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Abstract—Cell-free massive multiple-input multiple-output
(MIMO) is an emerging technology that will reshape the ar-
chitecture of next-generation networks. This paper considers
the sequential fronthaul, whereby the access points (APs) are
connected in a daisy chain topology with multiple sequential
processing stages. With this sequential processing in the uplink,
each AP refines users’ signal estimates received from the previous
AP based on its own local received signal vector. While this
processing architecture has been shown to achieve the same
performance as centralized processing, the impact of the lim-
ited memory capacity at the APs on the store and forward
processing architecture is yet to be analyzed. Thus, we model the
received signal vector compression using rate-distortion theory to
demonstrate the effect of limited memory capacity on the optimal
number of APs in the daisy chain fronthaul. Without this memory
constraint, more geographically distributed antennas alleviate the
adverse effect of large-scale fading on the signal-to-interference-
plus-noise-ratio (SINR). However, we show that in case of limited
memory capacity at each AP, the memory capacity to store the
received signal vectors at the final AP of this fronthaul becomes
a limiting factor. In other words, we show that when deciding on
the number of APs to distribute the antennas, there is an inherent
trade-off between more macro-diversity and compression noise
power on the stored signal vectors at the APs. Hence, the available
memory capacity at the APs significantly influences the optimal
number of APs in the fronthaul.

Index Terms—Uplink cell-free massive MIMO network, daisy
chain fronthaul topology, sequential processing, limited memory
capacity constraint, macro diversity.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the critical enablers for next-generation mobile networks. It
promises spectral efficiency (SE), energy efficiency (EE), and
reliability and allows for low-cost hardware at both receiver
and transmitter [1]. Massive MIMO provides additional de-
grees of freedom in the spatial domain, allowing it to separate
users spatially rather than via time and frequency scheduling.
This reuse of time and frequency resources dramatically in-
creases the average throughput. Cell-free massive MIMO has
attracted a lot of academic attention recently as a promising
massive MIMO technology for the future generation of wire-
less networks due to its ability to mitigate the adverse effect
of large-scale fading on the users’ signal-to-interference-plus-
noise-ratio (SINR) and to provide uniform service to all users
[2]. In such a network, the antennas are distributed among
the access points (APs), and all or a few nearby APs will
serve each user. As the serving APs are selected based on

their vicinity to the user, the cell-edge phenomenon and poor
coverage of traditional cellular networks disappear.

In cell-free massive MIMO networks, the APs cooperate to
serve the users with direct information exchange, e.g., in a
sequential fronthaul topology [3]–[6] or indirectly through a
central processing unit (CPU) in a star fronthaul topology [2],
[7], [8]. In the uplink of a cell-free massive MIMO network
with a daisy chain fronthaul topology, each AP estimates the
users’ signal and sends the local estimates to the next AP
in the sequence. In this way, the users’ signal estimates are
refined through the daisy chain fronthaul. Hence, sequential
processing in a daisy chain fronthaul topology requires the
AP to store their received signal vector in the memory until
they receive the corresponding information from the previous
AP in the sequence. In [4], it is proven that with sequential
processing at each AP connected in a daisy chain fronthaul
topology, and for the same number of exchanged scalars on
each chunk of fronthaul, the minimum mean square error
(MMSE) optimal solution can be achieved in the last AP.
However, the memory constraint at each AP in the sequential
fronthaul is neglected.

Non-idealities such as limited bandwidth fronthaul links,
hardware impairment, and low-resolution analog-to-digital
converters (ADCs) in both cellular and cell-free massive
MIMO networks are discussed in [9]–[16], among others. In
[9], it is shown under which scenarios the correlation between
the distortion vector elements in a massive MIMO network
with hardware impairment has a negligible impact on the
users’ SE. The ADC bit allocation among antennas in a cell-
free massive MIMO network is discussed in [10]–[13]. In [11],
the SE and EE maximization problems are formulated as a
function of the number of ADC bits used to represent the
antenna signals, subject to a constraint on the total number
of bits or power consumption. In [13], adaptive intra-AP and
inter-AP bit allocation for ADCs is considered. In [14], [15],
the impact of limited capacity fronthaul links on the users’ SE
and EE in cell-free massive MIMO uplink is investigated.

The number of bits to quantize the received signal vector
is a vital cost metric for the ADC, in the case of limited
fronthaul capacity and when the vector needs to be stored in
memory in a network with sequential fronthaul topology, such
as in this paper. The sequential fronthaul topology is studied
in, e.g. [3]–[6]. However, these works do not consider the
limited capacity of the memory at the APs. This paper studies
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sequential processing for uplink users’ signal estimation in a
cell-free massive MIMO network with a daisy chain fronthaul
topology under the realistic assumption of a limited memory
capacity constraint at each AP.

Contribution: To the best of the authors’ knowledge, this
paper is the first to address the problem of limited memory
capacity availability at the APs due to the sequential process-
ing in the cell-free massive MIMO with daisy chain fronthaul.
First, we use a tractable model based on rate-distortion theory
to model the compression of the received signal vectors in
the memory of the APs. Second, using two limited memory
capacity models, the effect of limited memory capacity on the
optimal number of APs in the daisy chain fronthaul topology
is quantified in the simulation section.

A. Notation

We denote vectors and matrices with boldface lower-case
and upper-case letters, respectively. Transpose and conjugate
transpose operations are denoted by superscripts T and H,
respectively. A circularly symmetric complex Gaussian distri-
bution with covariance matrix X is represented as CN (0,X).
Symbol E{x} denotes the mean of x. H(x) is the differential
entropy of x, and I(x; x̂) is the mutual information between
x and x̂. The Euclidean norm of x is shown as ∥x∥. We use
diag(X) to signify the elements on the main diagonal of X
and diag(x) for a diagonal matrix with x as its main diagonal.
Furthermore, X = blkdiag(X1, . . . ,XL) is a block-diagonal
matrix with matrices Xi i = {1, . . . , L} as diagonal blocks.
X1/2 is the square-root of X. For two matrices A and B,
A ⪰ B means that A − B is positive semi-definite. Finally,
tr(X) denotes the trace of matrix X.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Distributed processing in cell-free massive MIMO networks
is a necessity as it avoids overloading a single AP with massive
computations, and it enables truly scalable implementations
and, hence, large-scale deployments. Distributed processing
has become even more attractive because of the growing
interest in the sequential fronthaul topology [3]–[6]. In this
paper, we consider distributed uplink signal estimation using
the least-squares (LS) method in a cell-free massive MIMO
network with limited memory APs. There are L APs, each
having N antennas, connected in a daisy chain fronthaul
topology, serving K single antenna users.

A. Recursive least-squares (RLS) for uplink signal estimation

The received signal vector at AP l in the uplink is given as
follows:

yl = Hls+ nl, (1)

where s ∼ CN (0, pIK) is the users’ signal, Hl ∈ CN×K and
nl ∼ CN (0, σ2IN ) are the local channel matrix and noise
vector at AP l, respectively. The channel vector between user
k and AP l is drawn from a correlated Rayleigh distribution,
i.e. Hl[:,k] ∼ CN (0,Rkl), where subscript [:, k] denotes the
kth column of Hl and βkl = tr(Rkl)/N . We assume a block
fading model in which the channel matrix Hl remains constant

in a coherence interval of τc = BcTc samples, with Tc and Bc

the coherence time and coherence bandwidth of the channel,
respectively [17]. Out of τc samples, τu samples are used for
the uplink. We assume perfect channel state information (CSI)
at the APs, which is possible with a unique pilot per user and
high enough transmission power during pilot transmission. A
compressed version of the received vector ŷl is stored in the
local memory of AP l and is defined as follows:

ŷl = yl + ql = Hls+ zl, (2)

where zl = nl + ql is a spatially correlated noise vector
with zero mean and covariance matrix Zl. The network-
wide compressed received signal and noise vector can be
expressed as ŷ =

[
ŷT
1 . . . ŷT

L

]T
and z =

[
zT
1 . . . zT

L

]T
,

respectively. The noise vectors in different APs are assumed
to be independent, i.e., Z = blkdiag(Z1, . . . ,ZL).

Algorithm 1 summarizes the RLS steps for sequential uplink
signal estimation among APs [6]. Note that the superscript n in
algorithm 1 differentiates the uplink samples in one coherence
block. However, this superscript is not used anywhere else in
the paper for notational simplicity. By updating the estimates

Algorithm 1 RLS algorithm for users’ signal estimation
1: Initialize:
2: Γ0 = pIK
3: ŝn0 = 0K×1,∀n ∈ [1 : τu]
4: for l = 1 . . . L do
5: Γl = Γl−1 − Γl−1H

H
l Z

−H/2
l (IN +

Z
−1/2
l HlΓl−1H

H
l Z

−H/2
l )−1Z

−1/2
l HlΓ

H
l−1

6: for n = 1 . . . τu do
7: ŝnl = ŝnl−1 + ΓlH

H
l Z

−H/2
l (ŷn

l − Z
−1/2
l Hlŝ

n
l−1).

8: end for
9: end for

of the users’ signal as in algorithm 1, the users’ signal
estimates at the final AP will be:

ŝ = (HHZ−1H+
1

p
Ik)

−1HHZ−1ŷ. (3)

In a sequential fronthaul, the number of received signal
vectors to be stored grows linearly with the number of APs
in the network and should be processed at every symbol time.
Thus, this memory should be very fast so that every sample can
be processed promptly. On the contrary, the local CSI should
be stored only once per coherence block in each AP. Section
II-B elaborates on storing the local received signal vectors in
the limited memory. In Section III, the compression of the
local received signal vector at each AP is defined from a sum-
SE optimization problem constrained by the limited memory
capacity at the AP.

B. Storage of received signal vectors in the limited memory
APs

In a daisy chain fronthaul, the APs estimate each user’s
signal based on their local received signal vector and the signal
estimates they receive from the previous AP, as shown in line



AP1 AP2 AP3

Fronthaul link

Fig. 1. Sequential processing and storage in a daisy chain fronthaul topology

(7) of algorithm 1. Therefore, they need to store their local
received signal vector until the previous AP has finished pro-
cessing its corresponding local received signal vector. To make
the problem more tangible, consider an orthogonal frequency-
division multiplexing (OFDM) system where the bandwidth is
divided between F subcarriers. Each AP receives N OFDM
symbols, one for each antenna. Suppose that Yt0

l ∈ CN×F

is a symbol matrix with each column corresponding to the
received signal vector at AP l for a particular subcarrier of
symbol t0, as shown in Fig 1. When AP 1 is processing Yt0

1 ,
the rest of the APs have their corresponding matrices, i.e.,
Yt0

l ,∀l ∈ {2, . . . , L} in their memory. Similarly, when AP 2
is processing Yt0−1

2 , the corresponding matrix at AP l, i.e.,
Yt0−1

l ,∀l ∈ {3, . . . , L}, is stored in the memory. Accordingly,
the number of the symbol matrix stored at AP l is l−1 meaning
that the number of received signal vectors stored at AP l is
(l − 1)F , which increases linearly from one AP to the next
by F . It is worth mentioning that processors are designed to
process at least one symbol during a symbol duration to have
a stable system. In other words, the rate of the locally received
signal vectors entering the memory should be lower or, in the
worst case, the same as the rate at which the processor is
processing them. Therefore, the number of vectors stored in
the AP’s memory increases by F from one AP to the next.

The memory to store the vectors is usually a fast on-chip
cache memory [18], close to the processing unit [19].

III. RECEIVED SIGNAL VECTOR COMPRESSION

In this section, for storing the received signal vectors, we
consider 1) Joint compression of the received signal vector
elements, also called vector-wise compression (VC) of the
received signal vector, and 2) Element-wise compression (EC)
of the received signal vector.

A. Option 1: Vector-wise compression (VC) of the received
signal vector

The compressed vector at AP l can be represented as ŷvl

and the relation between yl and ŷvl follows as [20], [21]:

ŷvl = yl + qvl = Hls+ nl + qvl, (4)

where qvl ∼ CN (0,Qvl) represents the compression noise
which is independent of yl. We also define zvl = nl + qvl,
with covariance matrix Zvl = E{zvlzH

vl} = Qvl + σ2IN .
The relation between the number of bits to compress the

received signal vector, Cs, and the compression noise covari-

ance matrix Qvl at AP l, conditioned on the local CSI is as
follows:

Cs = I(yl; ŷvl|Hl)

= H(ŷvl|Hl)−H(ŷvl|yl,Hl)

= log2 det(Q
−1
vl (pHlH

H
l + σ2IN ) + IN ).

(5)

The network-wide compressed received vector is given as:

ŷv = y + qv = Hs+ n+ qv︸ ︷︷ ︸
zv

, (6)

where ŷv =
[
ŷT
v1 . . . ŷT

vL

]T
, qv =

[
qT
v1 . . . qT

vL

]T
,

and zv =
[
zT
v1 . . . zT

vL

]T
is the receiver plus compression

noise vector with covariance matrix Zv = E{zvzH
v } =

blkdiag(Zv1, . . . ,ZvL) = blkdiag(Qv1 + σ2IN , . . . ,QvL +
σ2IN ). Following the discussion in Section II-A, the LS
estimates of the users’ signal can be formulated as below:

ŝv = Vvŷv, (7)

where combiner matrix Vv is given as follows:

Vv = (HHZ−1
v H+

1

p
Ik)

−1HHZ−1
v . (8)

Having the estimates of the users’ signal as in (7), the sum-SE
of users is formulated as follows:

RV C =
τu
τc

I(Vvŷ; s|Vv,H)

=
τu
τc

(
H(Vvŷv|Vv,H)−H(Vvŷv|s,Vv,H)

)
=
τu
τc

log2 det(pHHHZ−1
v + INL)

(a)
≤τu
τc

log2

L∏
l=1

det(pHlH
H
l Z

−1
vl + IN )

=
τu
τc

L∑
l=1

log2 det(pHlH
H
l Z

−1
vl + IN )

=
τu
τc

L∑
l=1

log2 det(pHlH
H
l (Qvl + σ2IN )−1 + IN ),

(9)

where the inequality
(a)
≤ holds due to the fact that matrix Zv

is a block-diagonal matrix, and the fact that the determinant
of the positive (semi-) definite matrix is always smaller than
the determinant of a diagonal matrix with the same diagonal
elements [22]. The detailed proof is omitted due to space
limitations. The upper bound in equation (9) is for the in-
stantaneous sum-SE in a particular coherence block.

A maximization problem can be formulated to find the
optimal Qvl,∀l that maximizes the upper bound defined in
(9).

The upper bound on the sum-SE in (9) is a summation of L
functions each of which depends only on the compression plus
receiver noise covariance matrix of a single AP. Additionally,
each AP compresses its received signal vector in isolation from
other APs. Therefore, maximization of the upper bound can be
decomposed into L smaller optimization problems to be solved



at L APs. Accordingly, the sum-SE maximization problem at
AP l is defined as follows:
arg max

Q−1
vl ⪰0

log2 det(pHlH
H
l (Qvl + σ2IN )−1 + IN )

s.t. Cs = log2 det(Q
−1
vl (pHlH

H
l + σ2IN ) + IN ).

(10)
Similar to [21] and [23, app. B], the problem in (10) can be
converted to an equivalent optimization problem that maxi-
mizes the objective function with respect to the eigenvalues
of Q−1

vl . Due to space limitations, the proof is omitted.
The optimal matrix Q−1

vl is found to be as follows:

Q−1∗
vl = UlΣ

−1∗
vlq UH

l , (11)

where the columns of Ul ∈ CN×N are the eigen vectors
of HlH

H
l and the ith diagonal element of Σ−1∗

vlq is found as
follows:

λ∗
vlqi = [

1

µ∗ (
1

σ2
− 1

pλ2
li + σ2

)− 1

σ2
]+,∀i, (12)

where λ2
li,∀i ∈ {1, . . . , N} are the eigenvalues of HlH

H
l .

Having Q−1∗
vl , Q∗

vl can be determined accordingly. µ∗ is
the Lagrange multiplier and is found to satisfy the equality
constraint in (10).

B. Option 2: Element-wise compression (EC) of the received
signal vector

In the EC of the received vector, each element is compressed
individually. The bits allocated to the compression of the ith

element of the local received vector yl at AP l can be denoted
by bli and Cs =

∑N
i=1 bli. The compressed ith element is

given as follows:

ŷeli = yli + qeli = Hl[i,:]s+ nli + qeli, (13)

where the subscript [i, :] specifies the ith row of matrix Hl,
qeli ∼ CN (0, σ2

eli), qel =
[
qel1 · · · qelN

]T
is the compres-

sion noise vector with covariance matrix Qel = E{qelq
H
el}.

We define zeli = nli + qeli, zel =
[
zel1 · · · zelN

]T

with covariance matrix Zel = E{zelzHel} = Qel + σ2IN .
Furthermore, nli is the ith element of the noise vector nl and
ŷel =

[
ŷel1 . . . ŷelN

]T
is the compressed received signal

vector. The relation between bli and compression noise of the
ith element is:

bli = I(yeli; ŷeli|Hl[i,:])

= H(ŷeli|Hl[i,:])−H(ŷeli|yeli,Hl[i,:])

= log2(
p∥Hl[i,:]∥2 + σ2

σ2
eli

+ 1),

(14)

The diagonal elements of the covariance matrix Qel can be
calculated based on value of bli,∀i ∈ {1, . . . , N} and repre-
sented as σ2

eli,∀i ∈ {1, . . . , N}. The off-diagonal elements of
matrix Qel are unknown.

We define diagonal matrix Pl with the variance of the
elements of the local received signal vector {yl|Hl} as its
diagonal elements,

Pl = diag(E{yly
H
l |Hl})

= diag
(
p∥Hl[1,:]∥2 + σ2, · · · , p∥Hl[N,:]∥2 + σ2

)
,

(15)

and the diagonal matrix Qd
el with variance of the elements of

the compression noise vector qel as its diagonal elements,

Qd
el = diag

(
σ2
el1, . . . , σ

2
elN

)
. (16)

We can relate Cs to the variance of the compression noise
vector elements as below:

Cs =

N∑
i=1

bli = log2

N∏
i=1

(
p∥Hl[i,:]∥2 + σ2

σ2
eli

+ 1)

= log2 det((Q
d
el)

−1
Pl + IN ).

(17)

The network-wide compressed received vector is as follows:

ŷe = y + qe = Hs+ n+ qe︸ ︷︷ ︸
ze

, (18)

where ŷe =
[
ŷT
e1 . . . ŷT

eL

]T
, qe =

[
qT
e1 . . . qT

eL

]T

and ze =
[
zT
e1 . . . zT

eL

]T
with covariance matrix Ze =

blkdiag(Ze1, . . . ,ZeL) = blkdiag(Qe1 + σ2IN , . . . ,QeL +
σ2IN ). In EC, the correlation between compression noise
elements at one AP, i.e., the off-diagonal elements of Qel,∀l,
are unknown. Therefore, while computing the combining vec-
tor to estimate users’ signal, the correlation of compression
noise elements at each AP is ignored (Qel,∀l is assumed
to be a diagonal matrix), which will adversely affect the
estimation quality. The sequential estimation of user signals
results in equations (19) and (20) with Zv in (8) replaced
with the diagonal matrix Zd

e = blkdiag(Zd
e1, . . . ,Z

d
eL) =

blkdiag(Qd
e1 + σ2IN , . . . ,Qd

eL + σ2IN ),

ŝe = Veŷe, (19)

where combining matrix Ve is formulated as follows:

Ve = (HH(Zd
e)

−1
H+

1

p
IK)−1HH(Zd

e)
−1

. (20)

The maximization of the sum-SE in option 2 follows the
same steps as in Section III-A. The user’s sum-SE using EC
can be simplified as follows:

REC =
τu
τc

log2 det(pHHH(Zd
e)

−1 + INL)

(a)
≤ τu

τc

L∑
l=1

log2 det(pHlH
H
l (Z

d
el)

−1 + IN )

(b)
≤ τu

τc

L∑
l=1

log2 det(pdiag(HlH
H
l )(Z

d
el)

−1 + IN )

=
τu
τc

L∑
l=1

log2 det(pWl(Q
d
el + σ2I)−1 + IN ),

(21)

where Wl is defined as Wl =

diag(∥Hl[1,:]∥2, . . . , ∥Hl[N,:]∥2). In (21),
(a)
≤ and

(b)
≤ are

proved similar to
(a)
≤ in (9).

The optimization problem to find the diagonal elements
of Qd

el and, subsequently, the number of bits to compress



each of the elements of the local received signal vector yl

is formulated as follows:

arg max
(Qd

el)
−1⪰0

log2 det(pWl(Q
d
el + σ2IN )−1 + IN )

s.t. Cs = log2 det((Q
d
el)

−1
Pl + IN ),

(22)

with Pl defined in (15). Note that Pl = pWl + σ2IN .
Following a similar derivation as in Section III-A, the ith

diagonal element of matrix (Qd
el)

−1, shown as 1
σ2
eli

, can be
calculated as follows:

1

σ2
eli

= [
1

µ∗ (
1

σ2
− 1

Pl[i,i]

)− 1

σ2
]+. (23)

IV. MEMORY CAPACITY MODEL

Regarding the memory capacity at the APs, two general
scenarios are considered.

• Fixed per AP (FAP): There is a fixed memory capac-
ity CAP per AP. Therefore, the total memory capacity
depends on the number of APs.

• Fixed total (FT): There is a fixed total memory capacity
CT that is divided among APs. Therefore, the memory
capacity allocated to each AP depends on the number of
APs.

We assume that received signal vectors are stored in on-chip
cache memory [18]. Cache memory is desirable for its fast
accessibility and low energy consumption. In reality, local CSI
should also be stored in the memory. However, as the amount
of data related to CSI is similar in each AP, we ignore the
low precision storage of the local CSI. Note that the memory
capacity available at one AP is shared among all the sub-
carriers.

V. SIMULATION RESULTS

This section presents simulation results, which give insight
into how the limited memory capacity in each AP can affect
the average per-user SE. The simulation area is square with a
perimeter of D = 500m. The APs are located on the perimeter
of the area, and the distance between any two APs is the same.
The users are uniformly located in a concentric square with a
perimeter of 400m. The vertical distance between a user and
an AP is 5m [4]. The total number of antennas is NL = 128
which are distributed in L = {2, 4, 8, 16, 32, 64, 128} APs.
The path-loss model of an urban microcell with 2GHz carrier
frequency is considered [4], [24]. Accordingly, the large-scale
fading coefficient is defined as follows:

βkl = −30.5− 36.7 log10(
dkl
1m

), (24)

where dkl and βkl are the distance and large scale fading
coefficient between user k and AP l, repectively. The noise
variance at the APs is σ2 = −85dBm, and the users’ transmit
power is p = 10mWatt.

In this section, E{RV C}
K and E{REC}

K versus the number of
APs are plotted. The expectations are with respect to all kinds
of randomness. Scaling factor τu

τc
exists in both (9) and (21),
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Fig. 2. Average per-user SE comparison using FAP memory model in a daisy
chain fronthaul topology with two different numbers of users: (Left) K = 4.
(Right) K = 64.

and as we don’t consider any specific values for τu and τc,
the factor is omitted while plotting the simulation results.

To make the simulation results clear, we start with an exam-
ple. In the simulation figures, in case of {L = 64, N = 2}, the
last AP stores 63F two-dimensional received signal vectors in
the memory, and in case of {L = 128, N = 1}, the last AP
stores 127F received signal scalars (as there is one antenna
per AP), according to Section II-B. The total number of scalars
to be stored in the last AP in the two cases mentioned are close
to each other (i.e., 2×63F versus 127F ). Therefore, it would
seem that the compression noise should be almost the same.
However, using VC and in the case of {L = 64, N = 2},
the last AP compresses scalars two by two (63F pair of
scalars), and in the case of {L = 128, N = 1}, the last AP
compresses each scalar individually. Jointly compressing every
two scalars in {L = 64, N = 2} allows the AP to use the
available memory more efficiently than {L = 128, N = 1}.
Consequently, when the memory capacity is limited (e.g.,
CAP = 64KB in FAP), even though the number of scalars to
be stored in the memory of the last AP in both cases is almost
the same, {L = 64, N = 2} outperforms {L = 128, N = 1}
even with the reduced macro-diversity. In other words, macro
diversity in the case of {L = 128, N = 1} can not compensate
for the adverse effect of compression noise on average per-
user SE. The above comparison can also be made between
any other values of L. A similar conclusion can be drawn for
EC.

In Fig. 2, it is observed that, under the assumption of infinite
memory capacity, the distribution of the antennas in single-
antenna APs improves the average per-user SE, especially
when the number of users is large, e.g., K = 64. However,
with the realistic assumption of limited memory capacity in
each AP and using VC, the distribution of the antennas in
single-antenna APs not only does not help in average per-user
SE improvement but also reduces the average per-user SE,
e.g., when CAP = 64KB.

In Fig. 3, FT memory model is considered, and a similar
trend to Fig. 2 is observed. Unlike FAP, in FT memory model,
adding APs doesn’t increase the total memory but makes the



L=2 L=4 L=8 L=16 L=32 L=64 L=128

2

3

4

5

6

7

8

Number of the APs

A
ve

ra
ge

pe
r-

us
er

SE
(b

it/
se

c/
H

z)

FT, VC, CT = 8MB FT, EC, CT = 8MB

FT, VC, CT = 32MB FT, EC, CT = 32MB

L=2 L=4 L=8 L=16 L=32 L=64 L=128

2

3

4

5

6

7

8

Number of the APs

Fig. 3. Average per-user SE Comparison using FT memory model in a daisy
chain fronthaul topology with two different numbers of users: (Left) K = 4,
(Right) K = 64.

memory per AP smaller. Furthermore, it is observed that the
performance improvement of VC over EC is relatively small in
this case, especially for the case of a low number of APs. This
is because when the number of APs is low, each AP receives
a large share of the total memory, reducing the difference
between EC and VC.

VI. CONCLUSIONS

This paper discusses sequential processing with limited
memory APs in a cell-free massive MIMO network with daisy
chain fronthaul topology. The paper shows a trade-off between
achieving macro diversity by distributing the antennas as much
as possible in more APs and reducing the adverse effect
of compression noise by distributing the antennas in fewer
APs. Specifically, based on simulation results, distributing the
antennas can benefit the average per-user SE when there is
no memory limit at the APs, especially when the number of
users is high. However, this is not the case when we limit
the memory available at each AP to store the received signal
vectors. With limited memory capacity constraints at each AP,
the antennas tend to be collocated in fewer APs. Hence, the
memory capacity highly impacts the number of APs among
which the available antennas should be distributed.
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