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Abstract—This paper aims to analyze the stochastic perfor-
mance of a multiple input multiple output (MIMO) integrated
sensing and communication (ISAC) system in a downlink sce-
nario, where a base station (BS) transmits a dual-functional
radar-communication (DFRC) signal matrix, serving the purpose
of transmitting communication data to the user while simulta-
neously sensing the angular location of a target. The channel
between the BS and the user is modeled as a random channel with
Rayleigh fading distribution, and the azimuth angle of the target
is assumed to follow a uniform distribution. We use a maximum
ratio transmission (MRT) beamformer to share resource between
sensing and communication (S & C) and observe the trade-off
between them. We derive the approximate probability density
function (PDF) of the signal-to-noise ratio (SNR) for both the user
and the target. Subsequently, leveraging the obtained PDF, we
derive the expressions for the user’s rate outage probability (OP),
as well as the OP for the Cramer-Rao lower bound (CRLB) of the
angle of arrival (AOA). In our numerical results, we demonstrate
the trade-off between S & C, confirmed with simulations.

I. INTRODUCTION

Recently, there has been a noticeable shift in the approach

to radar sensing and wireless communication systems, referred

to as integrated sensing and communications (ISAC), which

is expected to play a pivotal role in advancing next-generation

wireless networks [1]. ISAC is required in various emerging

applications, including vehicular communication, internet of

things (IoT) applications like smart city infrastructure (such

as traffic and speed monitoring, video surveillance), and smart

industry [2]. By leveraging shared resources such as wireless

spectrum, hardware platforms, and energy consumption, ISAC

offers significant advantages for both sensing and communica-

tion (S & C). Due to this resource sharing, there is an inherent

tradeoff in ISAC, and in order to design efficient ISAC system,

the fundamental communication-sensing performance tradeoff

should be fully understood [3].

The recent comprehensive review paper [3] and its refer-

enced literature primarily analyzed the performance of ISAC

from an information-theoretic perspective, overlooking the im-

pact of channel fading and its statistical properties. However,

more recent studies have delved into the probabilistic behavior

of ISAC. These studies can be classified into two categories.

In the first category, single transmission antenna is utilized for

the base station (BS). These works predominantly consider the

detection probability as the sensing performance metric [4–8].

In contrast [9] utilizes the sensing rate, defined as the sensing

mutual information per unit time, and [10] employs the ergodic

range Cramer-Rao lower bound (CRLB) as the sensing perfor-

mance metric. In the second category, multiple transmission

antennas are employed at the BS. In [11], the authors present

precoding designs for three scenarios: sensing-centric design,

communications-centric design, and Pareto optimal design. For

each scenario, they derive diversity orders and high signal-

to-noise ratio (SNR) slopes (i.e., asymptotic behaviour) for

both sensing rate and communication rate. [12] proposes a

unified performance framework for ISAC systems, by utiliz-

ing the Kullback-Leibler divergence (KLD). This framework

enables a unified evaluation of the error rate performance

of users and the detection performance of targets. In [13],

the authors analyze the communication rate by considering

diversity orders and high SNR slopes, without considering

any beamforming vector. Furthermore, they unveil the high

signal-to-noise ratio slopes for both the communication rate

and sensing rate. In [14], the authors focuses on designing the

beamforming vector based solely on the user channel, while

neglecting the target channel. The authors derive the rate of the

user and the estimation rate, analogous to the communication

rate for sensing operation, as performance metrics for both

communication and sensing.

Our Contribution: This paper aims to evaluate the funda-

mental stochastic performance limits of a downlink multiple

input multiple output (MIMO) ISAC system. We focus on

the trade-off between S & C, by considering the influence

of channel randomness between the user and the BS, as

well as between the target and the BS. The angle of the

target is assumed to follow a uniform distribution, while the

user channel is modeled as a circularly-symmetric complex

Gaussian random vector. Two key metrics are considered to

reveal the S & C trade-off: the outage probability (OP) of

the user for communication rate, and the OP of the target,

denoted as P (CRB(θ) > ǫ), for sensing accuracy. To enhance

both communication rates and radar estimation accuracy, a

dual functional precoding matrix is employed instead of solely

emphasizing communication or sensing, as discussed in [15].

Instead of optimizing the beamforming vector for data precod-

ing at the BS, our approach assumes a predefined beamforming

vector with constant parameters and derives the fundamental

limits of above metrics. Then, through simulations, the impact

of the parameters on performance metrics is examined. These

parameters show the compromise between S & C through

resource sharing. We calculate the OP of the user and OP of

the target by first deriving the signal-to-interference-plus-noise

ratio (SINR) and CRLB expressions. The stochastic behavior
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of SINR and CRLB are due to some joint random variables

(RVs) (which depend on the channel and the direction of

departure (DoD)). We derive the probability density function

(PDF) for these RVs, which enables us to characterize the

performance metric probabilities on SINR and CRLB, since

they are functions of these RVs. The numerical and simulation

results reveal a fundamental trade-off between S & C. In

fact, allocating more power towards the user direction leads to

degradation in the user’s OP, indicating an increase in the user

rate. However, it also results in a increase in the OP the target,

implying higher error in the angle estimation. Furthermore, the

simulation demonstrates that the system’s performance in both

S & C aspects improves with an increase in BS power.

Differences between this paper and recent works: In

contrast to previous works where the BS only has a single

transmission antenna, [4]-[10], this paper considers a scenario

with multiple transmitting and receiving antennas at the BS.

This enables us to precode data at the BS before transmission

in a desired direction which is essential to observe the trade-

off between S & C. This capability is not possible in the

single antenna scenario. However, assuming a beamforming

vector in the direction of both the target and the user poses a

great challenge in deriving the performance metrics due to the

correlation that arises between the user channel, target channel,

and the beamforming vector. In comparison to works that

involve multiple antennas at the BS, either the beamforming

vector is not considered [13], or it is based solely on the

user channel [14] (sending a separated downlink signal and

radar probing signals without considering a dual functional

precoding matrix), or it is designed based on the assumption

of knowing the eigenvalues of the covariance matrix of each

column of the target response matrix [11], without considering

the angle of the target. Furthermore, none of these works have

considered the OP of the target as a sensing performance

metric.

Notation: We use letters, boldface lowercase, and boldface

uppercase to denote scalar quantities, vectors and matrices,

respectively. P (.), fx(.), E[.] represent the probability, the

PDF, and the expectation, respectively. XM×N , XT ,XH and

X∗ are matrix with M rows and N columns, the transpose,

the Hermitian transpose and the conjugate of X, respectively.

The Euclidean norm of a vector is ‖ . ‖ and the norm of a

complex number is |.|. CN (., .) denotes a circularly-symmetric

complex Gaussian distribution, and N3(µ,Σ) is a trivariate

normal distribution with mean µ and covariance matrix Σ.

C and R are sets of complex and real numbers.
d→ shows

convergence in distribution, and tr(A) is trace of matrix A.

II. SYSTEM MODEL

We assume a BS with N transmitting antennas and M

receiving antennas which aims to serve a communication

single-antenna user in the downlink while sensing a target

located at a point far away from the BS (point target). We

consider a mono static radar setting: the direction of arrival

(DoA) and the DoD are the same. The BS sends X ∈ CN×L,

a narrow-band dual functional radar communication signal

matrix, defined by:

X =
√
ptws, (1)

where L > N is the length of the radar pulse/communication

frame, w ∈ CN×1 is the beamforming vector, and s ∈ C1×L

is the white Gaussian signaling data stream for the user with

unit power, 1
L
ssH ≈ 1 when L is sufficiently large ([15]). pt

is the transmit power of the BS. We assume that w lies in the

complex span of the channel vector of the users and target.

Thus, we have:

w =
b1h+ b2a

‖ b1h+ b2a ‖ , (2)

where h = [h1 h2...hN ]T ∈ CN×1, is the channel vector

between the BS and the user, whose elements are inde-

pendent and identically distributed (i.i.d.) with distribution

CN (0, 1). More precisely, element i-th can be expressed as

hi = mi + jni with mi, ni ∼ N (0, 1
2 ). For all i, the

elements mi and ni are i.i.d. Also, by assuming even number

of transmitting antennas, the transmit array steering vector

is: a(θ) = [e−jπ sin(θ)N−1
2 ...ejπ sin(θ)N−1

2 ] ∈ CN×1, where θ

is the azimuth angle of the target relative to BS, which is

uniformly distributed in the interval [0, π]. b1, b2 ∈ C are two

constant numbers which can be optimized to maximize the

SINR of the user or minimize the CRLB. We express i-th

element of a(θ) as ai = e−jfi , where fi = π sin(θ)N−(2i−1)
2 .

We note that if we had only user or target, maximum ratio

transmission (MRT) beamformer, which is h

||h|| for the user

and a

||a|| for the target, would be optimal, which means the

SINR of the revived signal would be maximum. We note that

although instantaneous h and a(θ) are known at the BS, outage

probability is a suitable performance metric, as the channel

vectors are random. The received signal at the user is,

yu = hHX+ zu, (3)

zu ∈ C1×L is the additive white Gaussian noise (AWGN)

vector where each of its elements has the distribution of the

form CN (0, σ2
u). When the BS transmits X to sense the target,

it receives back the reflected echo signal matrix as,

Yr = αb(θ)a(θ)HX+ Zr, (4)

where Zr ∈ CM×L is AWGN matrix which its elements

being i.i.d. and having the distribution of the form CN (0, σ2
r).

b(θ) ∈ CM×1 is the receive array steering vector and α ∈ C

represents the reflection coefficient. Based on (3) and (1), the

user’s SINR is,

SINR =
pt

σ2
u

|hHw|2. (5)

In Appendix C of [16], the CRLB for a given θ was derived

as (6), where A(θ) = b(θ)aH(θ); Rx = 1
L
XXH ≈ ptwwH

is the sample covariance matrix of X. Inserting (1)- (5) into

(6) and after some algebraic manipulation, the CRB(θ) is

simplified as,

CRB(θ) =
σ2
r

2Lpt|α|2||b.||2|aHw|2 . (7)



CRB(θ) =
σ2
Rtr(AH(θ)A(θ)Rx)

2 | α |2 L(tr(AH(θ)A(θ)Rx)tr(A.H(θ)A.(θ)Rx)− | tr(A.H(θ)A(θ)Rx) |2)
(6)

III. PERFORMANCE ANALYSIS

In this section, we analyse the system performance and

calculate the OP the user, i.e., P (SINR < γ), and OP of the

target, i.e., P (CRB > ǫ).

A. OP of the user

Based on (5) and (2), the SINR of the user is:

SINR =
pt

σ2
u

|hH(b1h+ b2a)|2
|b1h+ b2a|2

=
pt

σ2
u

|∑N

i=1(b1|hi|2 + b2h
∗
i e

−jfi)|2
∑N

i=1 |b1hi + b2e−jfi |2)
(a)
=

pt

σ2
u

(
∑N

i=1 xi)
2 + (

∑N

i=1 yi)
2

(
∑N

i=1 ki)

(b)
=

pt

σ2
u

X2 + Y 2

K
, (8)

where (a) is due to defining random variables xi =
R(b1|hi|2 + b2h

∗
i e

−jfi), yi = I(b1|hi|2 + b2h
∗
i e

−jfi), and

ki = |b1hi + b2e
−jfi |2, in which R and I indicates real

and imaginary parts; (b) is due to defining X =
∑N

i=1 xi,

Y =
∑N

i=1 yi and K =
∑N

i=1 ki. Therefore, the OP of the

user, Pu, is:

Pu = P (SINR < γ) = P (
pt

σ2
u

X2 + Y 2

K
< γ)

(a)
= Eθ{P (

pt

σ2
u

X2 + Y 2

K
< γ)|θ}

=

∫ π

0

P (
pt

σ2
u

X2 + Y 2

K
< γ)|θ)fθ(θ)dθ, (9)

, where (a) follows by conditioning on θ. Thus, in order to

calculate the inner probability, we need to derive the joint

PDF of X , Y , and K . We note that X , Y , and K (also xi, yi,

and ki) are not independent, as they are functions of hi and

fi. By conditioning on θ, fi, ∀i = 1, ..., N , will be treated

as constant in the following. We define N random vectors,

di = [xi, yi, ki]
T ∈ R3×1, ∀i = 1, ..., N . For any pair of j

and i 6= j, the vectors dj and di are independent from each

other because his are i.i.d.; more precisely, these vectors are

i.i.d. Thus, by using multidimensional central limit theorem

(CLT) [17], when N is large 1 (which holds for the case of

MIMO ISAC, due to using large antenna arrays), we have:

√
N [

1

N
(

N
∑

i=1

di)− µd]
d→ N3(0,Σd), (10)

1Section IV shows that for N > 9, multidimensional CLT holds. Moreover,
in [12] and with the help of simulation, the authors show that the accuracy
of CLT for a one dimensional random variable holds for N > 8.

which means
∑N

i=1 di
d→ N3(Nµd, NΣd), where µd and Σd

are mean vector and covariance matrix of di (the same for

all i = 1, ..., N ). Therefore, [X,Y,K]T
(d)→ N3(Nµd, NΣd).

Thus, by finding µd and Σd with the aid of Lemma 1 (proof

in Appendix A), the joint PDF of X , Y , and K is derived.

Lemma 1. By defining b1 = |b1|ejφ1 and b2 = |b2|ejφ2 , µd

and Σd are calculated as (11) and (14), respectively:

µd = [|b1| cos(φ1), |b1| sin(φ1), |b1|2 + |b2|2]T . (11)

We note that as derived in Lemma 1, the joint conditional

PDF of X , Y , and K is independent of θ and φ2. Using this

and the assumption of uniform distribution for θ, (9) will be:

Pu =P (
pt

σ2
u

X2 + Y 2

K
<γ)=

∫∫∫

pt

σ2
u

X2+Y 2

K
<γ

f(X,Y,K) dX dY dK,

(12)

where f(X,Y,K) is the PDF of a trivariate normal distribution

with a mean vector of Nµd and a covariance matrix of

NΣd
2. Integrating a general multivariate normal PDF over

arbitrary interval has no general analytical expression, and we

must use numerical methods such as the numerical method

of ray-tracing [18]. However, since the domain is quadratic,

we simplify the quadratic form into a weighted sum of non-

central chi-square variables. Then, we calculate this integral

[18, 19]. First, we write the domain pt

(σ2
u)

X2+Y 2

K
< γ in

a quadratic form. Since all the constant parameters as well

as the random variable k are positive, we can express the

domain with X2 + Y 2 − K(
γσ2

u

pt
) < 0, which is equal to

the domain uTQ2u + q1
Tu < 0, where u = [X,Y,K]T ,

Q2 =





1 0 0
0 1 0
0 0 0



, and q1 = [0, 0,− γσ2
u

pt
]T . Thus, the prob-

lem turns into finding the probability of uTQ2u+q1
Tu < 0

when u has the distribution N3(Nµd, NΣd). We note that

u = Sr + Nµd, where r is a standard trivarate normal, and

S =
√
NΣd

1
2 . Thus, r = S−1(u − Nµd), which cause a

transformation to the integral domain as rT Q̃2r+ q̃1
T r < 0,

where Q̃2 = SQ2S, and q̃1 = 2SQ2Nµd + Sq1. Thus, the

problem turns into finding the probability of standard normal

r in the domain rT Q̃2r + q̃1
T r < 0. Next, by eigenvalue

decomposition of Q̃ = VD̃VT , in which V is orthogonal, we

use another transformation, t = VT r, which is also standard

trivariate normal. It results in a transformation in the integral

domain as tT D̃t + ãT t =
∑

i D̃iχ
′2

1,(
ãi

2D̃i
)2

+ b̃ < 0, where

ã = VT q̃1, b̃ ∼ N (m, s), χ′2 are chi-square variables with

2We remark that by deriving f(X, Y,K), we can also calculate the

ergodic rate as E[log1+SINR] =
∫∞
0

P (X
2+Y 2

K
>

σt(2
t−1)
pt

)dt =
∫∞
0

∫∫∫
X2+Y 2

K
>

σt(2
t
−1)

pt

f(X, Y,K)dX dY dKdt.



1 degree of freedom, and D̃i are the diagonal element of D̃.

Thus, tT D̃t+ ãT t, in which t is standard trivariate normal, is

a generalized chi-square variable 3and the problem turns into

finding the cumulative density function (CDF) of this variable

at zero.

B. OP of the target

Based on (7), (2), and with the assumption of b(θ) having

the same configuration as a(θ), we have:

CRB(θ) =
σ2
r

2Lpt|α|2||b.||2|aHw|2

=
6σ2

r

Lpt|α|2(M − 1)(M)(M + 1)π2 cos2(θ)

|b1h+ b2a|2
|aH(b1h+ b2a)|2

(a)
= g(θ)

∑N
i=1 |b1hi + b2e

−jfi |2
|∑N

i=1(b1e
jfihi) + b2N |2

(b)
=

Kg(θ)

X̃2 + Ỹ 2 + 2NR(b2)X̃ + 2NI(b2)Ỹ +N2|b2|2
, (13)

where (a) is due to defining g(θ) ,
6σ2

r

Lpt|α|2(M−1)(M)(M+1)π2 cos2(θ) , (b) is due to defining

X̃ =
∑N

i=1 x̃i, Ỹ =
∑N

i=1 ỹi and K =
∑N

i=1 ki, where

x̃i = R(b1e
jfihi), ỹi = I(b1ejfihi), and ki is defined

in subsection III-A. Therefore, the OP of the target, Pc,

is as (15). In order to calculate the inner probability of

(15), we need to derive the joint PDF of X̃ , Ỹ , and K .

We note that X̃ , Ỹ , and K (also x̃i, ỹi, and ki) are

not independent, as they are functions of hi and fi. By

conditioning on θ, fi, ∀i = 1, ..., N , will be treated as

constant in the following. We define N random vectors,

d̃i = [x̃i, ỹi, ki]
T ∈ R3×1. For any pair of j and i 6= j

the vectors d̃j and d̃i are independent and have identical

distribution because his are i.i.d.. By using multidimensional

CLT, when N is large, we have:
∑N

i=1 d̃i

(d)→ N3(Nµ̃d, NΣ̃d),
where µ̃d and Σ̃d are mean vector and covariance matrix

of d̃i (the same for i = 1, ..., N ), respectively. Therefore,

[X̃, Ỹ ,K]T
(d)→ N3(Nµ̃d, NΣ̃d). Thus, by finding µ̃d and Σ̃d

with the aid of Lemma 2 (proof in Appendix B), the joint

PDF of X̃ , Ỹ , and K is derived.

Lemma 2. µ̃d and Σ̃d are calculated as (16) and (17),

respectively:

µ̃d = [0, 0, |b1|2 + |b2|2]T (16)

Σ̃d=







|b1|
2

2 0 |b1|2|b2| cos(φ2)

0 |b1|
2

2 |b1|2|b2| sin(φ2)
|b1|2|b2| cos(φ2) |b1|2|b2| sin(φ2) (|b1|4 + 2|b1|2|b2|2)







(17)

We note that as derived in Lemma 2, the joint conditional

PDF of X̃ , Ỹ , and K is independent of θ and φ1. Using

this and uniform distribution for θ, and defining the domain

3One can calculate its parameters using the formula at [18] or with the help
of MATLAB toolbox provided by its authors.

D(θ, X̃, Ỹ ,K) = K

X̃2+Ỹ 2+2NR(b2)X̃+2NI(b2)Ỹ+N2|b2|2
>

ǫ
g(θ) , (15) will be:

Pc =
1

π

∫ π

0

∫∫∫

D(θ,X̃,Ỹ ,K)

f(X̃, Ỹ ,K) dX̃ dỸ dK, dθ, (18)

where f(X̃, Ỹ ,K) is the PDF of a trivariate normal distribu-

tion with a mean vector of Nµ̃d and a covariance matrix of

NΣ̃d
4. For each θ, we can follow the method of Subsection

III-A and write the domain D(θ, X̃, Ỹ ,K) in a quadratic form.

Then, by calculating the parameters of the generalized chi-

square variable obtained from some transformation on the

domain, the inner triple integral will be the complement of the

CDF (a function of θ, X̃, Ỹ ,K) of this generalized chi-square

variable at zero. Finally, the outer integral on θ is calculated.

IV. NUMERICAL RESULTS

We consider a BS with N = 15 (unless stated otherwise)

and M = 17 transmitter and receiver antennas. The power

budget and the noise variance at the user and BS are pt = 10
(unless stated otherwise), σr = 1, and σu = 1, receptively.

The length of the radar frame and the reflection coefficient

are L = 30 and α = 1, respectively. the beamforming vector

parameters are |b1| = .2, |b2| = .8, φ1 = π
3 , and φ2 = 0

(unless sated otherwise). The simulation results are based on

10000 randomly seeded channel realizations. It is not possible

to plot the joint PDF of X , Y , and Z , defined in (III-A).

However, Fig. 1, created by Mont-Carlo simulation, shows

the joint PDF of X and Y , which confirms the numerical

approximation 5.

Fig. 2 and Fig. 3 show the OP of the user, Pu, and OP of

the target, Pc, respectively, versus γ and ǫ (the thresholds of

the OP) for two different value of N and pt. As expected,

with increasing γ (ǫ), the OP of the user (target) increases

(decreases). Moreover, by increasing pt, both the OP of the

user and the target decrease due to the increment in the

received signal by user and reflected signal by the target.

Furthermore, as the number of antennas N increases, both

the OP of the user and the target decrease due to a more

focused and directed beamforming vector. It is worth noting

that even when by reducing the number of antennas to N = 9,

the simulation results closely match the analytical results,

indicating that the CLT still holds even for a small number of

antennas. In summery, increasing N and pt improve the system

performance in both communication and sensing aspects.

To demonstrate the trade off between S & C, Fig. 4, shows

the achievable region of the OP of the target and the OP of the

user based on |b1| (solid lines) and |b2| (dashed lines) when

N = 9. The OP of the target and the user are calculated

4We remark that by deriving f(X̃, Ỹ , K), we can

also calculate the ergodic CRB as E[log1+CRB] =
1
π

∫ π

0

∫∞
0

∫∫∫
D̃(t,θ,X̃,Ỹ ,K)

f(X̃, Ỹ ,K)dX̃ dỸ dKdtdθ where

D̃(t, θ, X̃, Ỹ ,K) = K

X̃2+Ỹ 2+2NR(b2)X̃+2NI(b2)Ỹ +N2|b2|2
>

˜(2t−1)
g(θ)

5The joint PDF of X and K , as well as Y and K , is similar to Fig. 1, with
different mean vector and covariance matrix. Due to the space limitations, we
ignored it.



Σd =







|b2|
2

2 + |b1|2 cos2(φ1) |b1|2 cos(φ1) sin(φ1) |b1|(|b1|2 + |b2|2) cos(φ1)

|b1|2 cos(φ1) sin(φ1)
|b2|

2

2 + |b1|2 sin2(φ1) |b1|(|b1|2 + |b2|2) sin(φ1)
|b1|(|b1|2 + |b2|2) cos(φ1) |b1|(|b1|2 + |b2|2) sin(φ1) (|b1|4 + 2|b1|2|b2|2)






(14)

Pc = P (CRB(θ) > ǫ) =

∫ π

0

P (
Kg(θ)

X̃2 + Ỹ 2 + 2NR(b2)X̃ + 2NI(b2)Ỹ +N2|b2|2
> ǫ)|θ)fθ(θ)dθ (15)

Fig. 1: Histogram of the joint

PDF of X and Y with pa-

rameter |b1| = .2, |b2| = .8,

φ1 = π
3 , and φ2 = 0.
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Fig. 4: OP of target versus OP

of the user for different |b1|
and and |b2|

for different value of |b1| and |b2|. Our parameters are as

before, except for γ = 8 and ǫ = 8 × 10−7. This figure

reveals that by increasing |b1| (decreasing |b2|) (when moving

to the left-hand side of the figure, |b1| increases and |b2|
decrease), the Op of the user (target) decreases (increases),

showing an improvement in the communication performance

and a degradation in sensing performance. This is because by

increasing |b1| (decreasing |b2|), we steer the beamforming

vector toward user, resulting in a higher error estimation for

θ.

V. CONCLUSION

We analysed the fundamental performance of a downlink

MIMO ISAC system and investigated the impact of random-

ness in the channels. The OP of the user for communication

and the OP of the target were derived as our performance

metrics. We used a MRT beamformer to share resources

between S & C and observed the trade-off between them.

By allocating more power towards the user direction, the

OP of the user decreased, indicating an improvement in

communication performance. However, the OP of the target

increased, implying a higher error in angle estimation for the

target.
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APPENDIX A

PROOF OF LEMMA 1

First, we expand the variable b1|hi|2+b2h
∗
i e

−jfi = xi+jyi,

where hi = mi + jni is defined at section II, and xi, yi, and

ki are defined at section III-A. (for simplification, we omit the

subscript i as di = [xi, yi, ki]
T s for i = 1, ..., N are i.i.d. and

have the same mean vector and covariance matrix):

b1|h|2 + b2h
∗e−jf= |b1|ejφ1 |h|2+ |b2|ej(φ2−f)(m− jn) (19)

After some simple calculation and using cos(a + b) =
cos(a) cos(b)− sin(a) sin(b) and sin(a+ b) = sin(a) cos(b)+
cos(a) sin(b), the real and imaginary parts of this variable

is derived as (20). Moreover, k is shown at (21). Next, we

calculate the mean vector µd = [E{x}, E{y}, E{k}]T . The

moments of a normal random variable, e∼ N (0, σ2), are [20]:

E{e2k−1} = 0, E{e2k} = σ2k (2k)!

2kk!
. (22)

By using (22), and the fact that m and n are i.i.d with the

distribution of N (0, 1
2 ), we have:

E{m} = E{n} = E{m3} = E{n3} = 0;

E{m2} = E{n2} =
1

2
; E{m4} = E{n4} =

3

4
. (23)

Since expectation is a linear operation and by using (23) and

the fact that all other variables except m and n in (20) and

(21) are constant (conditioned on θ), we have:

E{x} = |b1| cos(φ1);E{y} = |b1| sin(φ1);E{k} = |b1|2 + |b2|2;
(24)

Next, we calculate the covariance matrix Σd. By definition,

we have:

Σd =





var(x) cov(xy) cov(xk)
cov(xy) var(y) cov(yk)
cov(xk) cov(yk) var(k)



 (25)

where var(.) and cov(.) denotes variance and covariance.

Using (23), (24), the definition of covariance, and after some

mathematical derivations, we can calculate each element of

the covariance matrix as in (14). The proof is complete.

APPENDIX B

PROOF OF LEMMA 2

First, we have b1hie
jfi = |b1|ej(φ1+fi)(mi + jni) = x̃i +

jỹi, where x̃i, ỹi, are defined at section III-B (for brevity, we

omit the subscript i as d̃i = [x̃i, ỹi, ki]
T s for i = 1, ..., N are

i.i.d with the same mean vector and covariance matrix). After

some simple calculations, we have:

x̃ = |b1| cos(φ1 + f)m− |b1|n sin(φ1 + f),

ỹ = |b1| cos(φ1 + f)n+ |b1|m sin(φ1 + f). (26)

Next, we calculate the mean vector µ̃d =
[E{x̃}, E{ỹ}, E{k}]T . Since expectation is a linear operation

and by using (23) and the fact that all other variables except

m and n in (26) and (21) are constant (conditioned on θ), we

have:

E{x̃} = 0;E{ỹ} = 0. (27)

Using (23), (24), (27), and the definition of covariance, and

after some mathematical derivations, we can calculate each

element of the covariance matrix Σ̃d as in (17). The proof is

complete.



x = R(b1|h|2 + b2h
∗e−jf ) = |b1|(m2 + n2) cos(φ1) + |b2|m cos(φ2 − f) + |b2|n sin(φ2 − f),

y = I(b1|h|2 + b2h
∗e−jf ) = |b1|(m2 + n2) sin(φ1) + |b2|m sin(φ2 − f)− |b2|n cos(φ2 − f), (20)

k = |b1h+ b2e
−jf |2 = m2|b1|2 + n2|b1|2 + 2m|b1b2| cos(−φ1 + φ2 − f) + 2n|b1b2| sin(−φ1 + φ2 − f) + |b2|2. (21)
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