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Abstract—Integrated Sensing and Communications (ISAC) has
garnered significant attention as a promising technology for the
upcoming sixth-generation wireless communication systems (6G).
In pursuit of this goal, a common strategy is that a unified
waveform, such as Orthogonal Frequency Division Multiplex-
ing (OFDM), should serve dual-functional roles by enabling
simultaneous sensing and communications (S&C) operations.
However, the sensing performance of an OFDM communica-
tion signal is substantially affected by the randomness of the
data symbols mapped from bit streams. Therefore, achieving
a balance between preserving communication capability (i.e.,
the randomness) while improving sensing performance remains
a challenging task. To cope with this issue, in this paper we
analyze the ambiguity function of the OFDM communication
signal modulated by random data. Subsequently, a probabilistic
constellation shaping (PCS) method is proposed to devise the
probability distributions of constellation points, which is able
to strike a scalable S&C tradeoff of the random transmitted
signal. Finally, the superiority of the proposed PCS method
over conventional uniformly distributed constellations is validated
through numerical simulations.

Index Terms—ISAC, OFDM, PCS, ambiguity function

I. INTRODUCTION

The International Telecommunication Union (ITU) has re-

cently granted official recognition to ISAC as one of the six

key usage scenarios of 6G [1]. In this paradigm, the traditional

approach of treating S&C functionalities as separate objectives

is discarded. Instead, they are synergistically designed to

achieve mutual benefits, driven by technological advancements

and commercial demands [2], [3]. To that end, developing

a unified waveform that enables simultaneous information

transmission and target sensing becomes crucial. While OFDM

is widely employed as the default waveform in 4G and 5G

cellular communications, its capability of sensing remains to

be developed in 6G networks [4]. A fundamental issue arisen

in OFDM based ISAC is how to characterize the sensing

performance when signals are embedded with random com-

munication data, which may jeopardize the target detection

performance for sensing. More importantly, how to control

the randomness of the OFDM signal, such that a scalable

performance tradeoff between S&C can be achieved, still

remains an open problem.

It is widely recognized that conventional radar waveforms

require adherence to the constant modulus constraint, such

as the frequency-modulated continuous-wave (FMCW) signals

that are widely adopted for autonomous vehicles [5]. This con-

straint ensures a flat spectrum and facilitates narrow mainlobes

and low sidelobes in the output of matched filtering. Phase

shift keying (such as BPSK, QPSK, 8-PSK)-based OFDM

schemes typically fulfill this requirement. However, higher-

order quadrature amplitude modulation (such as 16-QAM, 64-

QAM) fail to meet this criterion due to randomly varying

amplitudes. Consequently, using the OFDM communication

signal modulated with QAM symbols directly for sensing

leads to compromised sensing performance [6]. Such an issue

becomes increasingly critical in various ISAC applications

in 6G networks. One typical example is vehicle tracking in

NR-V2X networks, where the utilization of legacy OFDM

communication signals for matched filtering becomes essential

in terms of range and Doppler estimation [3], [7].

To measure the sensing performance of random OFDM

communication signals, we adopt the ambiguity function (AF)

as a basic tool, which is defined as the two-dimensional corre-

lation between the transmitted signal and its duplicated version

subject to time-delay and frequency-shift [8]. Specifically, for

random OFDM communication signals, we aim to analyze

the statistical characteristics of their AFs, encompassing the

expected value and variance of the matched filtering output.

While previous studies, such as [9], have explored these

properties for PSK-OFDM, the implications for QAM-OFDM

or other modulation schemes remain unexplored.

On top of the AF analysis, a more important task is

to discover a new degree of freedom (DoF) in waveform

design, allowing us to incorporate a flexible tradeoff be-

tween communication-centric and sensing-centric designs. To

be more specific, we hope to reserve the communication

capability (i.e., the achievable rate) of a given QAM-format

OFDM signal, while improving its sensing ability. We propose
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to realize this goal through a specifically tailored constellation

shaping approach [10]–[13]. Constellation shaping techniques

may be split into two categories: probabilistic constellation

shaping (PCS) and geometric constellation shaping (GCS).

In communication systems, constellation shaping has been

leveraged to minimize the gap between the achievable rate and

Shannon capacity [13]. In this paper, we focus on PCS design

to improve the sensing performance for QAM-OFDM signals,

while striking a scalable S&C tradeoff in ISAC systems.

This paper begins by establishing a model for the OFDM

communication signal and conducting an analysis of its AF.

Subsequently, we highlight the key distinction between PSK

and QAM by examining the variance of the AF. To balance

between S&C objectives, we incorporate the PCS approach

to design a QAM-based constellation. Finally, we evaluate

both S&C performance of the proposed PCS approach through

numerical simulations.

II. SIGNAL MODEL, AMBIGUITY FUNCTION AND

STATISTICAL CHARACTERISTICS

In this section, we commence with the OFDM signal model,

followed by the analysis of the statistical characteristics of its

AF. This lays the foundation for the proposed PCS approach

in Sec. III.

A. Ambiguity Function

We consider a single-symbol OFDM signal with L subcar-

riers expressed as

s(t) =

L−1∑

l=0

Ale
jψl ej2πl∆ft
︸ ︷︷ ︸

φl(t)

rect

(
t

Tp

)

, (1)

where Al and ψl denote the amplitude and phase of the

lth random symbol in the constellation, respectively; Tp is

the symbol duration; rect(t) = 1 for 0 ≤ t ≤ 1, and

zero otherwise. It is noted that the randomness of OFDM

communication signals lies in the discrete random variables

Al and ψl in the given constellation. Assume that there are Q

discrete constellation points, where the qth point is transmitted

with the probability of pq, satisfying
∑Q

q=1 pq = 1. As a

special case, conventional PSK and QAM constellations are

with uniformly distributed points, i.e., pq =
1
Q
, ∀q. Then the

expectation EX{x} =
∑Q

q=1 xqpq refers to the summation

of Q values weighted by their discrete probabilities in the

constellation, where x represents a function of the random

constellation points Ale
ψl . For convenience, we omit the

subscript of EX{x} in the following. With this definition, the

normalized transmit power can be expressed as E{A2
l } = 1.

The AF of s(t) can be then expressed as [8], [9]

X (τ, ν) =

∫ ∞

−∞
s(t)s∗(t− τ)e−j2πνtdt

=

L−1∑

l1=0

L−1∑

l2=0

Al1Al2e
j(ψl1

−ψl2
)

·
∫ ∞

−∞
φl1(t)φ

∗
l2
(t− τ)e−j2πνtdt.

(2)

Note that the integral in (2) may be further recast as
∫ ∞

−∞
φl1(t)φ

∗
l2
(t− τ)e−j2πνtdt

= ej2πl2∆fτ ·
∫ Tmax

Tmin

ej2π((l1−l2)∆f−ν)tdt,

(3)

where Tmin = max(0, τ), and Tmax = min(Tp, Tp + τ).
For notational simplifications, we denote

Tavg =
Tmax + Tmin

2
,

Tdiff = Tmax − Tmin.

(4)

To proceed, we rely on the following equation:
∫ Tmax

Tmin

ej2πftdt =Tdiffsinc (fTdiff) e
j2πfTavg , (5)

where sinc(x) = sin(πx)
πx

. Then it is straightforward to refor-

mulate (3) as
∫ ∞

−∞
φl1(t)φ

∗
l2
(t− τ)e−j2πνtdt = Tdiff (6)

· sinc {[(l1 − l2)∆f − ν]Tdiff} ej2π{[(l1−l2)∆f−ν]Tavg+l2∆fτ}.

Accordingly, the AF may be expressed in compact form as

X (τ, ν) = XSelf(τ, ν) + XCross(τ, ν), (7)

where

XSelf(τ, ν) = Tdiff

L−1∑

l=0

A2
l sinc (−νTdiff) · ej2π(−νTavg+l∆fτ)

XCross(τ, ν) = Tdiff

L−1∑

l1=0

L−1∑

l2=0

l2 6=l1

Al1Al2e
j(ψl1

−ψl2
) (8)

· sinc {[(l1 − l2)∆f − ν]Tdiff} · ej2π{[(l1−l2)∆f−ν]Tavg+l2∆fτ}.

The AF is composed of XSelf(τ, ν) and XCross(τ, ν), which

are the superposition of L self-AF components and L(L− 1)
cross-AF components, respectively.

B. Statistical Characteristics of XSelf(τ, ν)

The expectation of XSelf(τ, ν) is irrelevant to the con-

stellation probabilities, since E{A2
l } = 1 holds for any

constellations. As a consequence, we mainly concentrate on

the variance of XSelf(τ, ν), which can be derived as

σ2
Self(τ, ν) = E[|XSelf(τ, ν)|2]− |E[XSelf(τ, ν)]|2

= T 2
diff

L−1∑

l1=0

L−1∑

l2=0

E
{
A2
l1
A2
l2

}
sinc2 (−νTdiff) · ej2π(l1−l2)∆fτ

− T 2
diff

L−1∑

l1=0

L−1∑

l2=0

sinc2 (−νTdiff) · ej2π(l1−l2)∆fτ . (9)

For PSK, E
{
A2
l1
A2
l2

}
= 1 leads to σ2

Self = 0. In contrast, the

variance for QAM is not zero, and is given as

E
{
A2
l1
A2
l2

}
=

{

E
{
A4
l1

}
, l1 = l2

E
{
A2
l1

}
· E
{
A2
l2

}
= 1, l1 6= l2

(10)



Thanks to (10), we can further simplify (9) as

σ2
Self(τ, ν) = T 2

diffsinc2 (−νTdiff)

{ L−1∑

l1=0

E
{
A4
l1

}

+
L−1∑

l1=0

L−1∑

l2=0,

l2 6=l1

ej2π(l1−l2)∆fτ −
L−1∑

l1=0

L−1∑

l2=0

ej2π(l1−l2)∆fτ
}

= T 2
diffsinc2 (−νTdiff)

L−1∑

l1=0

(
E
{
A4
l1

}
− 1
)
. (11)

The above result suggests that the variance of the AF is

mainly determined by the fourth moment of the constellation

points, namely, E{A4
l }. Moreover, it also clearly indicated

that σ2
Self(τ, ν 6= 0) ≪ σ2

Self(τ, ν = 0). Therefore, the major

impact of randomness lies in the zero Doppler slice σ2
Self(τ, 0),

namely, the variance of autocorrelation function, in the form

of

σ2
Self(τ, 0) = LT 2

diff

(
E
{
A4
l

}
− 1
)
. (12)

Note that the variance is always non-negative by definition.

Hence, we have the following proposition.

Proposition 1 : E
{
A4
l

}
− 1 ≥ 0.

Proof : Denote the number of constellation points by Q

and the qth probability by pq. Owing to
∑Q

q=1 pqA
2
q = 1 and

∑Q

q=1 pq = 1, we have

E
{
A4
l

}
=E

{
A4
l

}
Q
∑

q=1

pq =

Q
∑

q=1

pqA
4
q

Q
∑

q=1

pq

≥
(

Q
∑

q=1

√
pqA

2
q

√
pq

)2

=

(
Q
∑

q=1

pqA
2
q

)2

= 1.

(13)

The equal sign holds when
√
p1A

2

1√
p1

= · · · =
√
pQA

2

Q√
pQ

, i.e.

A2
1 = A2

2 = · · · = A2
Q= 1, leading to unit modulus of all

constellation points, i.e., PSK modulations.

C. Statistical Characteristics of XCross(τ, ν)

Similarly, the variance of XCross(τ, ν) can be expressed as

σ2
Cross(τ, ν) = E{|XCross(τ, ν)|2} − |E{XCross(τ, ν)}|2 . (14)

By noting that

E{Al1Al2ej(ψl1
−ψl2

)} =E{Al1ejψl1 }E{Al2e−jψl2 }
=0, l1 6= l2,

(15)

|E{XCross(τ, ν)}|2 = 0 is obtained. This can be proved

according to the symmetry of constellation points. Therefore,

we only need to compute E{|XCross|2}, which is expressed as

E{|XCross(τ, ν)|2} = T 2
diff

L−1∑

l1=0

L−1∑

l2=0,

l2 6=l1

L−1∑

l′
1
=0

L−1∑

l′
2
=0,

l′
2
6=l′

1

E
{
Al1Al2Al′1Al′2

· ej(ψl1
−ψl2

−ψl′
1

+ψl′
2

)}
sinc {2π [(l1 − l2)∆f − ν]Tdiff}

· ej2π{[(l1−l2)∆f−ν]Tavg+l2∆fτ}sinc {2π [(l′1 − l′2)∆f − ν]Tdiff}
· e−j2π{[(l′1−l′2)∆f−ν]Tavg+l

′
2
∆fτ}. (16)

For further simplifications, it is evident that we only need to

derive

E
{

Al1Al2Al′1Al′2e
j(ψl1

−ψl2
−ψl1

+ψl2
)
}

=







E
{

A2
l1
A2
l′
1

}

, l1 = l2, l
′
1 = l′2

E
{
A2
l1
A2
l2

}
, l1 = l′1, l2 = l′2

0, otherwise

(17)

Note however that XCross(τ, ν) is defined when l2 6= l1 and

l′2 6= l′1 in (16). As a consequence, recalling (17) demonstrates

that all the non-zero components of E{|XCross(τ, ν)|2} are

contributed by the constraints of l1 = l′1 and l2 = l′2, yielding

σ2
Cross(τ, ν) =E{|XCross|2} − 0

=T 2
diff

L−1∑

l1=0

L−1∑

l2=0,

l2 6=l1

E
{
A2
l1
A2
l2

}

· sinc2 {2π [(l1 − l2)∆f − ν]Tdiff} .

(18)

In addition, the condition of l2 6= l1 results in the independent

random variables A2
l1

and A2
l2

. Then we have

E
{
A2
l1
A2
l2

}
= E

{
A2
l1

}
· E
{
A2
l2

}
= 1, l1 6= l2 (19)

Finally, the variance of σ2
Cross(τ, ν) is expressed as

σ2
Cross(τ, ν) =T

2
diff

L−1∑

l1=0

L−1∑

l2=0,

l2 6=l1

sinc2 {2π [(l1 − l2)∆f − ν]Tdiff} .

(20)

When ν = 0, σ2
Cross(τ, ν) can be approximately omitted owing

to sinc(2π(l1−l2)∆f) ≈ 0 for l1 6= l2. In contrast, σ2
Cross(τ, ν)

may be relatively large when ν 6= 0. However, σ2
Cross(τ, ν) is a

deterministic value for each τ and ν, which indicates that it is

always constant for different constellations. As a consequence,

we may only control σ2
Self(τ, ν) through constellation shaping.

III. PCS METHOD FOR ISAC

We now proceed to present the PCS-enabled signaling

design method that allocates the probabilities of constellation

points for OFDM ISAC signals, in order to control the

statistical characteristics of AF. From the above analysis, and

by recalling (11), we naturally hope to devise a constellation

that makes the fourth moment of random amplitude satisfy

E{A4
l } =

∑Q

q=1 pqA
4
q = c0, where c0 is a preset parameter

that controls the variance of the AF, in accordance with the

system’s requirements for S&C. In light of Proposition 1, one

should set c0 ≥ 1. By doing so, σ2
Self(τ, 0) may be adjusted

to control the performance tradeoff between S&C. To realize

this goal, we formulated the following optimization problem

(PCS)







min
p

∣
∣
∣
∣
∣

Q
∑

q=1

pqA
4
q − c0

∣
∣
∣
∣
∣

s.t.

Q
∑

q=1

pqA
2
q = 1,

Q
∑

q=1

pq = 1

0 < pq ≤ 1,

(21)



where p = [p1, p2, ..., pQ]
T represents the probability distri-

bution vector. In (21) we minimize the gap between the fourth

moment of the constellation and a preset value c0, subject to

an average power constraint. It is readily to see that (21) is

a convex optimization problem, which can be directly solved

by CVX toolbox [14]. We also highlight that this operation is

totally offline, which demonstrates that there is a consistent

one-to-one match between each probability distribution of

constellation points and each c0. As a consequence, such a

method can be readily applied in practical base stations and

user ends.

To evaluate the impact of c0 on communications, we rely on

the achievable information rate (AIR) in an AWGN channel

y = x + n, where y, x, and n denote the receive signal, the

transmit data symbols modulated by arbitrary constellations,

and the zero-mean Gaussian noise, respectively. The noise

variance is denoted as σ2. Note that this communication

signal model can be viewed as a single channel case. For the

transmitted OFDM signal with L sub-carriers, the overall AIR

is the superposition of AIRs from all sub-channels. It is known

that in point-to-point (P2P) channels, the AIR is characterized

by the input-output mutual information, which is expressed as

Rsym =EX,Y

{

log2
pY |X(y|x)
pY (y)

}

=
∑

x

p(x)

∫

Y

log2 p(y|x)p(y|x)dy
︸ ︷︷ ︸

−H(Y |X)=− log
2
(πeσ2)

(22)

−
∫

Y

[

log2
∑

x′

p(y|x′)p(x′)
]
∑

x

p(y|x)p(x)dy
︸ ︷︷ ︸

H(Y )

.

Since pY (y) =
∑

x p(y|x)p(x) is the sum of Gaussian

probability density functions (PDFs) weighted by the prior

probabilities of constellation points, the closed-form of H(Y )
cannot be obtained due to the Gaussian mixture PDF pY (y).
Instead, we approximately compute the entropy using Monte

Carlo numerical integrals as follows:

H(Y ) =− EY

[

log2
∑

x

p(y|x)p(x)
]

≈− 1

MC

MC∑

k=1

log2
∑

x

p(yk|x)p(x),
(23)

where MC represents the number of Monte Carlo trials, yk
denotes the kth observation and its conditional PDF p(yk|x)
is with standard Gaussian forms in the kth trial, for each x in

the given constellation. By doing so, the entropy H(Y ) can

be accurately approximated when MC is sufficiently large.

IV. SIMULATIONS

We consider an OFDM signal with 100MHz bandwidth

and L = 64 subcarriers. Unless otherwise specified, we only

adopt 16-QAM/PSK and 64-PSK/QAM for simulations, and

designate the study of higher-order constellations as our future

(a) Ambiguity function.
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(c) Zero delay slice.

Fig. 1. Ambiguity function of 16-QAM and 16-PSK.

works. All the AFs are evaluated in accordance with their

average AF performance, i.e. 1
M

∑M

m=1 |Xm(τ, ν)|, which

experiences M runs and Xm(τ, ν) represents the mth random

realization of AF. In addition, the average AFs are normalized.

First, we evaluate the AF of the OFDM communication

signal by illustrating the difference between 16-PSK and 16-

QAM. As shown in Fig.1, it is evident that 16-PSK exhibits

significantly better performance compared to 16-QAM due

to its lower sidelobes, with a maximum gap of 5dB, in the

autocorrelation function. Additionally, the zero-delay slices of

both 16-PSK and 16-QAM are nearly identical. It is worth

noting that Fig.1(a) displays three peaks, which is a result of

using normalized axes and introduces two additional peaks

caused by the Doppler ambiguity.

Next, in Fig. 2, we plot the analytical results of XSelf(τ, 0)
and XCross(τ, 0), alongside the simulated autocorrelation func-

tions of 16-QAM and 16-PSK. Evidently, the sensing per-

formance gap between 16-QAM and 16-PSK stems solely

from XSelf(τ, 0). Consequently, the statistical characteristics

of XCross(τ, 0) bear no influence on the PCS method. This

coincides with the analysis in Sec. II.

Given a QAM-format constellation, we now test the per-

formance of the proposed PCS approach (referred to as “16-

QAM-PCS”). As shown in Fig. 3, when c0 = 1, the optimiza-

tion model seeks the solution of best sensing performance. For

16-QAM, PCS outputs a unit modulus constellation, which is

close to 8-PSK. Note that it is not a real 8-PSK since the

angles between adjacent constellation points are not equal.
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(a) 16-QAM (b) 16-QAM-PCS: c
0
=1

0 0.02 0.04 0.06 0.08 0.1 0.12
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Fig. 3. PCS results with different c0: 16-QAM and 64-QAM. The brighter
constellation point means its probability is larger.

For 64-QAM, PCS cannot find a constant modulus circle

whose power is one, thereby outputs two constant modulus

circles nearby the unit modulus circle. When c0 increases, the

PCS constellation results in deteriorated sensing performance.

To illustrate this with a system-level simulation, we further

consider a use case of detecting weak targets nearby the

position of strong self-interference (SI), which is applicable for

a practical scenario in full duplex radar sensing systems [15].

The smallest of constant false alarm probability (SO-CFAR)

detector [16] is exploited to address this problem, in order

to exclude the SI from the computation process of detection

threshold. Throughout 5000 Monte Carlo trials, the probability

of false alarm is fixed as 10−4, and the weak target is within

the 8th range cell nearby the SI. The sensing signal-to-noise

ratio (SNR) is defined as the power ratio between the weak

target and the noise, while the power ratio between the SI and

-5 0 5 10

Sensing SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

16-PSK: Uniform Distribution
16-QAM: Uniform Distribution
16-QAM-PCS: c

0
=1.05

16-QAM-PCS: c
0
=1.15

16-QAM-PCS: c
0
=1.25

Fig. 4. Probability of detection versus sensing SNR.

1 1.2 1.4 1.6 1.8 2 2.2

c
0

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

R
sy

m
 (

bp
s/

H
z)

σ
2=0.01

σ
2=0.05

σ
2=0.1

Fig. 5. 16-QAM-PCS: AIR versus c0

the noise is fixed as 10 dB. Then the probability of detection

(Pd) versus the sensing SNR is depicted in Fig. 4, which

distinctly demonstrates that the practical sensing performance

(i.e., the Pd) decreases with the increasing c0.

To evaluate the communication performance, we take 16-

QAM as an example, and compute its AIR in an AWGN

channel with Monte Carlo numerical integrals. In Fig. 5, σ2

represents the power of noise, which controls the receive

communication SNR. For a high SNR case (σ2 = 0.01), it

is revealed that AIR reaches the maximum value 4bps/Hz in

c0 = 1.32, which corresponds to the entropy of the uniformly

distributed 16-QAM. When c0 = 1, the AIR is 3bps/Hz in

terms of the approximated 8-PSK constellation shown in Fig.

3(b), indicating that the best sensing performance is attained at

the price of 1bit/Hz loss. Moreover, there is a distinct tradeoff

between S&C in the region of c0 ∈ [1, 1.32], with known

probability distributions of the constellation in this curve. Note
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that when c0 > 1.32, the PCS is not uniform again, results in

a declining AIR. When c0 > 1.62, the fourth moment reaches

to its largest value and thus AIR keeps constant as well.

Fig. 6 further illustrates the advantages of the proposed PCS

method for various SNR values. As anticipated, both 16-QAM

and 16-PSK approaches reach their capacity limit of 4bps/Hz

when the SNR is sufficiently high. However, in the relatively

low SNR region, such as at SNR=10dB, a noticeable gap

becomes apparent between 16-QAM and 16-PSK. Thanks to

the PCS method, the optimized 16-QAM, i.e., 16-QAM-PCS,

achieves a communication gain at the expense of the sensing

performance loss compared to 16-PSK.

V. CONCLUSION

In this study, we proposed a novel PCS-enabled signaling

design method to implement ISAC functionality using OFDM

communication signals, while enhancing its sensing ability.

By optimizing the derived fourth moment of constellation

amplitudes, we are able to achieve a controllable and scalable

tradeoff between sensing and communications, for OFDM sig-

nals modulated with random QAM symbols. Compared to the

conventional uniformly distributed QAM, the proposed PCS-

enbaled QAM attains better sensing performance. Meanwhile,

compared to the conventional uniformly distributed PSK, our

method improves the AIR in low communication SNR region.

This offline operation demonstrates its potential for practical

6G ISAC applications.

Future work will be conducted from the following aspects:

• The AF analysis may be generalized to the case of

multiple OFDM symbols, rather than being restricted to

a single symbol.

• The fundamental tradeoff of OFDM ISAC system in

terms of pulse shaping and subcarrier power allocation

may also be investigated.

• The achievable rate may be explicitly imposed in the PCS

optimization problem as a constraint, which, however,

needs to be solved via sophisticated numerical methods,

e.g., the celebrated Blahut-Arimoto algorithm [17].
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