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Abstract—This paper studies the deployment of multiple mov-
able antennas (MAs) at the base station (BS) for enhancing
the multiuser communication performance. First, we model the
multiuser channel in the uplink to characterize the wireless
channel variation caused by MAs’ movement at the BS. Then, an
optimization problem is formulated to maximize the minimum
achievable rate among multiple users for MA-aided uplink mul-
tiuser communications by jointly optimizing the MAs’ positions,
their receive combining at the BS, and the transmit power of
users, under the constraints of finite moving region of MAs,
minimum inter-MA distance, and maximum transmit power of
each user. To solve this challenging non-convex optimization
problem, a two-loop iterative algorithm is proposed by leveraging
the particle swarm optimization (PSO) method. Specifically, the
outer-loop updates the positions of a set of particles, where
each particle’s position represents one realization of the antenna
positioning vector (APV) of all MAs. The inner-loop implements
the fitness evaluation for each particle in terms of the max-
min achievable rate of multiple users with its corresponding
APV, where the receive combining matrix of the BS and the
transmit power of each user are optimized by applying the
block coordinate descent (BCD) technique. Simulation results
show that the antenna position optimization for MAs-aided BS
can significantly improve the rate performance as compared to
conventional BS with fixed-position antennas (FPAs).

Index Terms—Movable antenna (MA), antenna positioning,
uplink communication, particle swarm optimization (PSO).

I. INTRODUCTION

W ITH the development of sixth-generation (6G) and
beyond wireless communication systems, there is an

urgent need for exploring large-capacity and high-reliability
communication technologies [1], [2]. To achieve this goal,
multi-user/multi-antenna or so-called multiple-input multiple-
output (MIMO) communication technologies have been widely
investigated to improve the spectral and energy efficiency
by exploiting the spatial multiplexing [3], [4]. However, the
antennas in conventional MIMO systems are deployed at fixed
positions, which cannot fully exploit the degrees of freedom
(DoFs) in the continuous spatial domain for optimizing the
spatial multiplexing performance.

In order to overcome this fundamental limitation, movable
antenna (MA) has been recently proposed as a new solution
for fully exploiting the wireless channel variation in the
continuous spatial domain [5]–[8]. Different from conventional
fixed-position antennas (FPAs), each MA is connected to the
radio frequency (RF) chain via a flexible cable, which allows
its position to be flexibly adjusted in a given spatial region with
the aid of a diver component or by other means, for achieving
more favorable channels to enhance the communication perfor-
mance. In [5], the hardware architecture and channel charac-

terization for MA systems were presented, and the advantages
of MAs over conventional FPAs were demonstrated in terms
of signal power improvement, interference mitigation, flexible
beamforming, and spatial multiplexing. In [6], a field-response
based channel model for MA-aided communication systems
was developed, which characterizes the channel variation with
respect to MAs’ positions. Based on the field-response based
channel model, the channel capacity of the MA-aided MIMO
system was maximized in [7] by simultaneously adjusting the
MAs’ positions in transmitter and receiver located regions.
Moreover, it was validated that jointly designing the positions
of transmit and receive MAs can improve the multiplexing
performance of MIMO systems. Besides, the total transmit
power of multiple users was minimized in [8] by jointly
optimizing the single-MA position and the transmit power of
users, as well as the receive combining matrix of FPAs at the
base station (BS) under the uplink multiuser communication
setting. It was demonstrated that the MA-aided multiuser
system can not only increase the channel gain but also achieve
more effective interference mitigation over FPAs. Note that
the above performance improvement of MA systems relies on
the availability of complete channel state information (CSI)
between the entire transmit and receive regions where the an-
tennas are located. To this end, a novel successive transmitter-
receiver compressed sensing (STRCS) method was proposed
in [9] for channel estimation in MA-aided communication
systems, where the complete CSI between the transmit and
receive regions was reconstructed by estimating the multi-
path components. However, none of the existing works [5]–[9]
investigated the employment of MAs at the BS to enhance the
communication performance of multiple users.

In light of the above, this paper investigates a new MA-aided
uplink multiuser communication system where multiple MAs
are deployed at the BS to serve multiple users simultaneously,
and each user is equipped with a single FPA. In particular,
we study the joint optimization of MAs positioning, receive
combining at the BS, and transmit power of different users
to maximize their minimum achievable rate, subject to the
constraints of finite moving region of MAs, minimum inter-
MA distance, and maximum transmit power of each user.
To solve the formulated non-convex optimization problem
with highly-coupled variables, a two-loop iterative algorithm
is developed based on particle swarm optimization (PSO) to
obtain a sub-optimal solution efficiently. In the inner-loop, for
a given MAs positioning solution, transmit power of each user
and receive combining matrix at the BS are jointly designed
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Fig. 1. Illustration of the uplink transmission between K FPA-users and the
BS equipped with M MAs.

by applying the block coordinate descent (BCD) technique. In
the outer-loop, a PSO-based algorithm is proposed to optimize
MAs’ positions, where the fitness function of each particle
which represents a MAs positioning solution is the max-min
achievable rate obtained in the inner-loop. Simulation results
demonstrate that compared to conventional BS with FPAs, the
proposed new BS architecture with MAs can significantly im-
prove the rate performance by antenna position optimization.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, K single-FPA users are served by the
BS equipped with M MAs, each of which is connected to an
RF chain via a flexible cable, thus enabled to move in a local
two-dimensional (2D) region Cr at the BS for improving the
channel conditions with users. We consider the space-division
multiple access (SDMA) of users communicating with the BS
in the uplink simultaneously, and thus the number of users is
assumed not exceeding that of MAs at the BS, i.e., K ≤ M .
The position of the m-th receive MA can be represented by its
Cartesian coordinates, rm = [xm, ym]T ∈ Cr for 1 ≤ m ≤ M .
Without loss of generality, the 2D region for antenna moving,
i.e., Cr, is assumed as a square region of size A×A.

The received signal at the BS is processed using a digital
combining matrix, which yields

y = WHH(r̃)P1/2s+WHn, (1)
where W = [w1,w2, · · · ,wK ] ∈ CM×K is the receive com-
bining matrix at the BS, H(r̃) = [h1(r̃),h2(r̃), · · · ,hK(r̃)] ∈
CM×K is the channel matrix from all K users to the
M MAs at the BS with r̃ = [rT1 , r

T
2 , · · · , rTM ]T denoting

the antenna positioning vector (APV) for MAs, P1/2 =
diag

{√
p
1
,
√
p
2
, · · · ,√pK

}
is the power matrix with pk, 1 ≤

k ≤ K, representing the transmit power of user k, s is the
independent and identically distributed (i.i.d.) transmit signal
vector of users each with normalized power, i.e., E(ssH) =
IK , and n ∼ CN (0, σ2IM ) is the zero-mean additive white
Gaussian noise (AWGN) with average power σ2.

A. Channel Model

We employ the filed-response based channel model in [6],
where the channel response is the superposition of the coeffi-
cients of multiple channel paths between the transceivers. Let
Lk denote the total number of receive channel paths at the BS
from user k, 1 ≤ k ≤ K. Then, the signal propagation phase
difference of the l-th path for user k between the position of

the m-th MA and the reference point at the BS, r0 = [0, 0]T ,
is written as

ρk,l(rm) = xm sin θk,l cosϕk,l + ym cos θk,l, (2)
where θk,l and ϕk,l are the elevation and azimuth AoAs for the
l-th receive path between the user k and the BS. Accordingly,
the field-response vector (FRV) of the receive channel paths
between the user k and the m-th MA at the BS is given by
[6]

fk(rm) =
[
ej

2π
λ ρk,1(rm), ej

2π
λ ρk,2(rm), . . . , ej

2π
λ ρk,Lk

(rm)
]T

.

(3)
As such, the channel vector between user k and the BS is
obtained as

hk(r̃) = FH
k (r̃)gk, (4)

where Fk(r̃) = [fk(r1), fk(r2), · · · , fk(rM )] ∈ CLk×M do-
nates the field-response matrix (FRM) at the BS, and gk =
[gk,1, gk,2, · · · , gk,Lk

]T is the path-response vector (PRV),
which represents the multi-path response coefficients from
user k to the reference point in the receive region. As can
be observed, the channel coefficient [hk(r̃)]m = fk(rm)Hgk

between the m-th MA and user k is the sum of all elements
of gk weighted by the unit-modulus elements in fk(rm)H. As
a result, small movement of each MA can change the channel
vectors of all users significantly due to the phase variations of
multiple channel paths (while their amplitude variations are
relatively much less and thus negligible).

B. Problem Formulation
At the BS, the receive signal-to-interference-plus-noise ratio

(SINR) for user k is given by

γk =

∣∣wH
k hk(r̃)

∣∣2 pk
K∑

i=1,i̸=k

∣∣wH
k hi(r̃)

∣∣2 pi + ∥wk∥22 σ2

. (5)

Thus, the achievable rate for user k is calculated as
Rk = log2 (1 + γk). (6)

In this paper, we aim to maximize the minimum achievable
rate among all users to improve the overall performance by
jointly optimizing the APV of MAs at the BS, i.e., r̃, their
receive combining matrix, i.e., W, and the transmit power
matrix, i.e., P. The max-min rate optimization problem is
formulated as1

max
r̃,W,P

min
k

{Rk} (7a)

s.t. rm ∈ Cr, 1 ≤ m ≤ M, (7b)
∥rm − ri∥2 ≥ D, 1 ≤ m ̸= i ≤ M, (7c)
0 ≤ pk ≤ pmax, 1 ≤ k ≤ K. (7d)

Constraint (7b) indicates that each MA can only move in the
given receive region, Cr. Constraint (7c) ensures that minimum
inter-MA distance D at the BS for practical implementation.
Constraint (7d) ensures that transmit power of each user is
non-negative and does not exceed its maximum value, pmax.
Note that problem (7) is an non-convex optimization problem
with highly coupled variables. Existing optimization tools

1The field-response information in the angular domain, including AoAs
and PRVs, is assumed to be known, which can be acquired by using channel
estimation methods for MA systems, such as STRCS in [9].



cannot be directly used to obtain the globally optimal solution
for problem (7) with polynomial complexity in terms of M
and K.

III. PROPOSED SOLUTION

Since there are three highly coupled matrices/vectors in
the optimization variables of problem (7), the conventional
alternating optimization method approach by optimizing one
of them with the other two being fixed may not work well as
it may lead to an undesired local optimal solution. To address
this problem, we propose a two-loop iterative algorithm based
on PSO. In the inner-loop, for any given APV, a BCD-
based algorithm is developed to iteratively solve the receive
combining and transmit power optimization. In the outer-loop,
a PSO-based algorithm is applied to optimize the APV, where
the fitness function of each particle (i.e., APV) is the max-min
achievable rate obtained in the inner-loop.

A. Receive Combining and Transmit Power Optimization

In the inner-loop of the proposed algorithm, in order to
calculate the fitness value of each particle, which represents
an APV solution, we need to solve the following problem to
determine the receive combining matrix and transmit power
matrix for any given APV:

max
W,P

min
k

{Rk} (8a)

s.t. 0 ≤ pk ≤ pmax, 1 ≤ k ≤ K. (8b)
Note that for any given APV r̃ and transmit power matrix

P, the optimal receive combining matrix W can be derived
in closed form based on the minimum mean square error
(MMSE) receiver [10], i.e.,

Ŵ(r̃,P) =
(
H(r̃)PH(r̃)H + σ2IM

)−1
H(r̃)

≜ [ŵ1, ŵ2, · · · , ŵK ] ,
(9)

with ŵk =
(
H(r̃)PH(r̃)H + σ2IM

)−1
hk(r̃). Substituting

(9) into (5), the receive SINR for user k given in (5) can
be rewritten as

γ̂k =
pk[A]k,k

K∑
i=1,i̸=k

pi[A]k,i + bk

, (10)

where [A]k,i =
∣∣ŵH

k hi(r̃)
∣∣2 , 1 ≤ k, i ≤ K, is the entry in the

k-th row and i-th column of matrix A ∈ CK×K and bk =
∥ŵk∥22 σ2, 1 ≤ k ≤ K, is the k-th entry of column vector
b = [b1, b2, · · · , bK ]T ∈ CK×1.

For any given APV r̃ and receive combining matrix W, in
order to distinguish with the transmit power matrix used to cal-
culate the receive combining matrix in the previous iteration,
we introduce the transmit power vector p = [p1, p2, · · · , pk]T
as an intermediate variable in the current iteration. Therefore,
problem (8) can be equivalently transformed into

max
p,η

η (11a)

s.t. γ̂k ≥ η, 1 ≤ k ≤ K, (11b)
0 ≤ pk ≤ pmax, 1 ≤ k ≤ K, (11c)

where η represents the minimum SINR among the users.
It is easy to verify that the optimal solution for problem
(11) is obtained as the constraints in (11b) are met with

equality [11]. Otherwise, we can always adjust the transmit
power of certain users to ensure the equality holds with
the minimum SINR unchanged. In other words, the linear

equations pk[A]k,k/η =
K∑

i=1,i̸=k

pi[A]k,i + bk, 1 ≤ k ≤ K,

always hold, which is equivalent to the following matrix form
of linear equations with respect to p:

D(η)p = b, (12)
where D(η) ∈ CK×K is a square matrix whose diagonal
elements and non-diagonal elements are given by [D(η)]k,k =
[A]k,k/η and [D(η)]k,i = −[A]k,i for 1 ≤ k ̸= i ≤ K,
respectively. Thus, the transmit power vector can be expressed
as a function with respect to η as

p(η) = D(η)
−1

b. (13)

It is worth emphasizing that the solution for transmit power
vector shown in (13) is feasible to problem (11) only if
constraint (11c) is satisfied. Thus, we develop the bisection
method to find the maximum η which makes p(η) satisfy
constraint (11c). First, we choose an initial search interval
(ηmin, ηmax) with ηmin = 0 and ηmax = pmaxhmin/σ

2,
where hmin is the minimum channel gain among users, i.e.,
hmin = Min

{
∥h1(r̃)∥22 , ∥h2(r̃)∥22 , · · · , ∥hk(r̃)∥22

}
. Then,

the feasibility of the middle point of search internal, η =
(ηmin + ηmax)/2, is examined by checking whether p(η)
satisfies constraint (11c). If η is feasible, we update ηmin as η,
and otherwise update ηmax as η. This process is repeated until
ηmax − ηmin < ϵ where ϵ is a positive convergence threshold.

Based on the above analysis, a BCD-based algorithm is
developed to jointly optimize the receive combining matrix
and transmit power matrix with given APV r̃. In each iteration,
for given transmit power matrix P, we obtain a closed-form
solution for receive combining matrix W according to (9). For
given W, we then solve the transmit power vector p by using
bisection method, and update it into P = diag{p}. During the
iterations, the receive combining matrix and transmit power
matrix are alternately optimized until the increase on the
objective value in (8a) is below a small positive value ξ. The
detailed BCD-based algorithm is shown in Algorithm 1. In line
1, the transmit power of all users is initialized to the maximum
power, i.e., P(0) = pmaxIK . Then the channel matrix H(r̃) is
calculated in line 2. With the input P(0) and H(r̃), the initial
receive combining matrix W(0) is obtained by the MMSE
receiver in line 3. Subsequently, the receive combining matrix
and transmit power vector are alternately optimized in lines
4-10 until convergence. Note that in line 8, the minimum
achievable rate among multiple users in the j-th iteration is
defined as

G
(
P(j),W(j)

)
= min

k
{Rk} , (14)

where Rk can be calculated by (5) and (6) with given
P(j) and W(j). The iteration process will terminate if the
relative increase of the objective value is below a convergence
threshold ξ. Finally, the optimal receive combining matrix and
transmit power matrix are obtained, which corresponds to the
max-min achievable rate of multiple users for the given APV,
i.e., R(r̃) = G (P,W).



Algorithm 1: BCD-based algorithm for solving prob-
lem (8).

Input: r̃, M , K, λ, pmax, σ2, {gk}, {θk,l}, {ϕk,l}, ϵ, ξ.
Output: W, P, R(r̃).
1: Set the iteration index as j = 1, and initialize P(0) = pmaxIK .
2: Calculate the channel response matrix H(r̃) according to (4)

for given r̃.
3: Initialize the receive combining matrix W(0) according to (9)

for given P(0) and r̃.
4: repeat
5: Calculate the transmit power vector p(j) via bisection

method for given W(j−1) and H(r̃).
6: Update P(j) = diag{p(j)}.
7: Calculate the receive combining matrix W(j) according to

(9) for given P(j) and H(r̃).
8: Calculate G

(
P(j),W(j)

)
= min

k
{Rk} for given P(j)

and W(j).
9: Update j ← j + 1.

10: until
∣∣∣G (P(j),W(j)

)
− G

(
P(j−1),W(j−1)

)∣∣∣ < ξ

11: Set the transmit power matrix P as P(j).
12: Set the receive combining matrix W as W(j) .
13: Calculate the maximum objective value for given APV r̃,

R(r̃) = G (P,W).
14: return W, P, R(r̃).

B. APV Optimization

In the outer-loop of proposed algorithm, since the optimal
receive combining matrix and transmit power matrix for any
given APV r̃ can be calculated in the inner-loop, the corre-
sponding max-min achievable rate for multiple users can be
accordingly expressed as a function for the APV, i.e., R(r̃).
Thus, the original problem (7) can be transformed to the
following APV optimization problem

max
r̃

R(r̃) (15a)

s.t. rm ∈ Cr, 1 ≤ m ≤ M (15b)
∥rm − ri∥2 ≥ D, 1 ≤ m ̸= i ≤ M. (15c)

To solve this difficult problem, PSO is introduced
as an efficient approach [12]. In the PSO based algo-
rithm, we first randomly initialize N particles with posi-
tions R(0) = {r̃(0)1 , r̃

(0)
2 , ..., r̃

(0)
N } and velocities V(0) =

{ṽ(0)
1 , ṽ

(0)
2 , ..., ṽ

(0)
N }, where each particle represents a possible

solution for the APV. Then, each particle updates its position
according to the known local best position, i.e., r̃n,pbest and
the known global best position, i.e., r̃gbest. Thus, for each
iteration, the velocity and position of each particle are updated
as
ṽ(t+1)
n = ωṽ(t)

n +c1τ1

(
r̃n,pbest − r̃(t)n

)
+c2τ2

(
r̃gbest − r̃(t)n

)
,

(16)
r̃(t+1)
n = B

(
r̃(t)n + ṽ(t+1)

n

)
, (17)

for 1 ≤ n ≤ N with t representing the iteration index.
Parameters c1 and c2 are the individual and global learning
factors, which represent the step size of each particle moving
toward the best position. τ1 and τ2 are two random parameters
uniformly distributed in [0, 1], which aim to increase the
randomness of the search for escaping from local optima. ω
is the inertia weight, which is used to maintain the inertia of

the particle movement.

Due to constraint (15b), if a particle moves out of the bound-
ary of the feasible region, we project its position component
to the corresponding minimum/maximum value, i.e.,

[B(r̃)]i =

 −A
2 , if [r̃]i < −A

2 ,
A
2 , if [r̃]i >

A
2 ,

[r̃]i , otherwise,
(18)

where [r̃]i denotes the i-th element of r̃. The utilization of
projection function B(r̃) in (17) is to ensure that the solution
for APV is always located in the feasible region during the
iterations.

The fitness of each particle is evaluated in the inner-
loop and is given by R(r̃n), 1 ≤ n ≤ N , for maximizing
the minimum achievable rate of multiple users under the
given APV. Moreover, in order to ensure constraint (15c), we
introduce an adaptive penalty factor to the fitness function and
update it as follows [13]

F
(
r̃(t)n

)
= R

(
r̃(t)n

)
− τ

∣∣∣P (
r̃(t)n

)∣∣∣ , (19)

where P (r̃) is a set with the cardinality |P (r̃)|, in which each
entry represents a pair of MAs in the APV r̃ that violate the
minimum inter-MA distance constraint. It can be defined as

P (r̃) = {(rm, ri)| ∥rm − ri∥2 < D, 1 ≤ m < i ≤ M} .
(20)

τ is a large positive penalty parameter which ensures that the
inequality equation R

(
r̃
(t)
n

)
− τ ≤ 0 holds for all APVs.

Thus, during the iteration process, the penalty factor enforces∣∣∣P (
r̃
(t)
n

)∣∣∣ to approach zero, i.e., constraint (15c) is satisfied
eventually.

With the fitness evaluation conducted on each particle, their
individual and global best positions are updated until conver-
gence. The final best position among the particles is generally
a suboptimal solution for APV, and its corresponding receive
combining matrix and transmit power matrix are calculated
by Algorithm 1. The detailed PSO-based overall algorithm
for solving problem (7) is summarized in Algorithm 2. In
line 1, in the 2M -dimensional search space, the position and
velocity of each particle are randomly initialized with each
component uniformly distributed in [−A/2, A/2]. In lines 2-3,
each particle is evaluated by the fitness function, thus finding
the local and global best position. In line 6, the velocity of
each particle is updated according to the relative local and
global best positions, which drive the particle moving in the
feasible region. In lines 7-13, we evaluate the particle’s fitness
value and compare it with that of its local/global best position.
For each particle, if its fitness value is better than that of
its local best position or the global best position, then the
corresponding best locations are replaced with the current
particle’s position. Thus, in lines 4-15, the global best position
can be updated with its fitness value non-decreasing during the
iterations.

Hereto, we have solved the original problem (7). In the
proposed solution, the receive combining matrix and transmit
power matrix are optimal, while the APV is suboptimal in
general .



C. Convergence and Complexity Analysis

Since the overall algorithm is two-loop based, its conver-
gence depends on the convergence of BCD-based algorithm in
the inner-loop and PSO-based algorithm in the outer-loop. The
convergence of Algorithm 1 is guaranteed by the following
inequality:

G
(
P(j),W(j)

)
= G

(
P(j),Ŵ

(
r̃,P(j)

))
(a)

≥ G
(
P(j),Ŵ

(
r̃,P(j−1)

))
(b)

≥ G
(
P(j−1),Ŵ

(
r̃,P(j−1)

))
= G

(
P(j−1),W(j−1)

)
,

(21)

where (a) holds because Ŵ
(
r̃,P(j)

)
is the optimal MMSE

combining matrix for maximizing the SINR of each user under
the current transmit power P(j), and (b) holds since P(j) is the
optimal transmit power searched by bisection method under
the current MMSE combining matrix Ŵ

(
r̃,P(j−1)

)
. It means

that the objective value is non-decreasing during the iterations
in Algorithm 1.

Moreover, the fitness value of the global best position is
non-decreasing during the iterations in Algorithm 2, i.e.,

F
(
r̃
(t+1)
gbest

)
≥ F

(
r̃
(t)
gbest

)
. (22)

Meanwhile, the objective value of problem (7) is always
bounded. Thus, the convergence of the overall algorithm is
guaranteed. Moreover, the convergence performance will also
be validated by simulation in Section IV.

The computational complexity of bisection method for solv-
ing problem (11) is O(K3 log2 ϵ

−1), depending on the search
accuracy ϵ and the number of users K. Denoting the maximum
number of iterations of Algorithm 1 for solving problem (8)
as J , the corresponding computational complexity is given by
O
(
J(M3 +K3 log2 ϵ

−1)
)
. As a result, with the swarm size

N and the maximum number of iterations T , the maximum
computational complexity of Algorithm 2 for solving problem
(7) is O

(
NTJ(M3 +K3 log2 ϵ

−1)
)
.

IV. SIMULATION RESULTS

In the simulations, we consider a scenario where K = 12
FPA-users are served by the BS equipped with M = 16 MAs,
and the distance between user k and the BS is assumed to
be a random variable following uniform distributions, i.e.,
dk ∼ U [20, 100], 1 ≤ k ≤ 12. The carrier wavelength is set as
λ = 0.1 meter (m) and the moving region of MAs at the BS
is set as a square area of size [−3λ/2, 3λ/2]× [−3λ/2, 3λ/2].
We adopt a geometry channel model, in which the numbers
of receive paths for all users are the same, i.e., Lk = L =
10, 1 ≤ k ≤ K. For each user, each element of the PRV is an
i.i.d. CSCG random varible, i.e., gk,l ∼ CN (0, ρd−α

k /L), 1 ≤
k ≤ K, 1 ≤ l ≤ L, where ρd−α

k is the expected channel gain
of user k with ρ = −40 dB representing the path loss at the
reference distance of 1 m, and α = 2.8 denoting the path
loss exponent. The maximum transmit power and noise power
are set as pmax = 10 dBm and σ2 = −80 dBm, respectively.
The elevation and azimuth AoAs for each user are assumed
to be i.i.d. variables following the uniform distribution over

Algorithm 2: PSO-based Algorithm for solving prob-
lem (7).

Input: M , K, Cr , λ, pmax, σ2, {gk}, {θk,l}, {ϕk,l}, N , T , ϵ,
ξ, c1, c2, ω, τ .

Output: r̃,W,P.
1: Initialize the N particles with positions R(0) and velocities
V(0).

2: Evaluate the fitness value for each particle using Algorithm 1.
3: Obtain the local best position r̃n,pbsest = r̃

(0)
n for 1 ≤ n ≤ N

and the global best position
r̃gbest = argmax

r̃
(0)
n

{F
(
r̃
(0)
1

)
,F

(
r̃
(0)
2

)
, ...,F

(
r̃
(0)
N

)
}.

4: for t = 1 to T do
5: for n = 1 to N do
6: Update the velocity and position of particle n according

to (16) and (17), respectively.
7: Evaluate the fitness value of particle n using Algorithm 1

and update it according to (19), i.e., F
(
r̃
(t)
n

)
.

8: if F
(
r̃
(t)
n

)
> F (r̃n,pbest) then

9: Update r̃n,pbest ← r̃
(t)
n .

10: end if
11: if F

(
r̃
(t)
n

)
> F (r̃gbest) then

12: Update r̃gbest ← r̃
(t)
n .

13: end if
14: end for
15: end for
16: Obtain the suboptimal APV r̃ = r̃gbest.
17: Calculate the corresponding receive combining matrix W

and transmit power matrix P according to Algorithm 1.
18: return r̃,W,P.

[−π/2, π/2], i.e., θk,l, ϕk,l ∼ U [−π/2, π/2], 1 ≤ k ≤ K, 1 ≤
l ≤ L. The parameters in Algorithm 2 are set as N = 200,
T = 300, c1 = c2 = 1.4, τ = 10, ξ = ϵ = 10−3 and
ω linearly decreases from 0.9 to 0.4 during the iterations,
respectively. Each curve in the simulation figures is the average
result over 103 user distributions and channel realizations. Two
benchmark schemes for comparison with our proposed APV
optimization are defined as follows. For the FPA scheme, it is
assumed that BS is equipped with FPA-based uniform planar
array, spaced by λ/2. For the alternating position selection
(APS) scheme, the receive moving region is quantized into
discrete locations with equal-distance λ/2 and each MA’s
position is alternately selected with the others being fixed.

First, in Fig. 2, the convergence of the proposed algorithms
for the MA-aided multiuser communication system is pre-
sented. Moreover, in order to validate the effectiveness of
our proposed adaptive penalty factor in (19), we illustrate the
penalty value versus the iteration index. As can be observed,
the minimum achievable rate of all users increases with
the iteration index and remains nearly unchanged after 250
iterations, which demonstrates fast convergence performance.
In addition, the penalty value remains zero after 50 iterations,
which guarantees that minimum inter-MA distance is satisfied.
Particularly, the minimum achievable rate of all users increases
from 1.44 bps/Hz to 2.36 bps/Hz, which yields about 63%
performance improvement.

Next, in Fig 3. we compare the minimum achievable rates
for different schemes versus the number of antennas. It can
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Fig. 2. Objective value and penalty value versus iteration index for the
proposed Algorithm 2.
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Fig. 3. Minimum achievable rate for different schemes versus number of
antennas.

be seen that the proposed scheme outperforms all other
benchmark schemes. With the increasing number of antennas,
the minimum achievable rate increases because there is an
improvement in spatial diversity gain and beamforming gain.
Compared to the conventional FPA scheme, the proposed MA
scheme can leverage spatial freedom to significantly reduce the
number of antennas required for the same rate performance.

Finally, in Fig. 4, we compare the minimum achievable rates
for different schemes versus the number of channel paths.
The minimum achievable rate increases with the number of
channel paths for all schemes since more paths lead to higher
spatial diversity gain and lower correlation among the channel
vectors for multiple users. Besides, the MA scheme can make
use of the channel variation to further reduce the channel
correlation. Thus, the increasing rate of MA scheme is much
higher than that of FPA scheme. In addition, it is shown that
the minimum achievable rate stays at a very large value and is
almost unchanged when the number of paths is large enough,
i.e., 14 or 16. This is because a larger region is required for
antenna moving to fully exploit more spatial diversity with
increasing number of channel paths.

V. CONCLUSION

In this paper, we proposed a new BS architecture with
multiple MAs to improve the multiuser communication rate
performance as compared to traditional BS mounted with
FPAs. We first model the multiuser channel as a function
of the APV to characterize the multi-path response between
the multiple MAs at the BS and the single FPA at each
user. Then, based on this channel model, a joint optimization
problem was formulated for designing the MA positioning,
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Fig. 4. Minimum achievable rate for different schemes versus number of
paths.

receive combining, and transmit power control to maximize
the minimum achievable rate among multiple users, under
the constraints of finite moving region of MAs, minimum
inter-MA distance, and maximum transmit power of each
user. To solve this non-convex optimization problem with
highly-coupled variables, we developed a two-loop iterative
algorithm based on PSO. Simulation results demonstrated
that compared to FPA-based systems, our proposed solution
for MA-aided uplink multiuser communication systems can
significantly improve the rate performance by exploiting the
new design DoF via antenna position optimization.
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