∈ Uur, i = 1 (5d)

Ti∑
ti=1

Fi∑
fi=1

πem
m,u,fi,ti [t] ≥ eemu [t]; ∀u ∈ Uem, i = 2 (5e)

0 ≤ pemm,u,fi [ti] ≤ πem
m,u,fi,ti [t]P

max
m ; ∀ti (5f)

N0Γ0

gm,u,fi [ti]
πur
m,u,fi,ti [t] ≤ purm,u,fi [ti] ≤ πur

m,u,fi,ti [t]P
max
m

(5g)∑
fi,u,i

(pemm,u,fi [ti] + purm,u,fi [ti]) ≤ Pmax
m ; ∀ti,m ∈ M(5h)

φu[t] ∈ φ[t]; ∀t, u ∈ U (5i)
Rx

m,u(p
x[ti]) ≥ φm,u[t]λ

x
u[t]Z

x∆; ∀x ∈ {em, ur} (5j)
τuru (πur[t]) ≤ Dur; ∀u ∈ Uur (5k)∑
ti

∑
u

qm,u[ti] ≤ qmax; ∀m ∈ M (5l)

where πx[t],φ[t] and px[ti] are the vectors encompassing the
sub-band assignments, flow-split portions, and power alloca-
tion vectors at frame t and TTI ti, respectively. Here, the
constraint (5c) is the orthogonality constraint to ensure that
each RB of RU is allocated to only one user. To further exploit
the existing slices’ RBs, the slice-aware constraints (5d) and
(5e) are proposed to improve the utilization of radio resources,
where euru [t] = ⌈(λur

u [t] − Ωu[t])
+/2⌉|∀u∈Uur and eemu [t] =

(⌊((Fi×Ti)−
∑

uur min(λur
u [t],Ωu[t]))/U

em⌋)+|∀u∈Uem,i=2, in
which Ωu[t] =

λur
u [t]∑

ur λ
ur
u [t] .Ω is the maximum number of RBs for

each uRLLC user in the proprietary slice of uRLLC per time-
frame t. Here Ω = (Fi×Dur/δi)|i=2 represents the number of
RBs available from the dedicated uRLLC slice that meet the
uRLLC latency constraint. Finally, the constraint (5h) ensures
that the total transmission power is not greater than the RU
power budget Pmax

m .

Challenges of Solving Problem (5): Problem (5) presents
several challenges to be optimally solved due to non-convexity



in constraints (5j) and (5l) with respect to φ[t] and px[ti], as
well as the binary nature of πx[t]. These characteristics make
problem (5) a mixed-integer non-linear program (MINLP)
and computationally expensive. On the other hand, wireless
systems often face dynamic changes in network conditions,
such as time-varying channels and fluctuating traffic demands.
As a result, standard optimization methods are not applicable
to solve the problem directly and efficiently.

Toward an efficient and stable solution, we divide problem
(5) into two subproblems on the long-term t scale and short-
term time scale ti, respectively. The flow-split decisions and
RB assignments are heavily influenced by the RAN layer’s
reliance on the updated previous states due to the queue length
and incomplete knowledge of channels at the start of each
frame. The flow-split vector φ[t] and the RB assignment vector
πx[t] are updated per frame t, while the power allocation
vector px[ti] is optimized based on the effective real-time CSI
in time slot ti, enabling adaptability in dynamic environments.

B. Proposed Three-Steps Methodology for Solving (5)

As mentioned previously, optimizing long-term variables
(φ[t] and π[t]) is challenging due to the unknown queue
length and channels at the beginning of the time-frame. Under
incomplete information, we determine φ[t] and π[t] based on
observable data. Algorithm 1 presents a DRL-based intelligent
TS approach to optimize flow split distribution, congestion
control, and resource allocation on long- and short-term time
scales.

Algorithm 1 Intelligent TS Algorithm for Solving (5)

Initialization: Set ti = 1, t = 1, φu[1] =
1
M
1M×1, and q[1] =[

qm[1]
]T , where qm[1] = 0; ∀m.

1: for t = 1, 2, . . . , T do
2: Traffic flow splitting estimation: The em-

bedded heuristic method deployed in rAPP1 splits the traffic
flows of all users φ̂[t] for time-frame t by (6);

3: RB assignment prediction: Given the sorted data
(λ[t], φ̂[t], q[t − 1],G[t − 1], ex[t]) in data storage, the
rAPP2 consists of two DRL agents predicts the binary RB
assignments π̂[t] for time-frame t via Algorithm 2, where
ex[t] = [ex

u[t]]
T ;

4: for ti = 1, 2, . . . , Ti do
5: Optimizing power allocation: Given the vector

of the queue length q[t], and two predicted long-term
variables: (φ̂[t], and π̂[t]), solve the problem (7) to obtain
the power allocation p∗[ti];

6: Updating queue-lengths: Queue-lengths are up-
dated as: qm,u[ti] =

([
qm,u[ti − 1] + φ̂m,u[t]λ

x
u[t]Z

xδi −
Rx

m,u[p
∗[ti]]δi

])+, where x ∈ {ur, em}
7: end for
8: Update {λ[t], φ̂[t], q[t-1],G[t-1], ex[t]} := {λ[t + 1], φ̂[t +

1], q[t],G[t], ex[t+ 1]};
9: end for

Heuristic method: The non-RT RIC-based rAPP1 employs
a heuristic-based approach to estimate the flow-split decision
φ[t] for traffic flow separation. To handle the unpredictable
data arrival rate in future frames, we utilize a moving av-
erage of observed rates from recent TTIs. Let R̄x

m,u[t] =
1
W

∑t
l=t−W+1 R

x
m,u[l] be the achievable rate of the u-th

generic user served by RU m in time-frame l, and W is the
window size, where Rx

m,u[l]. The data flow of the u-th user
to the m-th RU can be split as

φ̂m,u[t] =
R̄x

m,u[t]∑
m R̄x

m,u[t]
, ∀m,u, x ∈ {em, ur} (6)

The estimated flow-split decision φ̂[t] =
[
φ̂m,u[t]

]T
is

promptly transferred to rAPP2 embedded at non-RT RIC to
predict RB assignment πx[t].
Double Deep Q-Network (DDQN): Unlike previous works
that assign RBs per each TTI, this study employs a DRL-based
approach to predict the RB assignment πx[t] at the beginning
of each frame. This helps enable the dynamic scheduling of
multi-services and reduces computational complexity. To ad-
dress such a complex optimization problem, this paper utilizes
a cooperative multi-agent system where each agent per slice
interacts with the environment. Each agent receives a subset
of the environment observations and takes a subset of actions,
resulting in more accurate decision-making and improved
network performance in dynamic multi-action environments.
Since deep Q-Networks (DQNs) are designed to large-scale
state space and fitted to discrete action space, this model is
selected to predict the RB assignment vector in such proposed
networks. To overcome overestimation and slow convergence
issues in these models, this study adopts the double DQN
(DDQN) approach for each agent, which could be generalized
to multi-action binary scenarios by modifying the architecture
and output layer of the neural network accordingly. By sep-
arating the max operation in the target network into action
selection and evaluation, DDQN reduces overestimations and
improves value estimation.

Each agent including the DDQN model decouples action
selection from action evaluation by defining two evalua-
tion and target neural networks. While action selection and
policy evaluation are performed in the evaluation network
Q(s,a;θQ), the target network Q(s,a;θµ) calculates the
future Q value. Note that θQ and θµ show the trainable
parameters (weights and biases) of the evaluation and target
neural networks, respectively. The target network is updated
every C steps and optimizes θ by minimizing the mean
square loss: L(θ) = E

(
y − Q(s,a;θQ)

)2
, where y = r +

γQ(s′, argmaxa Q(s′,a;θQ);θµ), with r and s′ being the
reward and the new state, respectively. Besides, DDQN uses
the concept of training neural networks using random batches
stored in replay memory to stabilize the learning model and re-
move correlations between observations. Hence, the transition
(s,a, r, s′) per each slice is stored in the replay memory data
set D based on the first-come-first-serve buffer with limited
capacity to be used in the training phase. The summary of the
proposed learning method is given in Algorithm 2.
State, Action Spaces and Reward Function: In our cooperative
multi-agent system, each agent operates within its own state
and action space. The state space encompasses the specific
subset of environment observations (slice) accessible to each
agent, while the action space comprises the individual set of
actions available to each agent. However, it is important to note



that the combined action of both agents affects the system’s
overall dynamics. By defining separate state and action spaces,
agents can tailor their perception and interaction with the
environment while simultaneously collaborating towards a
shared objective.

The state vectors si[t]|i=1,2 in the time-frame t
are composed of the traffic demand vector λ[t], the
estimated flow-split distribution φ[t], the previous queue
length vector q[t-1], the channel gain matrix of each
slice Gi[t-1]|i=1,2, and ex[t]. Let us define i.e., S :=
{si[t]|i=1,2|s1[t] = (λ[t],φ[t], q[t-1],G1[t-1], eur[t]), s2[t] =
(λ[t],φ[t], q[t-1],G2[t-1], eem[t]). The overall action
space is defined as A := {ai[t]|i=1,2|a1[t] =[
πx
m,u,fi,ti

[t]
]T |i=1,a

2[t] =
[
πx
m,u,fi,ti

[t]
]T |i=2}. In this

space, a[t] represents a combination of actions (ai[t]|i=1,2)
taken by each agent.

To create an effective reward function, this study em-
ploys a penalty-based approach that integrates constraints
related to the agent’s actions ((5c)-(5e), (5k)). The reward
function should suggest a critical evaluation for RB assign-
ment πx[t] in terms of how it will affect the utility of
eMBB and uRLLC. Violations of specified constraints in-
cur penalties (negative values) to discourage undesirable
behavior, while satisfying all constraints rewards the agent
with positive reinforcement. This incentivizes decision-making
aligned with established constraints and promotes the achieve-
ment of system objectives. According to the previously men-
tioned queue length equation, minimizing the eMBB queue
length in the utility function is equivalent to maximizing the
eMBB data rate. As a result, we define the reward r[t] as
ω
(∑

ti,m,u∈Uem Rem
m,u(p

em[ti])

R0

)
− (1 − ω)

(maxu∈Uur{τur
u [t]}

τ0

)
. To

compute the reward value, it is necessary to solve the short-
term power control subproblem.
Short-term Subproblem: After verifying QoS requirements
in Steps 10-19 of Algorithm 2, the subsequent step is to solve
the power control problem in the xAPP at near-RT RIC as

min
p

∑
u∈Uem

q̄emu (7a)

s.t. (5f), (5g), (5h), (5j), (5l). (7b)
Since (7) is a convex program, the standard methods can

efficiently solve to obtain the optimal transmission power
p∗[t].

IV. NUMERICAL RESULTS
We now numerically evaluate the performance of the

proposed algorithms. All users are uniformly located in a
circular area with a radius of 500 m. The channels are
generated as Rayleigh fading with path loss: PLRU-UE =
128.1 + 37.6 log10(d/1000). We assume that u-th traffic flow
of eMBB/uRLLC follows the Poisson distribution with the
mean arrival rate of 21.12 and 1.12, respectively. Unless
otherwise stated, other simulation parameters are given in
Table I. For comparison, we consider the following three
benchmark schemes:

• Successive Convex Approximation (SCA): Binary vari-
ables πx[t] are first relaxed to continuous ones, and then

an SCA-based iterative algorithm considering perfect CSI
per TTI is developed to solve the approximate convex
program [7]. In other words, this scheme serves as the
upper bound of the proposed method.

• Fixed-Numerology: To demonstrate the benefits of flex-
ible numerology in improving system performance, we
consider “Fixed Numerology” scheme where the subcar-
rier spacing of 15 kHz is used [11].

• Uniform-φ: This scheme equally splits the data flow, i.e.,
φu = 1

M ;∀u, aiming to emphasize the importance of
optimizing the flow-split distribution.

Algorithm 2 DDQN-based Multi-Agent Algorithm at rAPP2

Initialization: Randomly initialize weights θµ = θQ, and set replay
buffer capacity to Cmax and reward value to r[t] = 0.
for epoch do

2: Receive initial observation states for both agents si[1]|i=1,2;
for t = 1, 2, . . . , T do

4: Generate a random number rand();
if rand() < ϵ then

6: Generate a random action a[t];
else

8: Select the action a[t] that is a joint of ai[t]|i=1,2 so that
ai[t]|i=1,2 = argmaxai[t] Q(si[t],ai[t];θQ);

end if
10: if a[t] does not satisfy constraints (5d), (5e) and (5k) then

Set the reward value as r[t]+ = negative value;
12: else

Solve problem (7) to get the optimal power allocation
p∗[t];

14: if It is not feasible then
Set the reward value as r[t]+ = negative value

16: else
Set the reward value as r[t]+ = ω

∑
u,ti

Rem
u (pem[ti])/R0 − (1 − ω)maxu{τ ur

u [t]}/τ0 and
observe the new states si[t+ 1]|i=1,2;

18: end if
end if

20: Store transition (si[t],ai[t], r[t], si[t + 1])|i=1,2 in the
replay memory D;
Sample two random mini-batches from replay memory D
for training step;

22: Update θQ by minimizing the loss function L(θQ);
Update θµ every C steps by resetting θµ = θQ.

24: end for
end for

Fig. 2(a) presents a comprehensive performance visualiza-
tion of Algorithm 2 over epochs. It illustrates the agent’s rapid
adaptation to the dynamic environment, reflecting changes in
time-varying channel conditions and arrival packets over time-
frames. The same trend can be observed in the average reward,
which is steadily increasing during the training episodes. We
can also observe that the higher the number of epochs, the
higher the average reward that can be obtained.

Figs. 2(b)-(d) plot the performance comparison of the
proposed scheme with the three benchmark schemes versus
the transmit power of the RUs. The results are averaged over
1000 sub-frames. As can be seen, increasing the power budget
of the RUs has a positive impact on the sum of eMBB
throughput and reduces uRLLC latency and queue length.
Fig. 2(b) depicts the system throughput of the eMBB service
by varying the maximum RUs’ power budgets (from 10 to
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Fig. 2: The convergence behaviour of Algorithm 2 and performance comparison with existing benchmark schemes

TABLE I: Simulation Parameters

Parameter Value Parameter Value
No. of eMBB users 9 Required eMBB data rate 10 Mbps
No. of uRLLC users 3 Required uRLLC latency 0.5 ms
No. of RUs 4 Maximum RU’s queue-length 10 KB
BW of RU 10 MHz No. of layers, units 5, 512
Error probability 10−3 Discount factor 0.99
Power of RU 46 dBm Buffer size 1e+06
Noise power -110 dBm Batch size 100
uRLLC packet size 32 B Soft update coefficient 0.01
eMBB packet size 50 KB Optimizer adam
Length of time-frame 10 ms Activation function ReLU/softmax

46 dBm), facilitating the evaluation of different schemes. As
expected, the SCA demonstrates superior performance, setting
the upper bound for other schemes. The performance gap
between Algorithm 1 and SCA is less than 2%, highlighting
the efficiency of DDQN in resource scheduling compared to
other benchmark schemes. Compared to the “Uniform φ” and
“Fixed-Numerology”, the proposed scheme offers 10.26% and
45.50% gains at Pmax = 30 dBm, respectively. Moreover, the
fixed-numerology scheme is not feasible at Pmax ≤ 30 dBm.
The “Uniform φ” initially performs closely to SCA and our
proposed method but declines thereafter. This is attributed to
the fact that in the low-power range, UEs with long queues
are served by multiple RUs to maximize overall performance.
However, beyond this range, a single RU may suffice to serve
eMBB traffic. Fig. 2(c) showcases the worst-user uRLLC
latency for different maximum power levels of RUs. As we
can see from this figure, all schemes meet the required uRLLC
latency (0.5 ms). It is clear that SCA works better in high
power rather than other schemes. The empty region of fixed-
numerology at Pmax ≤ 30 dBm shows that the corresponding
problem is infeasible. Fig. 2(d) depicts the average backlog
with different benchmark schemes. As can be seen, the higher
the power budget Pmax, the lower the average queue length.
Similar to the previous figures, the results of the proposed
method and the SCA are very close to each other, especially at
the high power. The fixed-numerology scheme yields the worst
performance in terms of the average queue length, whereas the
proposed method yields the best one in Fig. 2(d) after SCA.

V. CONCLUSION
This paper presented an intelligent TS framework to sup-

port multi-service scenario. Using multi-connectivity, network
slicing, and mixed numerology techniques, the framework effi-
ciently handles distributed traffic load and resource scheduling
in a downlink multi-service scenario. To handle dynamic
scheduling, time-varying channel states, and reduce compu-
tational complexity, we employed DDQN-aided multi-agent
model for efficient RB assignment prediction. Extensive sim-
ulations show the superior performance of our proposed design
over benchmark schemes. Future work entails thoroughly
investigating the scalability and adaptability of our intelligent
TS framework in alignment with ORAN specifications and
3GPP standardization.
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