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Abstract—Rate-Splitting Multiple Access (RSMA) has recently
emerged as an effective technique for increasing network capacity
by smartly controlling the tradeoff between decoding and treating
interference as noise. In this paper, aligned with the need
for sustainable wireless networks, we study the energy-efficient
power and rate allocation of the common and private messages
in the downlink of a network where rate-splitting is adopted.
The corresponding energy efficiency maximization problem is
transformed into a multi-agent Deep Reinforcement Learning
(DRL) problem, based on which each private stream transmitted
in the downlink constitutes a different DRL agent. The formu-
lated DRL problem is solved by using Deep Q-Learning (DQL)
algorithm and training a single Deep Q-Network (DQN) from
the cumulative experiences gained from the DRL agents and
their exploration of the environment, i.e., the exploration of
different private-message power allocations. Numerical results
obtained via modeling and simulation verify the effectiveness
of the proposed DQL algorithm, demonstrating that it concludes
solutions that outperform existing approaches from the literature
in the achieved energy efficiency.

Index Terms—Energy Efficiency Maximization, Rate-Splitting
Multiple Access (RSMA), Deep Reinforcement Learning (DRL).

I. INTRODUCTION

Rate-Splitting Multiple Access (RSMA) is a multiple access
technique that has recently gained attention as a promising
solution to overcome the limiting factors of its non-orthogonal
transmission predecessors regarding the problems of signal
decoding complexity and interference mitigation [1]. Consid-
ering the downlink, RSMA suggests that a transmitted message
intended for multiple users is partitioned into a common
and a private message. The common message is decoded by
all users involved in the transmission, whereas the private
message is intended for each user individually. By partially
decoding and partially treating interference as noise, RSMA
achieves a good balance between signal processing complexity
and interference management. The benefits gained from this
tradeoff are directly reflected in the achieved throughput and
spectral efficiency of the network in general, which is a topic
that has been extensively studied from both theoretical [2] and
qualitative viewpoints [3] so far.
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Targeting sustainability and not sufficing solely on high data
rates, a shift is made by modern networks to green commu-
nications and energy efficiency. In this context, quantifying
the performance gain of the RSMA technique in terms of
achieved energy efficiency is crucial though only a handful
of research works have investigated it until now, e.g., [4]-[7].
Early work in [4] studied the optimization of beamforming
and common-rate allocation in Multiple-Input Single-Output
(MISO) broadcast channels, while a similar Single-Input Sin-
gle Output (SISO) setting was examined in [5]. Both works
compared the energy efficiency level of the network against
the one achieved by different multiple access techniques,
verifying that the energy efficiency region of RSMA is equal or
higher. Other more complex network settings were considered
by the authors in [6] and [7] that regard a Cloud Radio
Access Network (C-RAN) and a Reconfigurable Intelligent
Surface (RIS)-assisted RSMA network, respectively, while
controlling the power and rate of the common and private
transmitted messages. As expected, all initial works relied on
convex approximation and heuristic techniques to determine
the corresponding power/beamforming and rate allocations.

As networks become even more complex in the number of
wireless connections, robust optimization techniques constitute
a need rather than a desire. Lately, Deep Reinforcement Learn-
ing (DRL) algorithms are broadly considered to effectively
manage the burden of data and provide near-optimal solutions
to non-convex problems while enabling the network’s self-
configuration based on the trained model. Different value,
policy, or actor-critic-based methods have been implemented
and tested over simple Interference Broadcast Channel (ICB)
setups (e.g., [8]) to perform power allocation in the down-
link. Considering RSMA networks while targeting sum rate
maximization, two similar policy-based DRL methods were
proposed in [9] and [10] to determine the beamforming of the
common and private messages. Another work in [11] designed
an actor-critic-based DRL algorithm to perform computation
offloading decision, power allocation, and decoding order
optimization in the uplink of an RSMA-assisted Mobile Edge
Computing (MEC) network, aiming for the minimization of
the weighted sum of latency and energy consumed for com-
munication and computing. Apparently, the energy efficiency
maximization for RSMA via DRL has been so far overlooked.



In this paper, we aim to fill this gap and design a DRL
algorithm for energy-efficient power and rate allocation of the
common and private messages transmitted in the downlink
of an RSMA network. Owing to its simplicity to implement,
robustness, and low complexity [12], the value-based DQL
algorithm is employed to solve the corresponding energy
efficiency maximization problem after properly designing the
states, actions, and rewards to capture the problem’s required
constraints successfully. Different from the existing works
in the literature of RSMA and DRL, i.e., [9]-[11], in this
paper, we perform a multi-agent DRL modeling and propose
a centralized training and distributed execution approach to the
typical DQL algorithm, enabling the latter to scale well and
provide accurate solutions as the number of users increases in
the network. Each private stream constitutes a different DRL
agent that contributes its personal experience from interacting
with the environment by trying various actions, i.e., private
stream power allocations, to training a common deep network.
The latter DRL modeling can be also adopted and tested under
different policy-based and actor-critic algorithms, which is part
of our current work.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model and the energy efficiency
maximization problem formulation. In Section III, the multi-
agent DRL modeling and distributed DRL architecture are
discussed along with the description of the DQL algorithm.
Section IV presents the numerical evaluation, and Section V
concludes the paper.

II. PROBLEM STATEMENT
A. System Model

We consider a single-cell downlink RSMA communication
network comprising a set of users A" = {1,..., N} served by
a base station located at the center of the cell. The users and the
base station bear both single antenna receivers and transmitter,
respectively, while the data transmissions intended for differ-
ent users are multiplexed over the same frequency band by
adopting the RSMA technique. We denote as W,, the message
intended for user n. Each message W, is split into a common
and a private part, i.e., W5 and W7, respectively. The common
parts intended for all users, ie., W{,..., WS, ..., Wg, are
combined and encoded into a single common stream vy that
is transmitted to all users with downlink transmission power
po [Watts]. The remaining private messages WP Vn € N
are encoded into different private streams v,, and separately
transmitted to the users with downlink transmission powers p,,
[Watts], Vn € N.

Given that the system operates on a per time slot basis, the
transmitted signal by the base station at time slot ¢ is:
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The respectively received signal by each user n is:

N
Ul = G0+ X0 D @
=1

where the channel gain between user n and the base station
is denoted as G and 2\ ~ CN(0,0?) is the corresponding
Additive White Gaussian Noise (AWGN). Specifically, we
define the channel gain between each user n and the base
station as G(t) |h(t) |23, where hn represents the small-
scale Rayleigh fading and (3,, the large-scale fading that can
remain the same over several time slots. To model the time-
varying nature of the channel, we adopt Jake’s model [13]
and express the small-scale Rayleigh fading as a first- order
Gaussian-Markov process as hgf ) = ph(t Vi1 Q, ,
where Q(f) ~ CN(0,1— p?) is an independent and 1dent1ca11y
distributed random variable. The correlation parameter p is
p = Jo(2mfqT), where Jy is the zero-order Bessel function,
fa is the maximum Doppler frequency, and 7' is the time slot
over which the correlated channel variation occurs.

Based on the above, the achievable rate of decoding the
common stream v(()t) transmitted by the base station to each
user n is:
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Without loss of generality, we consider that the channel gains
between the users and the base station are sorted in ascending
manner, i.e., th) < < G’g) <o < Gg\t,). To ensure that
all users n € N can successfully decode the common stream
v(()t), the allocated rates ¢\ of decoding the common stream
at their receivers should satisfy the following condition:
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based on the ordering of the channel gains.

Additionally, for the Successive Interference Cancellation
(SIC) to be successfully implemented at the receiver of each
user n, the following condition should be satisfied:

where min r
neN

N
GOpy) =GOS > prai, 5)

where p;,; [Watts] is the corresponding receivers’ SIC decod-
ing tolerance/sensitivity, which is assumed as the same for all
users. Eq. (5) is rewritten as th)pot) G(t) Zn 1 pn) > Diols
based on the ordering of the channel gains.

After decoding the common stream by each user, the
decoding of the corresponding private stream v,(f) takes place,
the achievable rate of which is:
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Therefore, the total achievable data rate of user n is:
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B. Problem Formulation

In this paper, we strive to address the energy efficiency
maximization problem in a downlink RSMA-based commu-
nication network, which is defined as the ratio between
the sum of the total achievable data rates of all users
n € N as defined in Eq. (7), ie., ZQ;IR%”, and the
total consumed power in the downlink by the base station,
ie., pO + Zn 1pn) [Watts]. Towards achieving this goal,
we optimize the vectors of allocated common-stream rates
c® = [cgt), e ,cgf )7 e ,cg\t])]T and private-stream transmis-
sion powers plt) = [pgt),~-- P ,pg\t,)] by the base
station to the users, as well as the common-stream power p(()t).
The corresponding optimization problem to be solved by the
base station is formally written as follows:
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Eq. (8b) and Eq. (8c) represent the required constraints over
the allocated common-stream rates and powers, respectively,
for the successful decoding and implementation of the SIC
technique at the receivers of the users, as described earlier in
Section II-A. Eq. (8d) indicates the base station’s maximum
power budget ... [Watts], while Eq. (8e) defines the feasible
range of values of the different optimization variables.

III. PROBLEM SOLUTION BASED ON DEEP Q-LEARNING

In this section, we first transform the considered energy
efficiency maximization problem into a multi-agent DRL
problem. The paradigm of centralized training and distributed
execution adopted in this paper is analyzed and discussed.
Then, the algorithmic framework of DQL is presented to solve
the DRL problem.

A. Multi-Agent DRL Model & Architecture

The necessary constituent elements of a typical multi-agent
DRL model are the agents, the environment and its state, and
the agents’ actions and rewards.

Agents: Each private stream 117(, ),Vn € N of the downlink
transmitted signal by the base station to the users is regarded
as a different agent in the proposed DRL model. Given that
there exists a one-to-one mapping between the users and the
private streams, i.e., DRL agents, in the following, we refer to
the agents’ setas N' = {1,..., N} and use index n to indicate
a single agent.

State: At each time slot, the agents observe characteristics
of the environment and form a corresponding description of
what is called state. In the proposed DRL model, the local state

t) observed by agent n includes information pertinent to the
transmission of the corresponding private stream vsl). Note
that the power of the common and private streams changes at
the end of each time slot and remains constant during the next
one [13]. Therefore, at the beginning of time slot ¢, the agents
utilize the p(*~1) and pétil) power information, whereas at
the end of time slot ¢ we refer to p(*) and pét). The agent’s n

state s,(nt) is a tuple of the following eight components:

1) the channel gain Ggf ) at time slot ¢;

2) the channel gain Ggf ~ at time slot £ — 1;

3) the interference sensed from the rest private streams at the
beginning of time slot %, i.e., Z]EJ\M#” G(t)pgt Vo 2

4) the interference sensed from the rest of the prlvate
streams at the beginning of time slot ¢ — 1, ie.,
Sjenen GBS T 4o

5) the power pg,t D of the private stream;

6) the power pét_l) of the common stream;

7) the data rate rﬁ(t) of the private stream at the beginning
of time slot ¢;

8) the data rate c,(f ) of the common stream.

Action: Based on the state sgf ), each agent chooses and

performs an action agf ) € A,, from its set of possible actions
A,,. Given that p,,., is the base station’s maximum power
budget, we define pp, maz = % the maximum allowable
transmission power of the private stream v,(f) and Py, min 18
a corresponding minimum allowable power level. Then, the
agent’s n action space is formally defined as:

1
An—2
A =20 Pn,mazx "
n — y Pn,min, Pn,ymin - y ooy Pnymaz (s
Pn,min

©))

where A,, is the cardinality of the set.
Given the chosen actions a E A, of all agents, the values
of (c(f), (()t)) that maximize the energy efficiency can be
obtained by analytically and exhaustively solving the following

optimization problem:
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c(t >0,¥n and p{ € Py, (10c)
where by Py we denote the set of feasible values of p Po =

{pmw Sen @ Pmas— ZneN al)
Po ) PR
Py its cardmahty Indeed the problem in (10) reduces to a

linear programming problem for the different values of pé)
that can be optimally solved in polynomial time. The obtained
values of (c(*), pét)) satisfy constraints (8b) and (8d), while
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the satisfaction of constraint (8c) is guaranteed later by the
definition of the agent’s reward function.

Reward: As a consequence of the chosen action ag,,t), each
agent m moves to a new state s,(f +1) and receives a scalar
reward feedback signal f,(fﬂ). Aiming to maximize the energy
efficiency of the system, the agent’s feedback signal increases
with an increase in the normalized energy efficiency E—]f,
while it decreases with the level of violation of constraint (8c).
Specifically, if constraint (8c) is satisfied, the feedback signal

(D g given by:
EFE
D) = — 1
5 s (11)
otherwise, it is calculated as follows:
N
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The function tanh(x) asymptotically reaches —1 for negative
values of x. Therefore, by the definition of the feedback signal
in Eq. (12), it follows that the latter tends to zero as the
violation of constraint (8c) grows, enabling the agent to learn
the negative effect of constraint violation.

Concerning the architecture of the proposed DRL frame-
work, a centralized training and distributed execution paradigm
is adopted [13]. Following this paradigm, a single general-
purpose model is trained centrally and shared among the dis-
tributed agents. The agents interact with the environment and
employ the learned actions, generating experience samples fed
back to the centralized model trainer. In this way, we capitalize
on the benefits of multi-agent DRL modeling in terms of
reduced action and state spaces, requiring less memory, com-
putational resources, and execution time while maintaining the
stability and efficiency of a centralized solution. The design
of the reward feedback signal is crucial to effectively optimize
the global objective by the agents’ distributed decisions and
actions. However, given its successful definition, the agents
can quickly learn a more general model, benefiting from
one another. The convergence of the proposed framework is
experimentally shown in Fig. 1 later in Section IV.

B. Deep Q-Learning Algorithm

The DQL algorithm is a value-based DRL model, whose
objective is to approximate the optimal Q-function Q* (s, a; )
using a Deep Q-Network (DQN), where 6 is the vector
of the neural network’s parameters. Specifically, the optimal
Q-function yields the maximum expected discounted sum
of rewards Q™(s,a;0) that an agent can take by selecting
action a at state s using some policy m, i.e., Q*(s,a;0) =
max Q7 (s, a; 0). The latter, in turn, is commonly modeled as
follows:

Q" (s,a;0) =E lz T T

st = S,Cl(t) = a] , (13)
7=0

where 7 is the discounted rate that determines the importance
of future rewards, with v € [0,1]. In the special case that

v = 0, only the instantaneous reward is considered. Note that
in the analysis above, the subscripts n referring to the different
agents have been dropped for generalization purposes.

To combat potential instability issues of the DQL algorithm
due to the high correlation of the successive states observed by
an agent, the experience replay mechanism is used. Based on
this mechanism, N different First In First Out (FIFO) queues
of size M are used, in which each agent n separately stores the
experience acquired at time step ¢ of training, represented by
the tuple elt) = (55,?71)7 asffl), é,”, sgf)). Also, at time slot ¢,
a minibatch D of size D of experiences is randomly created
by a common randomizer, comprising an equal number of
experiences from the different agents’ queues, eliminating in
this way training the DQN over correlated agent experiences.

To approximate the optimal Q-function Q* (s, a; 0), the least
square error is calculated over minibatch D(*) as follows:

>
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and the DQN’s parameters are updated via the gradient de-
scend method with learning rate n € (0, 1]:

0t = 9 — ypveL(W). (15)

Given the updated DQN’s parameters and the agent’s state,
the optimal action that is selected at each time slot ¢ of the
designed DQL algorithm follows a dynamic e-greedy policy.
Let N, denote the number of episodes, each comprising
N; time slots, then the exploration probability of randomly

Algorithm 1 Deep Q-Learning (DQL) Algorithm.
1: Initialize Ne, N¢, 1, €1, en,, M, D.
2: Randomly initialize DQN’s parameters 6.
3: for k =1to N, do
Update ¢;, based on Eq. (16).
5 Derive initial agents’ states snl),Vn.
6 for t = 1to N; do
7: for n =1to N do
8
9

&

if rand() < ¢; then
Randomly select action asf ) cA,.

10 else

11: Select an’ = arg max Q(sgf), an; G(t)).

12: end if "

13: end for

14: Set p) = [a(lt), caf a%)} and calculate
(c®, p(()t)) by solving problem (10).

15: Assign (p(t),c(t),pgt)) solution to the base station
and observe new states sgf +1) and rewards fy(fﬂ) ,Vn.

16: Obtain and store agent’s experience egf ) in the queue.

17: Create a minibatch D(*) and calculate Vg L(6").

18: Update DQN’s parameters 01 based on Eq. (15).

19: Set sg) +— SSH),Vn.

20:  end for

21: end for




selecting an action different from the optimal one a* =
arg max Q™ (s, a; 8, is given by:
k—1
N, —1

where €; and ey, are the initial and final exploration proba-
bilities, accordingly.

Ek:€1+ '(GNC761)3k:1,27"‘aN63 (16)

IV. EVALUATION & RESULTS

In this section, numerical results are presented after proper
modeling and simulation to evaluate the performance of the
proposed DQL algorithm for energy-efficient power and rate
allocation in RSMA networks. In our experiments, we consider
a circular area of 500 m radius with N = 4 users randomly
spatially distributed. The channel gain between the users and
the base station is calculated considering the log-distance path
loss model PL = 120.9 + 37.6log(d) with d measured in
km and log-normal shadowing standard deviation equal to
8 dB. The maximum Doppler frequency is f; = 10Hz and
the time slot duration is 7' = 20ms [13]. The rest of the
communication-related parameters are set as 02 =—-114dBm,
Dot = —94dBm, py, pmin = 1dBm, and pp,q, = 40dBm.
Regarding the proposed DQL algorithm, a feedforward neural
network with 3 hidden layers is chosen, having 200, 100, and
40 neurons, respectively. The input layer has 8 neurons, i.e.,
one neuron for each state feature, while the output layer has
A, neurons equal to the number of power levels of the private
streams. Specifically, the number of power levels of the private
and common streams are set as 4,, = 10 and P, = 100, unless
otherwise explicitly stated. The Rectified Linear Unit (ReLU)
is chosen as an activation function, while the rest of the DQN’s
hyper-parameters are set as N, = 1700, N; = 50, n = 0.01,
€1 = 0.2, ey, = 0.0001, M = 5000, and D = 500.

To assess the achieved energy efficiency optimization level
of the proposed DRL framework (referred to as RS DQL”)
under both wireless networking and algorithmic perspectives,
we consider the following three alternative comparative ap-
proaches. The "No-RS DQL” approach employs a similar
multi-agent DRL modeling and DQL algorithm to derive the
power allocation in an SISO IBC where the messages are not
split, and each user decodes only one message intended for
them. This comparison allows assessing the performance of the
RSMA-based network against an SISO IBC network while at
the same time proving that the employed DQL algorithm can
generalize well and adapt to fit from less to more complicated
network setups that require optimizing a higher number of
communication resources. The RS Algorithm in [5]” regards
a similar RSMA network to ours with the difference that the
joint power and rate allocation problem is decomposed into
sub-problems that are independently solved optimally, and an
algorithm is devised to combine the derived solutions. Last, we
compare against the Weighted Minimum Mean Square Error
(WMMSE) approach, based on which the power allocation is
determined for sum-rate maximization, and then, the achieved
energy efficiency is calculated, considering that the base
station has exhausted its power budget p,,qz.
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Fig. 1: Achieved energy efficiency of RS DQL” and ”No-RS
DQL” over training episodes.
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Fig. 2: Achieved energy efficiency of "RS DQL”, "No-RS
DQL”, RS Algorithm in [5]”, and "RS WMMSE” under
different numbers of users.

Fig. 1 depicts the variation in the energy efficiency op-
timization objective during the different training episodes
under the proposed (i.e., "RS DQL”) and the "NO-RS DQL”
approaches. In the first episodes, where the DQL algorithm’s
exploration probability is high, the optimization objective
increases sharply, resulting in continually improved represen-
tations of the optimal Q-function - especially under the "RS
DQL” approach - until a stabilization energy efficiency level
is reached. The minimal variations at the last training episodes
are attributed to the time-varying nature of users’ channel
gains that follow Jake’s model. Besides, the superiority of the
rate-splitting technique is validated when compared against
the ”No-RS DQL” approach, achieving almost double energy
efficiency at the last episodes of the DQN’s training.

In Fig. 2, the "RS DQL”, ”No-RS DQL”, RS Algorithm
in [5]”, and "RS WMMSE” approaches are compared in terms
of achieved energy efficiency, while accounting for different
numbers of users in the cell. Note that the results presented
for ’RS DQL” and "No-RS DQL” from this point and on
correspond to the average energy efficiency concluded by the
trained DQN over 50 random episodes of 500 time slots each.
A logarithmic scale has been used to better depict the small
variations in the values presented. The "RS DQL” and ”RS
Algorithm in [5]” exhibit a similar decaying trend as the
number of users gets higher due to increased interference
and total transmission power required in the downlink by



the base station. However, a significant performance gap is
shown between them, verifying that DQL is more successful in
concluding an energy-efficient power and rate allocation than
a heuristic algorithm (i.e., [5]). The "No-RS DQL” approach
converges to the mean between the two rate-splitting-based ap-
proaches as the number of users increases, since the increased
interference limits the benefits of rate-splitting. Regarding the
achieved energy efficiency under the ’RS WMMSE” approach,
this is one order of magnitude lower than the rest approaches
due to the WMMSE algorithm seeking to maximize the sum
rate, highlighting the need for energy-efficient solutions.

Fig. 3 presents an analysis of the proposed RS DQL”
approach regarding different values of the base station’s maxi-
mum emitted transmission pOWer P, ;- It is remarkable that as
DPmaz INcreases, the achieved energy efficiency levels decrease
(left vertical axis), which is corroborated by the findings for the
achieved sum data rate (right vertical axis). A huge increment
in Pynqq results in a small or even no increment in the achieved
sum data rate due to higher interference sensed by the users,
which in conjunction with the higher sum of transmission
powers in the denominator of the energy efficiency function,
decreases the energy efficiency values reached.

In Fig. 4, we examine the performance of DQL under the
proposed "RS DQL” approach when increasing the action
space regarding the number of discrete power levels A, Vn.
It is observed that there exists an “optimal” number of power
levels where the tradeoff between exploring different actions
and complexity in the exploration is optimal, which in our
case is A, = 10,Vn as used in the experiments overall.

V. CONCLUSIONS

In this paper, a multi-agent DRL problem was formulated
to address the energy-efficient power and rate allocation of
the common and private streams in the downlink of an RSMA
network. To solve the problem, a DQL algorithm was designed
following the concept of centralized training of the DQN and
distributed execution by the DRL agents. The DRL agents
were mapped to the private streams that explore the wireless
network via their actions, i.e., private stream power alloca-
tions, and contribute the experiences gained to training the
common DQN. The proposed DQL-based approach achieved
at least double energy efficiency levels compared to existing
approaches from the literature. Our current work focuses on
comparing the proposed DQL algorithm with other policy
and actor-critic-based ones, highlighting their strengths and
weaknesses related to the considered RSMA network setting.
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