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Abstract—With the acceleration of the commercialization of
fifth generation (5G) mobile communication technology and the
research for 6G communication systems, the communication
system has the characteristics of high frequency, multi-band, high
speed movement of users and large antenna array. These bring
many difficulties to obtain accurate channel state information
(CSI), which makes the performance of traditional communi-
cation methods be greatly restricted. Therefore, there has been
a lot of interest in using artificial intelligence (AI) instead of
traditional methods to improve performance. A common and
accurate dataset is essential for the research of AI commu-
nication. However, the common datasets nowadays still lack
some important features, such as mobile features, spatial non-
stationary features etc. To address these issues, we give a dataset
for future 6G communication. In this dataset, we address these
issues with specific simulation methods and accompanying code
processing.

Index Terms—AI, mobile features, spatial non-stationary fea-
tures

I. INTRODUCTION

6G mobile networks are expected to support further en-

hanced mobile broadband, ultramassive machine-type, en-

hanced ultrareliable and low-latency, long-distance, and high-

mobility communications and other emerging scenarios for the

2030 intelligent information society, which requires instanta-

neous, extremely high-speed wireless connectivity [1]. These

new scenarios and requirements make it necessary to consider

an increasing number of features when modeling the channel.

The channel model based on statistical characteristics becomes

more and more complex as the number of characteristics

considered increases, and an overly complex model is not

conducive to future research. In order not to further complicate

the model, researchers have come up with the idea of using

AI techniques instead of, or in addition to, optimizing the

traditional modeling approach. This idea is well supported in

today’s era of big data.

With the continuous exploration of researchers, machine

learning (ML)- based AI techniques have become the key to

develop the next-generation communication system [2]. High-

mobility communications make the CSI tends to be out of

date in a short time period, multi-antenna and multi-band

make acquiring CSI difficult and requires significant over-

head, and with the usage of ultramassive MIMO, the energy

consumed by signal transmission and RF chains will become

considerable. These make it very difficult to obtain channel

information in the space, time, and frequency domains. In

order to get accurate CSI and reduce overhead, AI-based time-

, frequency-, and space- domain channel extrapolation [3] and

compressive sensing for massive MIMO CSI feedback [4] have

been presented. In the millimeter wave band, blocking has a

significant impact on the quality of communication and the

overhead of beam selection is huge, which are the challenges

of future high frequency communication. In [5], [6], two AI-

based methods for blockage prediction and beam prediction

are proposed, and both of these methods effectively solve the

above problems. In addition, the prediction of a particular

channel characteristic, such as path loss [7], can also be very

useful to further improve the communication quality.

Fig. 1. Communication with AI.

Adding AI at the base station and user side can improve

the performance and reduce the overhead of communication.

And to implement these AI applications, a large amount

of channel data is necessary. The set of these data is the

essential channel dataset in AI training, as shown in Fig. 1.

To meet the data requirements of the researcher, we have

introduced the DataAI-6G dataset, which is designed for

machine learning research in wireless channel transmission

and modeling. More specifically, using this dataset, researchers

can easily construct the inputs and outputs of several machine

learning applications. The DataAI-6G dataset provides angle

of departure (AOD), angle of arrival (AOA), delay, phase,

power of each path and the path loss between any pair of

transceiver antennas. These data are obtained from the ray-

tracing simulator, Wireless InSite, developed by Remcom [8].

Remcom Wireless InSite, is widely used in mmWave and

massive MIMO research at both industry and academia, and

has been verified with real-world channel measurements [9]–

http://arxiv.org/abs/2306.02057v1


[11]. More important, our dataset has a dedicated set of codes,

which can synthesize the UL and DL channel matrices and has

user moving function. More details will be discussed in the

rest of this paper.

II. DESIGN OF DATASET

According to [12], the use of ultra-large antenna arrays

introduces near-field spatial non-stationary features, which

is an essential feature in 6G communications. In [13], the

existence of UL to DL mapping has been proved, so there

are many researchers are studying the mapping of UL to DL.

In the future wireless communication, high-speed movement

features are the focus of attention, but users in existing datasets

are usually static. So, in our dataset, we have considered the

above three features. Firstly, in the data simulation stage,

we simulate each antenna array element separately instead

of using the plane wave synthesis method. Then in the the

code synthesis stage, the dataset can synthesize the CSI of

the UL/DL channel using the angle, delay, power, and phase

information of each path. More importantly, the dataset is able

to introduce further Doppler phase shifts on this basis to obtain

the CSI of the moving state. The specific synthesis principle

is as follows.

In our dataset, multi-antenna technology has been consid-

ered. In order to get the channel matrix, we need calculate the

channel impulse response (CIR) of each antenna pair first.

Consider a MIMO system with multiple base stations and

multiple user areas. For the k-th antenna at the base station

x and the g-th antenna at the u-th user point in the y-th user

area, there will be a large number of Multipath components

(MPC) between them. So the CIR can be written as

hxk,yug
=

M
∑

i=1

αie
jϕiδ(τ − τi), (1)

where αi and ϕi represent the amplitude and the phase of the

i-th path, respectively. M denotes the total number of paths

between these two antennas and τi denotes the delay of the

i-th path.

However, in real-world communication, the receiving an-

tenna usually samples the received signal at a certain fre-

quency, so the received signal will be divided into multiple

time-delayed distinguishable paths. In the DataAI-6G dataset,

we simulate this reception method to obtain the channel

response that most closely resembles the actual situation.

Assuming that the receiver samples the received signal at a

sampling interval of 1/BW (BW is the channel bandwidth),

the channel impulse response at the i-th sampling interval can

be expressed as

hi
xk,yug

= (

Ni
∑

n=1

αne
jϕn)δ(τ − τi), (2)

where αn and ϕn represent the amplitude and the phase of the

n-th path, respectively. Ni denotes the total number of paths

in the i-th sampling interval and τi denotes the delay of the

i-th sampling interval.

After that, the impulse responses of all sampling intervals

are superimposed and converted to the frequency domain

to obtain the frequency domain channel response. Then, the

user-set UL/DL carrier frequency is brought into the formula

of frequency domain channel response to obtain a complex

value, and this complex value is stored as an approximate

channel response in the generated dataset. The UL/DL channel

response can be written as










Hup
xk,yug

=
∑L

i=1(
∑Ni

n=1 αne
jϕn)e−j2πfupτl ,

Hdown
xk,yug

=
∑L

i=1(
∑Ni

n=1 αne
jϕn)e−j2πfdownτl ,

(3)

where L denotes the number of sampling intervals and

fup/fdown denotes the UL/DL carrier frequency. Due to the

difference of UL and DL carrier frequencies, the UL and DL

channel response will be different in magnitude and phase.

And since the UL and DL channel responses are calculated

using similar formulas, there is a strong correlation between

them. The advantage of using this approach to obtain the

UL and DL channel responses is that the researcher has the

flexibility to set the UL and DL carrier frequencies. However,

since only the simulation data of the DL channel are available,

this synthesis can only approximate the UL channel, which

is still lacking in terms of accuracy. To further improve the

accuracy of the UL and DL channels, UL simulation data or

actual measurement data can be included in future studies.

On the basis of the UL/DL features, we will proceed to

discuss the mobile features. To get the mobile features, we

need to take Doppler phase shift into consider. The expression

of the Doppler phase shift can be written as

∆ϕ = 2π
v · n

λc

∆t, (4)

where v denotes the velocity vector in the direction of move-

ment and n denotes the direction vector of AOA in DL channel

and negative direction vector of AOD in UL channel. λc and

∆t represents the wavelength of the carrier wave and time

interval, respectively.

After get the Doppler phase shift, we add it to Eq.(3). For

the k-th antenna at the base station x and the g-th antenna at

the u-th user point in the y-th user area, the frequency domain

channel response in the moving state can be written as










Hup
xk,yug

=
∑L

i=1(
∑Ni

n=1 αne
j(ϕn+∆ϕ))e−j2πfupτl .

Hdown
xk,yug

=
∑L

i=1(
∑Ni

n=1 αne
j(ϕn+∆ϕ))e−j2πfdownτl .

(5)

The channel response obtained in this way contains mobile

features, so our dataset is well suited to researchers for the

study of mobile features.

III. DATASET GENERATION

We build a large outdoor street scenario with multiple

configurations in multiple bands using Wireless Insite [8] and

simulate it to obtain a set of channel parameters. We provide

a generic framework that allows researchers the flexibility



Fig. 2. Framework of the dataset.

Fig. 3. Outdoor street scenario.

to configure some parameters in the code according to their

needs. As shown in Fig. 2, the researchers can then bring the

raw channel parameters as input to the framework to output

the customized dataset.

A. Outdoor street scenario

The outdoor street scenario is dedicated to providing re-

searchers with diverse scene features to meet the needs of

machine learning different requirements. The whole scenario

is 646 m long and 290 m wide, which is an extensive outdoor

scene, as shown in Fig. 3. Two horizontally oriented main

streets run through the whole scenario, and four vertically

oriented secondary streets are connected to the horizontally

oriented ones. To provide multi-regionalized data, we set up

at least one base station for each street. In total, we build 8

BS and 12 user grids, which are scattered within 6 streets.

The users on the streets are evenly distributed within the grid.

In addition, the streets are flanked by buildings of different

heights and vegetation of varying sizes. For simplicity, the

buildings are rectangular and solid, so that the rays from the

base station cannot penetrate the buildings.

More detail, the locations of these 8 BS are distributed on

both sides of the street. Four of the base stations are set up

in two main streets in a horizontal direction, and four base

stations are respectively set up in four streets in a vertical

direction. Each base station is equipped with different types

of antennas as well as different heights. TX2 and TX5 are

equipped with a single element, which is the omnidirectional

antenna, and the rest of the base stations are equipped with

multiple antennas. It is necessary to elaborate that each array

element constituting the MIMO antenna array is a half-wave

dipole, and the distance between them is half a wavelength.

Users are evenly distributed among 12 user grids, and each

starting point of the user grid is located in the left corner. An

example of the user points arrangement is shown in Fig. 4.

The users in RX1, RX2 and RX3 are equipped with a 2×2



uniform planar array, and the other users in the rest of the user

gird are equipped with a omnidirectional antenna.

Fig. 4. User points arrangement.

We use the X3D model, which is by far the most versatile,

functional, and accurate propagation model in Wireless Insite.

Considering the meaningful received power, for simplicity,

only the first 4 reflections are considered. More importantly,

the accuracy of blocking and beam prediction can be further

improved by exploiting the diffraction properties [5], [6]. But

on the other hand, the received power decreases significantly

as the number of diffractions increases, so we turn on only

one diffraction. After we configure the main parameters in

Wireless Insite, it performs signal propagation simulation and

finally gives ray tracing results. The results of the simulation

contain (i) the azimuth and elevation angles of departure of

each path, (ii) the azimuth and elevation angles of arrival of

each path, (iii) the path receive power, (iv) the path phase and

(v) the propagation delay of each path. Wireless Insite can

also output the overall received power, the overall phase, and

the path loss of a receive point for all valid paths.

B. Advantages of dataset

Compared with other datasets, such as DeepMIMO [14],

Wireless AI Research Dataset [15]. Our dataset has three major

advantages(as shown in Table 1): (i) Spatial non-stationary

features are considered in the simulation. (ii) With the user

moving function that considers Doppler, users can freely

configure the moving route and moving speed. (iii) Has the

ability to generate any number of user points. In the next of

this part, we will explain in detail how the last two functions

are implemented in the code.

In the profile of the code, the researcher can select the

base station and the user area to be activated, and can

also select the desired user points in the user area, while

the number of antennas of users and base stations can be

freely set according to the requirements. After setting the

above parameters, researchers can choose the frequency of the

channel(3.5 GHz, 28 GHz or 60 GHz), the antenna pattern of

users and base stations, the bandwidth and carrier frequencies

of UL/DL channel. Then the code will extract the AOA, AOD,

power, delay and phase of each path, and the path loss of the

channel will also be extracted. After obtained the angle, phase,

delay and power information of each path, The dataset will

synthesize the channel response using Eq.(3).

If researchers want the user to move in the user grid, they

just need set the parameter ’move’ to ’t’. In the DataAI-6G

dataset, the user can move along four directions: up, down, left

and right . The researcher only needs to set the corresponding

parameters in the configuration file to specify both the path

and direction of movement. Then, the code will perform point

sampling on the movement path according to the user-set speed

and sampling interval. In order to calculate the Doppler phase

shift due to the movement, the distance difference between the

virtual point that get by point sampling and the user point in

the user gird has to be calculated first.

∆d = κv∆t−m∆s, (6)

where κ means the κ-th sample point, ∆s denotes the interval

between real user points, v and ∆t represent the speed of the

user and the sampling interval. m in Eq.(6) means the m-th

user point in the moving path, which calculated by ⌈κv∆t
∆s

−
1⌉. Then, the code will bring ∆d into Eq.(4) to calculate the

Doppler phase shift, which can be written as

∆ϕ = 2π∆d
m · n

λc
, (7)

where m denotes the unit vector in the direction of movement

and n denotes the direction vector of AOA/AOD in DL/UL

channel. λc represents the wavelength of the carrier wave.

After get the Doppler phase shift, the dataset will synthesize

the channel response in the moving state using Eq.(5).

IV. CASE OF BEAM PREDICTION

In this section, we will use a beam prediction algorithm to

validate our dataset.

We consider a mobile cellular network including one base

station (BS) and one moving user equipment (UE). The UE is

communicating with the BS, and both line-of-sight (LOS) and

none-line-of-sight (NLOS) exist during the movement. Since

the future networks are likely to coexist in sub-6 GHz and

mmWave bands, we assume that the BS is equipped with two

antenna arrays. One works at the sub-6 GHz band and the

other works at the mmWave band.

In our method, only the sub-6 GHz uplink (UL) channels

is utilized for beam prediction. During the UL signaling, UE

sends pilot signals to the BS in each scheduling time frame,

and the BS receives the UL signal. Denote yup[k] as the

received UL signal at the k-th subcarrier, yup[k] can be shown

as

yup[k] = hup[k]sp + nup[k], (8)

where hup[k] denotes the UL sub-6 GHz channel and sp
denotes the signal transmitted from UE. nup[k] represents the

additive white Gaussian noise (AWGN).

Let hdown[k] denotes the DL channel. The received signal

of the UE at both sub-6 GHz and mmWave bands is given by

ydown[k] = hdown[k]fsd + ndown[k], (9)

where sd represents the signal transmitted from the BS and

ndown[k] represents the AWGN. For the sub-6 GHz band, f



TABLE I
COMPARISON BETWEEN DATASETS

Dataset DeepMIMO Wireless AI Research Dataset DataAI-6G

Multi-band X X X

Spatial non-stationary features X

Number of antenna configurations X X X

Antenna rotation and pattern X X X

Arbitrary multi-user point X

Selective activation of BS and users X X X

User moving function with Doppler X

Customized moving path and speed X

BW Customization X X X

denotes the sub-6 GH beamforming (BF) vectors which can

be obtained by matched filtering. fsub6 can be written as

fsub6 =
h∗

up[k]

|hup[k]|
. (10)

In the millimeter wave band, a large number of antennas

will be used, resulting in a high overhead using the direct

calculation method. Therefore, in order to reduce the overhead

in high-band communications, we generally use codebooks for

beam selection, fmmW ∈ FmmW which denotes the mmWave

BF vectors. FmmW is a set of pre-prepared beamforming

vectors. Denote P
σ2 as the DL transmit signal-to-noise ratio

(SNR). The DL data rate for both sub-6 GHz and mmWave

channels can be shown as

R(hdown[k], f) = Blog2(1 +
P

σ2

∣

∣hdown[k]f
∣

∣

2
). (11)

The optimal mmWave BF vector f∗ is selected to maximize

the mmWave rates R. And the optimal BF vector f∗ is utilized

to train the machine learning model. f∗ can be given by

f∗ = argmax
fmmW∈FmmW

R(hdown[k], fmmW ). (12)

In this method, we will use the model in [5] and the DataAI-

6G dataset to predict the DL optimal beam at 60 GHz at time

slot t+1 using the UL channel response at 3.5 GHz from time

slot t-24 to time slot t. To select the optimal beam of 60 GHz

for training and testing, an N-phase codebook C is utilized.

Each code in C can be utilized to generate a beam fmmW , and

all beams form a beam set FmmW . The method of selecting

the optimal beam from FmmW is shown in Eq.(12).

We choose TX3 BS and RX6 UE area, and set the user

moving in this area at the speed of 72 km/h, 90 km/h and

108 km/h. The user moves in the positive direction of the x-

axis with the sample frequency of 1 kHz. In order to be able

to compare with the dataset in [5], we take more than 220k

points in total, making the volume of the data comparable to

that in [5].

More detail, we choose the dataset of 3.5 GHz to generate

the UL channel response and set the number of base station

antennas to 16. The dataset of 60 GHz is used to generate the

DL channel response, and the number of base station antennas

is set to 64. The UE is equipped with an omnidirectional

antenna. These settings are consistent with those in [5]. The

BW of UL and DL channel are both set to 100 MHz with

different carrier frequencies, and antenna pattern of UE and

BS are set to isotropic.

In the model training phase, we used the same LSTM model

as in [5]. In addition, to further improve the prediction accu-

racy, we combined the LSTM model with convolutional neural

network, thus improving the feature extraction capability of

the model. The structure and parameters of the Conv-LSTM

model are shown in Fig. 5 and Table 2.

Fig. 5. Convolutional layer + LSTM model.

TABLE II
HYPER-PARAMETERS OF THE DESIGNED MODEL

Parameter Beam

Solver Adam

Activation tanh(LSTM), relu(Dense)

Batch size 32

Max. number of epochs 250

Learning rate 0.0005

LFC(MFC) 2(64,256)

LLSTM (MLSTM ) 2(64,128)

Conv2d(filters, size) 32, 1×5

Maxpooling(size) 1×2

Dataset split 80%-20%

The accuracy of correctly predicting the optimal beam

is used as the evaluation criterion. The results of different

datasets is shown in Fig. 6. The first column of the results

is obtained by training the LSTM model with Wireless Insite

data, and the accuracy has reached 88.20% in [5]. As users

in Wireless Insite are not moving, we assume the accuracy

can reach 88.20% at all speed. The second column of the



results is obtained by training the LSTM model with DataAI-

6G dataset. The accuracy of this case has reached 91.65%,

91.03% and 88.85% at the speed of 72 km/h, 90 km/h and 108

km/h. Comparing these two cases, we can find that model has

higher accuracy using DataAI-6G dataset, which means that

our dataset provides more realistic channel features and is well

adapted to the existing algorithms.
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Fig. 6. Beam prediction accuracy with Wireless Insite and DataAI-6G vs.
Speed of movement.

Then, with the same use of the DataAI-6G dataset com-

paring the accuracy of two different models, Conv-LSTM

model has a better performance than LSTM model. Further

observation of the transformation of accuracy with speed, as

shown in Fig. 7, we can find that (i) the accuracy decreases

with increasing speed, which indicates that the difficulty of

beam prediction increases with speed. This is consistent with

reality and reflects a high degree of realism in the mobile

features of our dataset, (ii) the accuracy decreases at a more

moderate rate when using Conv-LSTM model, which indicates

that Conv-LSTM model has a better adaptation to speed.

Therefore, borrowing algorithms from computer vision into

algorithms for channel prediction is a direction that can be

investigated in the future.

V. CONCLUSION

Combining AI with wireless communication is a promising

development direction for future 6G mobile communication.

To meet the future research, the DataAI-6G dataset takes into

account the Doppler properties and, based on this, we im-

plement a fully user-defined move function and interpolation

function for the first time. Our dataset also considers spatial

non-stationary properties, which are not considered in most

other datasets. In the future, our dataset will further consider

the communication containing RIS. And, in order to meet more

research, we will also add environment and material data in

future iterations of the dataset.
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Fig. 7. Beam prediction accuracy with LSTM model and Conv-LSTM model
vs. Speed of movement.
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