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Abstract—Deploying teams of unmanned aerial vehicles (UAVs)
to harvest data from distributed Internet of Things (IoT) devices
requires efficient trajectory planning and coordination algo-
rithms. Multi-agent reinforcement learning (MARL) has emerged
as a solution, but requires extensive and costly real-world training
data. To tackle this challenge, we propose a novel model-aided
federated MARL algorithm to coordinate multiple UAVs on
a data harvesting mission with only limited knowledge about
the environment. The proposed algorithm alternates between
building an environment simulation model from real-world mea-
surements, specifically learning the radio channel characteristics
and estimating unknown IoT device positions, and federated
QMIX training in the simulated environment. Each UAV agent
trains a local QMIX model in its simulated environment and
continuously consolidates it through federated learning with
other agents, accelerating the learning process. A performance
comparison with standard MARL algorithms demonstrates that
our proposed model-aided FedQMIX algorithm reduces the need
for real-world training experiences by around three magnitudes
while attaining similar data collection performance.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have attracted growing
interest in communication networks due to their high mobility,
flexibility, and ease of deployment [1]. One of the most
important applications is data harvesting from geographically
dispersed Internet of Things (IoT) sensor devices, where UAVs
acting as mobile base stations, can establish efficient line-
of-sight (LoS) links with IoT devices. The performance of
data harvesting depends on the dynamic trajectories of UAVs,
and the behavior of each UAV can affect the tasks of other
UAVs. Therefore, it is crucial to design effective trajectories
for UAVs, while considering cooperation between them, in
order to ensure efficient data collection.

Recently, deep reinforcement learning (DRL) algorithms
have been extensively employed to design UAV trajectories
for communication. The authors in [2] employ a centralized
deep deterministic policy gradient (DDPG) approach to opti-
mize multi-UAV trajectories, aiming to minimize the age of
information (AoI) during a data collection mission. However,
centralized learning leads to scalability issues with increasing
agent numbers. The authors in [3] avoid this issue by uti-
lizing a double deep Q-network (DDQN) approach based on
centralized learning with decentralized execution (CLDE) for
multi-UAV path planning to maximize collected data from IoT
sensor nodes. The approach is focused on adapting to a wide
range of scenario parameters, but incurs a high training cost.

QMIX, a classic multi-agent reinforcement learning (MARL)
algorithm with a nonlinear value decomposition that we also
base our approach on, is employed in [4] for multi-UAV
trajectory planning to minimize the average AoI, outperform-
ing other baselines like cluster-based and independent DQN-
based approaches. Moreover, the authors in [5] develop a fully
decentralized MARL framework to maximize data collection
while minimizing AoI and maintaining a certain AoI threshold.
This method utilizes a transformer for temporal modeling
and introduces an intrinsic reward mechanism to enhance the
exploration, achieving better results than other classic MARL
algorithms. In contrast to our approach, all mentioned works
have large training data requirements and assume full prior
knowledge of all device or user positions.

In our work, we also make use of the idea of federated
reinforcement learning (FRL) where learned information is
exchanged between agents without uploading raw collected
data to a central server, thereby accelerating learning without
incurring too high communication overhead costs [6]. For
instance, the authors in [7] utilize FRL to design multiple
UAV trajectories for user localization, lowering localization
error and increasing convergence speed. In another related
application, the authors in [8] propose a distributed feder-
ated multi-agent DDPG algorithm to optimize trajectories for
air and ground unmanned vehicles in emergency situations
leveraging FRL to address data isolation and to accelerate the
convergence.

Despite the satisfactory performance of the aforementioned
algorithms in their respective domains, DRL-based trajectory
planning algorithms may lose their benefits in real-world
scenarios, since collecting real-world training data requires
expensive interaction with actual physical systems [9]. Our
proposed solution to this challenge is based on [10], a first
attempt to design a model-aided DRL algorithm for UAV data
harvesting, however only for the single UAV case in a simpler
environment containing devices with unlimited data.

In this paper, we consider a scenario where multiple energy-
limited UAVs cooperate to collect data from ground devices
with only limited data volume. In our approach1, we make
use of the popular QMIX algorithm [11] and the idea of
FRL [6]. To the best of our knowledge, this is the first

1The final version of this paper has been accepted by IEEE GLOBECOM
Workshops 2023. Code available at https://github.com/Cirrick/Multi UAV
Data Harvesting.
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work that employs FRL with a learned environment model
to design multi-UAV trajectories for IoT data collection. Our
main contributions are summarized as follows:

• We exploit measurements collected by the UAVs to learn
a digital twin of the real-world environment suitable for
training MARL algorithms. To this end, we estimate
unknown IoT device locations using particle swarm opti-
mization (PSO) without requiring prior knowledge of the
radio channel characteristics.

• Leveraging the learned environment, we introduce a
model-aided QMIX-based algorithm to solve the multi-
UAV data harvesting problem that reduces the amount of
costly real-world training data by around three magni-
tudes compared to standard MARL algorithms.

• We further propose a model-aided federated QMIX
(FedQMIX) algorithm to enhance convergence speed
through federated learning consolidating the locally
trained QMIX models at each UAV. This approach helps
to distribute the computational load over all UAVs and to
utilize all available resources efficiently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an urban environment where a set of UAVs
I = {1, · · · , I} are deployed to collect data from various
stationary ground IoT devices. The mission time duration is
discretized into T equal time slots with length ∆t, which are
chosen sufficiently short so that the velocity of each UAV
can be assumed to remain constant within a single time slot.
The position of the i-th UAV at time step t is denoted by
pit = [xit, y

i
t, h

i]T ∈ R3, t ∈ [0, T ], where hi represents the
altitude of the i-th UAV. We assume that each UAV flies at a
different altitude for collision avoidance and that each UAV’s
altitude remains constant throughout mission duration. Each
UAV flies from a predefined starting point pI and will return
to a terminal point pF at the end of the mission. UAVs do not
collect data from the devices at the final time step T .

A set of ground devices U = {1, · · · ,K} is distributed
in the environment, with the k-th device located at uk =
[xk, yk, 0]T ∈ R3. For device k, the amount of remaining data
in its buffer at time step t is denoted by Dk

t . The buffer of
each device is initialized as Dk

0 = Dk
init at the beginning of

the mission. Moreover, the ground devices are divided into two
distinct groups: devices with known locations (referred to as
anchor devices) Uknown, and devices with unknown locations
Uunknown. Accordingly, we have U = Uknown ∪ Uunknown.

A. UAV Model

The action space of each UAV is defined as

A =


00
0


︸︷︷︸
hover

,

0c
0


︸︷︷︸
north

,

−c0
0


︸ ︷︷ ︸

west

,

 0
−c
0


︸ ︷︷ ︸

south

,

c0
0


︸︷︷︸

east

,

00
0


︸︷︷︸
no-op


, (1)

where c denotes the distance that the UAV can move within a
single time step. The no-op action refers to no operation, i.e.,

no movement and no energy consumption, which can only
be chosen when the UAV has drained its energy. Given the
executed action ait ∈ A, the position of the UAV evolves as

pit+1 = pit + ait. (2)
We assume the hover action consumes half the energy of the
movement action as in [10]. Denoting the remaining battery
of the i-th UAV at time step t by bit ∈ R, which evolves
according to

bit+1 =


bit, if ait = no-op,
bit − 0.5, if ait = hover,
bit − 1, otherwise.

(3)

The data harvesting mission terminates when all UAV batteries
are depleted.

B. Channel Model

The channel gain between UAV i and device k at time step
t is modeled as [10]

gi,kt =

{
βLoS + αLoS log10(d

i,k
t ) + ηLoS, if LoS,

βNLoS + αNLoS log10(d
i,k
t ) + ηNLoS, if NLoS,

(4)

where di,kt =
∥∥pit − uk

∥∥
2

is their absolute distance. Let
z ∈ {LoS, NLoS} denote either a LoS or non-LoS (NLoS)
condition, αz is a path loss constant, βz is the average channel
gain at the reference distance d0 = 1m, and ηz represents
the shadowing component modeled as a Gaussian distribution
N (0, σ2

z). Note that both the channel model and associated
parameters are unknown and need to be learned by the UAVs.
The signal-to-noise ratio (SNR) is given by

SNRi,kt =
P100.1g

i,k
t

σ2
, (5)

where P is the transmit power, and σ2 is the white Gaussian
noise power at the receiver. Additionally, the channel gain and
SNR between two UAVs can be modeled analogously. Further-
more, the information rate is given by Ri,kt = log2(1+SNRi,kt )
assumed to be constant within each time slot.

C. Channel Access Protocol

We assume that the communication between the UAVs
and ground devices follows a time-division multiple access
(TDMA) approach. Denoting the data collection status by
qi,kt ∈ {0, 1}, qi,kt = 1 indicates the i-th UAV collects data
from the k-th device at time step t, and otherwise qi,kt = 0. We
assume that each UAV can collect data from only one device
at each time step, imposing the following constraint

K∑
k=1

qi,kt ≤ 1, ∀i ∈ I, t ∈ [0, T − 1]. (6)

Similarly, every device’s data can only be collected by a single
UAV, i.e.,

I∑
i=1

qi,kt ≤ 1, ∀k ∈ U , t ∈ [0, T − 1]. (7)

The value of qi,kt is set according to the max-rate rule in [3]:
among all the ground devices, only the device with available
data and the highest SNRi,kt is considered for data collection



by the i-th UAV. If the i-th UAV collects data from the k-th
ground device, the achievable throughput is given by

Ci,kt =

{
Ri,kt , ifDk

t ≥ Ri,kt ∆t,

Dk
t /∆t, otherwise,

(8)

which is limited by the information rate Ri,kt when the
remaining data of the device is sufficient; otherwise, the UAV
collects all remaining data within one time slot duration ∆t.

D. Problem Formulation

The objective of our algorithm is to design the trajectories
for multiple UAVs to maximize the amount of data collected
from ground devices within mission time. Utilizing the pre-
viously defined UAV mobility model and channel model, this
data collection problem can be formulated as the following
optimization problem

max
×ia

i
t

T−1∑
t=0

I∑
i=1

K∑
k=1

qi,kt Ci,kt ∆t, (9)

s.t. pi0 = pI ,p
i
T = pF ,∀i ∈ I, (9a)

hi ̸= hj ,∀i ̸= j, i, j ∈ I, (9b)

biT ≥ 0,∀i ∈ I, (9c)
(2), (3), (6), (7), (9d)

where ×iait is the joint action of all the UAVs. (9b) ensures
that all the UAVs fly at different altitudes, thereby avoiding
collisions between them. (9c) guarantees that all the UAVs can
reach the terminal positions with remaining battery at the end
of the mission time. This optimization problem is challenging
due to its non-convexity and is further complicated because of
the unknown channel model and unknown device locations.

III. DECENTRALIZED PARTIALLY OBSERVABLE MARKOV
DECISION PROCESS AND QMIX

A. Dec-POMDP

To solve optimization problem (9), we first reformu-
late it as a decentralized partially observable Markov de-
cision process (Dec-POMDP) which is defined as a tuple
(I,S,A×, P,R,Ω×,O, γ), where I denotes a set of I agents,
S describes the state space of the environment, A× = ×iAi

is the joint action space, according to (1), Ai = A is the same
for all the UAVs, and Ω× = ×iΩi is the joint observation
space. At each time step, given action ai ∈ A executed by
agent i, and the joint action ×iai ∈ A×, the environment
transitions from state s ∈ S to next state s′ ∈ S according to
the probability P (s′ | s,×iai). All the agents share the same
reward function R(s,×iai, s′) = r.

In a partially observable environment, each agent can only
access its local observation oi ∈ Ωi according to the observa-
tion probability function O(×ioi, s′,×iai), where ×ioi ∈ Ω×.
Such partial observability is introduced by a limited communi-
cation range between UAVs and devices, which is determined
by the SNR level of the link. A UAV can communicate with
a device if the SNR value of the link between them is greater
than or equal to a threshold SNRthr. The same assumption
is also applied to the communication between two UAVs.

Moreover, we denote the individual local action-observation
history of agent i by τ it = (oi0,a

i
0, o

i
1, · · · ,ait−1, o

i
t) and the

joint action-observation history by ×iτ i. Each agent takes
action according to its policy πi ∈ Πi : Ωi → Ai, and the
joint action-value function under joint policy π is defined as
Qπtot(s,×iai) = Eπ

[∑∞
k=0 γ

krt+k | st = s,×iait = ×iai
]
,

where γ ∈ [0, 1] is the discount factor. Additionally, the indices
of all agents except agent i are denoted by −i.

Action space. The action space is defined in (1). Further-
more, we design a safety controller to only provide feasible
actions for the agents to choose from. The safety controller
ensures that no collisions with map boundaries occur and all
agents reach the destination before their batteries run out by
continuously comparing the distance to the destination and
remaining battery levels. Note that agents with no remaining
battery can only choose the no-op action. Consequently, we
denote the feasible action space of agent i at time step t
checked by the safety controller by Ai,sc

t , and the minimum
battery required to reach the destination by bi,sct .

Observation. The observation of agent i at time step
t is denoted by oit = (oit,1, o

i
t,2, o

i
t,3, o

i
t,4). To be spe-

cific, oit,1 = {ait}ai
t∈Ai,sc

t
consists of the feasible actions

determined by the safety controller. oit,2 includes the fea-
tures between agent i and all the devices, i.e., oit,2 =

{SNRi,kt , χi,kt , Dk
t , d

i,k
t , di,kt,x, d

i,k
t,y, q

i,k
t }∀k∈U , where χi,kt ∈

{0, 1} is a binary variable, indicating whether device k is
reachable by agent i. Specifically, if SNRi,kt ≥ SNRthr, then
χi,kt = 1; otherwise, χi,kt = 0 and Dk

t in oit,2 is set to zero. We
denote the relative distance between agent i and device k along
x and y axis by di,kt,x = xit−xk and di,kt,y = yit−yk, respectively.
Similarly, oit,3 includes the features between agent i and other
agents, i.e., oit,3 = {SNRi,jt , χ

i,j
t , d

i,j
t , d

i,j
t,x, d

i,j
t,y, b

j
t}∀j∈I−i .

Notably, if χi,jt = 0, then all elements related to agent j in
oit,3 except the SNR value are set to zero. The last term of the
observation includes individual features, i.e., oit,4 = (bit, b

i,sc
t ).

State. The global state contains the information of all
the UAVs and devices, regardless of the SNR value, i.e.,
st = (st,1, st,2), where st,1 = {bit, b

i,sc
t , xit, y

i
t, done}i∈I

includes the features of all the UAVs, done ∈ {0, 1} indicates
whether the UAV’s battery is fully depleted, and st,2 =
{Dk

t , x
k, yk}k∈U contains the features of all the devices. This

global state is only available during centralized training.
Reward. The joint reward received at each time step t is

defined as the amount of data collected by all the UAVs which
is given by

rt =

I∑
i=1

K∑
k=1

qi,kt Ci,kt ∆t. (10)

B. QMIX

To solve the Dec-POMDP, we adopt the popular QMIX [11]
algorithm, which non-linearly factorizes the joint action-value
function using a mixing network with leverage of the global
state information, as described by

Qtot(×iτ i,×iai)=Mix(s,Q1(τ
1,a1),···,QI(τ I ,aI);θ), (11)



where Qi(τ i,ai) is the individual action-value function con-
ditioned on the local observation-action history τ i and action
ai, and θ denotes the parameters of the QMIX model. We
randomly sample a batch of B episodes from the replay buffer
to train the QMIX model by minimizing the following loss

L(θ) =
B∑
b=1

T−1∑
t=0

(
ytotb,t −Qtot(×iτ it ,×iait, st; θ)

)2
, (12)

where ytotb,t = rb,t + γmax×iai Qtot(×iτ it+1,×iai, st+1; θ̄)
denotes the temporal-difference (TD) target at time step t of
the b-th episode, θ̄ denotes the target network parameters.

IV. MODEL-AIDED FEDQMIX

Employing MARL algorithms directly in real-world scenar-
ios is usually impractical since collecting large amounts of
training data on physical systems is expensive and can lead
to potential safety concerns [9]. To tackle these challenges,
we propose a model-aided federated MARL algorithm named
model-aided FedQMIX for planning multi-UAV trajectories
in data harvesting missions while significantly reducing the
requirement for real-world training data samples.

Our assumption about the environment setting lies between
agnostic and fully informed. On the one hand, we do not
assume prior knowledge of the wireless channel characteris-
tics, which must be learned by the UAVs, nor do we presume
knowledge of all devices’ positions, which must be estimated
to construct the simulated environment. On the other hand, a
3D map of the environment and position information of only a
subset of devices (anchor devices) are known, which gives the
UAVs the necessary knowledge to localize the devices with
unknown positions and develop an accurate simulated model.

The proposed algorithm alternates between two parts: 1)
learning a simulated environment from real-world measure-
ments, and 2) training the QMIX model for trajectory planning
via federated learning in the simulated environment. Specifi-
cally, UAVs collect measurements from ground devices in the
real world, which are then used to learn the radio channel
model and determine the unknown device locations, as intro-
duced in Section IV-A. The learned information, combined
with a 3D map, is used to build a simulated environment for
each UAV agent. Subsequently, we train a global QMIX model
by exploiting all the UAVs’ resources via federated learning
in the simulated environment, as detailed in Section IV-B.

A. Environment Learning

Akin to [10] but considering a multi-UAV setting, we
employ a neural network to learn the radio channel and use
particle swarm optimization (PSO) along with the learned
radio channel to estimate unknown device locations.

During each real-world deployment and in addition to data
collection, each UAV measures the channel gain between
itself and the devices. Upon episode completion, all UAVs
transmit the gathered measurements to a central server or a
specified UAV for environment model learning. The channel

gain between the i-th UAV and the k-th device at time step t
can be defined as a function ψ with parameters ϑ, as follows

gi,kt =

{
ψϑ(d

i,k
t , ϕi,kt , ωi,kt = 1) + ηLoS, if LoS,

ψϑ(d
i,k
t , ϕi,kt , ωi,kt = 0) + ηNLoS, if NLoS,

(13)

where ϕi,kt = arcsin(hi/di,kt ) is the elevation angle. The
binary variable ωi,kt ∈ {0, 1} indicates whether a measurement
falls into LoS category for ωi,kt = 1 or NLoS otherwise.
The shadowing effect ηz is characterized as N (0, σ2

z). Note
that both the function ψ and the parameters ϑ are unknown
and must be learned. Each measurement in (13) can be
modeled as p(gi,kt ) = (f i,kt,LoS)

ωi,k
t (f i,kt,NLoS)

(1−ωi,k
t ), where

f i,kt,z = N (ψϑ(d
i,k
t , ϕi,kt , ωi,kt ), σ2

z). Akin to [10], the negative
log-likelihood of the measurements is given by

L = log

(
σ2

LoS

σ2
NLoS

) T∑
t=0

I∑
i=1

K∑
k=1

ωi,kt

+
T∑
t=0

I∑
i=1

K∑
k=1

ωi,kt
σ2

LoS

∣∣∣gi,kt − ψϑ(d
i,k
t , ϕi,kt , ωi,kt )

∣∣∣2
+

T∑
t=0

I∑
i=1

K∑
k=1

1− ωi,kt
σ2

NLoS

∣∣∣gi,kt − ψϑ(d
i,k
t , ϕi,kt , ωi,kt )

∣∣∣2 .
(14)

Consequently, the problem of learning the channel model and
estimating the device locations can be transformed into solving
the optimization problem

min
ωi,k
t ,uk,∀t,∀i,∀k

ψ(·),ϑ

L,

s.t. ωi,kt ∈ {0, 1},∀t, ∀i,∀k.

(15)

The above optimization problem is non-convex and hard to
solve directly. Therefore, we decompose (15) into two sub-
problems: i) radio channel learning, and ii) device localization.
In phase one, the radio channel is learned by utilizing the
known locations of anchor devices, and in the second phase,
the learned channel from the previous step is combined with
a PSO algorithm and the 3D map to localize the unknown
devices. Due to the limited space, we refer to [10] for details.

Having estimated the unknown device locations and learned
the radio channel, we utilize this information along with the
map to build a simulated environment for training the MARL
algorithm to design the trajectories for the UAVs.

B. QMIX Model Training via Federated Learning

Adapting the idea of federated learning to make efficient
use of all UAVs’ computational resources and accelerate the
learning process, we create a digital replica of the environment
locally at each UAV, also including virtual instances of all
other UAVs. By running the same MARL algorithm simulta-
neously on each UAV and consolidating the trained models
using federated learning, we obtain a global QMIX model.

While training locally in the simulated environments at each
UAV, virtual agents may take different actions even if they
have the same observations because of the random component
in the ϵ-greedy action selection strategy, leading to diverse



sets of state transitions in individual replay buffers. Federated
learning can help to capitalize on the diversity of experiences
in all UAVs’ replay buffers by periodically consolidating
locally learned QMIX models. This allows us to make efficient
use of all available training experiences while avoiding the
excessive communication overhead of centralized learning.

Specifically, each UAV i trains its QMIX network pa-
rameters θi in its own simulated environment. Every Nfreq
episodes, all the UAVs periodically send their trained model to
an aggregator, which computes a global model by averaging
over local models as θ = 1

I

∑
i∈I θ

i. The aggregator then
sends the global model back to each UAV, where training in
their respective local simulated environments continues.

C. Algorithm

The model-aided FedQMIX algorithm is summarized in
Algorithm 1 and consists of three steps: 1) The UAVs employ
the learned policy to generate trajectories for collecting data
and measurements in the real world; 2) The acquired mea-
surements are used to learn the radio channel and estimate
unknown device locations, which are utilized to build the
simulated environment; 3) The UAV agents train the QMIX
model using federated learning in their respective simulations
for a predefined number of episodes. The algorithm terminates
after carrying out Emax real-world experiments.

V. NUMERICAL RESULTS

We consider a 3D urban environment composed of city
blocks with buildings of different heights. We design two
types of map: the Return-Base Map (RBM) and the Reach-
Destination Map (RDM), the top views of which are illustrated
in Fig. 1(a) and Fig. 1(b), respectively. The RBM covers an
area of 600m×800m with the same start and terminal positions
for the UAVs located at the center of the map, while the RDM
extends over a larger area of 1000m×1200m, where the UAVs
are required to navigate from the start position situated at
the lower left corner to the destination located at the upper
right corner. The flying altitudes of the UAVs are set as 55m,
60m, and 65m, respectively. We adopt the same QMIX hyper-
parameters as in [11], except that we use the Adam optimizer
with a learning rate of 5×10−4. True propagation parameters
are chosen similar to [10]. The federated learning aggregation
period is set as Nfreq = 50 and a total of Emax = 30 real-
world episodes are executed during training. After completing
a real-world episode, each UAV undergoes local training for
N = 1000 episodes in its simulated environment. This helps
to reduce the need for expensive real-world experiments.

Fig. 1 shows two example trajectories generated by the
model-aided FedQMIX algorithm for three UAVs. On both
maps, the UAVs learn to efficiently divide the entire map into
sub-regions that are then assigned to individual UAVs, without
the need for centralized coordination. Total collected data is
thereby maximized and energy wastage by UAVs congregating
is avoided, which demonstrates the effectiveness of the learned
cooperative behavior. In Fig. 1, the red crosses indicate the
estimated locations of unknown devices in the final episode,

Algorithm 1: Model-aided FedQMIX
1: Initialize a set of I UAVs, replay buffers Bi, the parameters θ

of QMIX at the aggregator, local QMIX parameters θi = θ,
target network parameters θ̄i = θi, target network update
period Ntarget, aggregation period Nfreq.

2: for e = 0, 1, · · · , Emax − 1 do
3: 1) Real-world experiment:
4: UAVs use the policy derived from step 3) to plan trajectories

for data collection while also gathering measurements.
5: 2) Learn the environment as described in Section IV-A
6: 3) Simulated-world experiment:
7: for episode = 0, 1, · · · , N − 1 do
8: for Each UAV i ∈ I in parallel do
9: t = 0, initialize state s0

10: while bjt ≥ 0,∀j = 1, 2, . . . , I do
11: for each simulated agent j = 1, 2, . . . , I do
12: τ j

t = τ j
t−1 ∪ {(o

j
t ,a

j
t−1)}

13: Choose action with ϵ-greedy policy, i.e.,

aj
t =

{
randomly select from Aj,sc

t , w.p. ϵ
argmax

a
j
t∈Aj,sc

t
Qj(τ

j
t ,a

j
t), w.p. 1− ϵ

14: end for
15: Take joint action ×ja

j
t , observe ×jo

j
t+1, get reward

rt and next state st+1

16: Store (st,×jo
j
t ,×ja

j
t , rt, st+1,×jo

j
t+1) in Bi

17: t = t+ 1
18: end while
19: Randomly sample a batch of B episodes from Bi

20: for each time step t in each episode in the batch do
21: Qtot = Mix(st, Q1(τ

1
t ,a

1
t ), · · · , QI(τ

I
t ,a

I
t ); θ

i)
22: Calculate target Qtot using target network θ̄i

23: end for
24: θi ← θi − α∇L(θi) w.r.t. θi using Eq. (12)
25: if mod(episode,Ntarget) = 0 then
26: Reset θ̄i = θi

27: end if
28: end for
29: if mod(episode,Nfreq) = 0 then
30: Update θ = 1

I

∑
i∈I θi and set θi ← θ,∀i ∈ I

31: end if
32: end for
33: end for

which are closely aligned with the actual device positions and
showcase the accuracy of the learned environment model.

We compare our proposed algorithm with several bench-
marks including the conventional QMIX algorithm with-
out model learning, and fully decentralized independent Q-
learning (IQL). Besides, we also train the QMIX model
without federated learning, referred to as model-aided QMIX.
In this approach, the training only occurs in one of the UAVs’
simulated environments. Once the training is finished, the
learned policy is shared with other UAVs. The performance
comparison results of both maps are shown in Fig. 2. The
IQL approach considerably underperforms QMIX due to the
non-stationarity issue in independent learning methods [12].
The model-aided QMIX algorithm demonstrates a notable
reduction in the need for real-world experiences while at-
taining comparable performance levels to the baseline QMIX
algorithm. Significantly, our proposed model-aided FedQMIX
algorithm shows superior performance compared with other
approaches. It achieves the same performance as QMIX
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(a) Return-Base Map (RBM)
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(b) Reach-Destination Map (RDM)

Fig. 1: Example trajectories, where the UAV’s trajectory color corresponds to
the device it is collecting data from, while black indicates no data collection.
Anchor IoT devices are represented as triangles and devices with unknown
locations as stars. a) RBM: K=10 devices with Dk

init =16000 initial data
units to be picked up by three UAVs with bi0 = 60 initial battery units. b)
RDM: K=10 devices with Dk

init=20000 initial data units to be picked up
by three UAVs with bi0=80 initial battery units.

trained with real-world samples while requiring around three
magnitudes less real-world data. Additionally, in comparison
with model-aided QMIX, it converges faster and achieves
better performance within the equivalent training timeframe.
This can be attributed to the adoption of federated learning
in training the QMIX model, which exploits the information
from all UAVs’ trained models, resulting in faster convergence
and distributed computation load across UAVs.

VI. CONCLUSION

We have proposed a novel model-aided FedQMIX algorithm
for designing cooperative multi-UAV trajectories in data har-
vesting missions. By leveraging federated learning and training
the QMIX model within a learned simulation environment, our
approach has significantly accelerated the learning process and
reduced the extensive requirement for real-world experiences
while achieving the same data collection performance as the
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Fig. 2: Performance comparison of proposed model-aided FedQMIX and
baseline algorithms. The x-axis indicates real-world training episodes on a
logarithmic scale. Results are averaged over three random runs.

baseline methods. In future work, we plan to fully decentralize
the environment model learning approach.
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