
Optimal Resource Allocation for U-Shaped Parallel
Split Learning

Song Lyu∗, Zheng Lin∗, Guanqiao Qu∗, Xianhao Chen∗, Xiaoxia Huang†, and Pan Li‡
∗The Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China

†School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 510275, China
‡The Department of Electrical, Computer, and System Engineering, Case Western Reserve University,

Cleveland, OH 44106 USA.

Abstract—Split learning (SL) has emerged as a promising
approach for model training without revealing the raw data
samples from the data owners. However, traditional SL inevitably
leaks label privacy as the tail model (with the last layers) should
be placed on the server. To overcome this limitation, one promising
solution is to utilize U-shaped architecture to leave both early layers
and last layers on the user side. In this paper, we develop a novel
parallel U-shaped split learning and devise the optimal resource
optimization scheme to improve the performance of edge networks.
In the proposed framework, multiple users communicate with
an edge server for SL. We analyze the end-to-end delay of each
client during the training process and design an efficient resource
allocation algorithm, called LSCRA, which finds the optimal
computing resource allocation and split layers. Our experimental
results show the effectiveness of LSCRA and that U-shaped parallel
split learning can achieve a similar performance with other SL
baselines while preserving label privacy.

Index Terms—U-shaped network, split learning, label privacy,
resource allocation, 5G/6G edge networks.

I. INTRODUCTION

Traditional centralized learning incurs excessive bandwidth
consumption and communication latency while violating data
privacy. To address this issue, edge learning, which trains models
at the network edge, has emerged as a promising paradigm in
5G and beyond [1]–[4]. In this respect, federated edge learning
(FEEL) [5], [6] has been shown as an effective approach that
enables end devices to train models on their own devices and
then aggregate the models at an edge server, thereby eliminating
the need for access the raw data.

However, FEEL faces significant challenges due to the
extensive client-side computing workload. For massive resource-
constrained IoT devices, the limited computing power may
hinder their ability to perform model training and upload large
models [7]. To address these challenges, split learning (SL) [8]
has emerged as an effective technique. SL splits the model into
two parts: the front sub-model (head model) trained by a client
and the remaining sub-model (tail model) trained by a server
[9]. As a result, SL significantly relieves clients’ computing
burden by allowing a server to take over the major workload
while remaining raw data on the client side [10]–[12].

There exist several popular SL approaches. Vanilla SL has
limited scalability due to its sequential training manner [8],
where the model training can be shifted to the next client only

when the previous client completes training. To parallize SL,
parallel split learning (PSL) [13] enables parallel processing
across the server and multiple connected clients. Furthermore,
split federated learning (SFL) [14] integrates federated learning
(FL) into SL to allow parallel training. U-shaped split federated
learning (U-SFL) [15] combines the U-shaped architecture with
the SFL framework to eliminate label sharing. Compared to
PSL, the major change in SFL lies in the averaging of the client-
side sub-model after its backpropagation process, following the
spirit of FL, yet incurring additional communication overhead
due to model exchange. The comparison of these approaches
is summarized in Table I.

By preserving users’ raw data, SL is often considered in
privacy-sensitive applications [16]. Nevertheless, despite the
preservation of input data, the sharing of label can be a serious
privacy concerns in SL, as clients have to provide the corre-
sponding labels to help the server to calculate the loss. In some
applications, label privacy is an important concern, particularly
in healthcare, finance, and other sensitive domains. For example,
the input data can be users’ bio information/activities, and the
label is the disease or health status of this user. In this case,
the label is also highly sensitive and should not be shared with
the server.

To address the label privacy issue, U-shaped configurations
has been proposed for SL to eliminate the need for label
exchange [8]. In the U-shaped SL architecture, the entire
DNN is divided into three submodels: the head, body, and
tail models. The head and tail models are obtained on the client
side, while the body model is trained on the edge server side.
This architecture effectively resolves the label privacy concern,
as the output layer and the labels are retained on the client side.
Although U-shaped SL has been studied under various contexts,
such as medical applications [16], to our best knowledge, very
few efforts have been made to integrate U-shaped SL into the
mobile edge.

In this paper, we investigate U-Shaped Parallel Split Learning
(U-PSL) under the mobile edge computing framework. This
framework parallelizes the vanilla U-shaped SL by enabling mul-
tiple clients to train with a server simultaneously. Furthermore,
we develop the joint model split and resource allocation problem
tailored for U-shaped SL, called LSCRA. By formulating

ar
X

iv
:2

30
8.

08
89

6v
3

 [
cs

.L
G

]
 9

 O
ct

 2
02

3

TABLE I:
The Comparison of FL, SL, SFL, PSL, U-SFL, and U-PSL Frameworks

Learning framework FL SL SFL PSL U-SFL U-PSL

Computation offloading No Yes Yes Yes Yes Yes

Parallel computing Yes No Yes Yes Yes Yes

Access to raw data No No No No No No

Model exchange Yes No Yes No Yes No

Label sharing No Yes Yes Yes No No

the per-round training latency, we obtain the optimal server
computing resource allocation and layer splitting strategy to
address the communication and computing challenges associated
with U-shaped networks, resulting in a significant reduction
in training latency. Through experiments, it is found that U-
PSL achieves effective label privacy protection while achieving
similar or even slightly shorter latency compared to other SL
benchmarks, making it a promising solution for SL in privacy-
sensitive and resource-constrained wireless networks.

Our contributions are summarised as follows:
• We propose U-PSL, an advanced privacy-enhancing train-

ing framework, which eliminates the need for raw data
sharing and label sharing in SL.

• We design an optimal joint computing resource allocation
and layer splitting scheme to minimize per-round latency.

• We conduct simulations to demonstrate the effectiveness
of the U-PSL framework. Our simulations show the
effectiveness of the resource allocation scheme, revealing
that the framework achieves test accuracy comparable to
other SL approaches while preserving label privacy.

II. SYSTEM MODEL AND U-PSL FRAMEWORK

This section presents the U-PSL framework, which is
illustrated in Figure 1. We begin by describing a scenario
of the U-PSL framework in wireless networks. Subsequently,
we provide a detailed explanation of the five main steps in the
U-PSL workflow. Through this section, we aim to provide an
overview of the U-PSL framework and its step-by-step training
procedure. Furthermore, since a shorter training time not only
enables timely model usage but also reduces bandwidth and
computing resource occupation, we will analyze and optimize
the end-to-end latency. For the convenience of readers, we
summarize the important notations in Table II.

Architecture: U-PSL comprises an edge server and multiple
clients. On the client side, we assume that each client has an
end device with computing capabilities, enabling it to execute
forward propagation (FP) and backpropagation (BP) for the
client-side models. Let U = {1, 2, ..., N} denote the set of
clients, where N is the number of participating clients. The
local dataset Dn owned by client n ∈ U is represented as
Dn = {Xn, Yn}, where Xn denotes the n-th client’s training
dataset and Yn is the set of the corresponding labels. ρj and
ωj denote the computing workload of FP and BP for the first
j layers, respectively, ψj represents the activation size at cut
layer j in the model, and L denotes the total number of model
layers.

Fig. 1: The illustration of U-PSL over wireless networks.

U-PSL Workflow: Figure 2 illustrates the main workflow
of U-PSL, which consists of five training steps:

1) Head model FP & activations transmission: At the
beginning of model training, the server initializes the global
model and partitions it into three submodels Whead, Wbody,
and Wtail. µ

j
1 = {0, 1} and µj

2 = {0, 1} indicates the two split
layers between head models and body models, and body models
and tail models. µj

1 = 1 indicates that layer j is the first cut
layer, and µj

2 = 1 indicates that layer j is the second cut layer.
At the beginning of each round, each client randomly draws a
mini-batch βn (generally, the size can be proportional to the
size of Xn) to perform the FP process of the head model in
parallel. For simplicity, we focus on client n to illustrate the
operations on the client side. Let φF

1 (µ
j
1) denote the computing

workload of the head model’s FP process for one data sample,
which is given by:

φF
1 (µ

j
1) =

L∑
j=1

µj
1ρj . (1)

After completing the head model FP process, the first cut
layer generates activations that will be taken as the input of
the body model on the server. Then, the client transmits the
activations to the server over a wireless channel. The data size
of the activations Γ(µj

1) can be expressed as:

Γ(µj
1) =

L∑
j=1

µj
1ψj . (2)

Therefore, the latency of step 1 for client n can be denoted
as:

tc1,n =
βnφ

F
1 (µ

j
1)Kc

fn
+
βnΓ(µ

j
1)

R↑
n

, (3)

where fn is the computing capability of client n, Kc is the
computing intensity of client, and R↑

n is the upload data rate.
We consider a static network where the average data rate does
not change, and therefore R↑

n is a constant value. The mobility
scenarios can be left for the future research [17]–[20].

2) Body model FP & activations transmission: When the
server receives the activations from clients, the body model starts
its FP process. φF

s (µ
j
1, µ

j
2) denotes the computation workload

TABLE II: Frequently Used Notations

Notation Interpretation

U The set of clients
Dn Local dataset of client n
βn mini-batch size draw from client n’s local dataset
R↑

n/R
↓
n Upload/download data rate of client n

fn The computing capability of client n
fs,n The server-side computing resource allocated for client n
Ks/Kc The computing intensity of server/client n
L The total number of model layers in CNN
ρj The computation workload (in CPU cycles) of FP for

the first j layers
ωj The computation workload (in CPU cycles) of BP for

the first j layers
ψj The size of activations (or activations’ gradients)

of the cut layer j
Fs Maximum computing capability of the server

of the body model’s FP process for one data sample, which
can be described as:

φF
s (µ

j
1, µ

j
2) =

L∑
j=1

µj
2ρj −

L∑
j=1

µj
1ρj . (4)

After the completion of each mini-batch, the second cut layer
generates activations, the size of which can be expressed as:

Γ(µj
2) =

L∑
j=1

µj
2ψj . (5)

Therefore, the latency of step 2 for client n can be denoted
as:

ts2,n =
βnφ

F
s (µ

j
1, µ

j
2)Ks

fs,n
+
βnΓ(µ

j
2)

R↓
n

. (6)

where fs,n is the server computing resource allocation of client
n, Ks is the computing intensity of server, and R↓

n is the
download data rate.

3) Tail model FP and BP & activations’ gradients transmis-
sion: At this stage, the client performs the rest FP process of
the tail model to calculate the loss and then conducts the BP
process. Let φF

2 (µ
j
2) and φB

2 (µ
j
2) represent the computation

workload of the tail model’s FP and BP process, respectively,
which can be described as:

φF
2 (µ

j
2) = ρL −

L∑
j=1

µj
2ρj , (7)

φB
2 (µ

j
2) = ωL −

L∑
j=1

µj
2ωj . (8)

After finishing the BP process, each client sends activations’
gradients back to the server. Given the size of the activations’
gradients at the second layer Γ(µj

2) in (5), the latency of step
3 for client n can be denoted as:

tc3,n =
βnKc(φ

F
2 (µ

j
2) + φB

2 (µ
j
2))

fn
+
βnΓ(µ

j
2)

R↑
n

. (9)

Fig. 2: U-PSL Framework.

4) Body model BP & activations’ gradients transmission:
After receiving activations’ gradients, the server performs its
BP process. Let φB

s (µ
j
1, µ

j
2) denotes the computation workload

of the body model’s BP process, which can be described as:

φB
s (µ

j
1, µ

j
2) =

L∑
j=1

µj
2ωj −

L∑
j=1

µj
1ωj . (10)

When the body model’s BP process is completed, activations’
gradients at the first cut layer will be transmitted to the
corresponding clients. The size of activations’ gradients is Γ(µj

1)
in (2), and therefore the latency of step 4 for client n can be
denoted as:

ts4,n =
βnφ

B
s (µ

j
1, µ

j
2)Ks

fs,n
+
βnΓ(µ

j
1)

R↓
n

. (11)

5) Head model BP: In this stage, the client only needs
to complete the rest BP process of the head model. φB

1 (µ
j
1)

denotes the computation workload of the head model’s BP
process, which can be described as:

φB
1 (µ

j
1) =

L∑
j=1

µj
1ωj . (12)

Therefore, the latency of step 5 for client n can be denoted
as:

tc5,n =
βnφ

B
1 (µ

j
1)Kc

fs,n
. (13)

After the aforementioned steps, each sub-model updates the
model parameters according to the gradients. Note that, for
the body model, the server can make updates based on the
averaged gradients across the clients. The per-round training
latency corresponding to client n can be denoted as:

Tn = tc1,n + ts2,n + tc3,n + ts4,n + tc5,n. (14)

Let T (f, µ1, µ2) denote the per-round training time. Since
the aforementioned training is executed in parallel, T (f, µ1, µ2)
is equal to the maximum Tn, i.e.,

T (f, µ1, µ2) = max
n∈U

Tn. (15)

III. PROBLEM FORMULATION AND SOLUTION APPROACH

As mentioned earlier, the total latency of one training
round for a client is formulated. Apparently, inappropriate
server computing resource allocation can lead to significant
increases in training time. Additionally, the selection of cut
layers also affects the overall training and communication
latency. Considering these factors, we formulate the following
optimization problem to minimize the per-round latency:

P1 : min
f ,µ1,µ2

T (f ,µ1,µ2) (16)

s.t. C1 :

j∑
j′=1

µj′

2 ≤
j∑

j′=1

µj′

1 ,∀j ∈ {1, ..., L},

C2 : µj
2 ∈ {0, 1}, µj

1 ∈ {0, 1},∀j ∈ {1, ..., L},

C3 :

L∑
j=1

µj
1 = 1,

L∑
j=1

µj
2 = 1,

C4 : fs,n ≥ 0,∀n ∈ U ,

C5 :

N∑
n=1

fs,n ≤ Fs.

where C1 ensures that the index of the second split layer is
greater than the index of the first split layer. To solve P1, we
first consider the subproblem involving computing resource
allocation:

P2 :min
f
T (f) (17)

s.t. C4 : fs,n ≥ 0,∀n ∈ U ,

C5 :

N∑
n=1

fs,n ≤ Fs.

We have the following lemmas for P2.

Lemma 1. The optimal f for P2 is obtained when T1 = · · · =
Tn.

Proof. Let fs,n = f∗s,n be the solution that minimizes the
objective while satisfying T1 = · · · = Tn. Assume T1 = · · · =
Tn = T and therefore T (f) = max

n
Tn = T in this case. It

can be shown that
N∑

n=1
f∗s,n = Fs. Otherwise, if

N∑
n=1

f∗s,n < Fs,

the remaining resources can be evenly allocated to every f∗s,n,
thereby reducing the objective. Supposing that there is Tm > T ,
we have T (f) ≥ Tm > T . On the other hand, if there is
Tm < T , we have fs,m > f∗s,m. Thus, there must be fs,n < f∗s,n

since
N∑

n=1
f∗s,n = Fs. Hence, we have Tn > T , leading to

T (f) ≥ Tn > T . Therefore, only when T1 = · · · = Tn = T ,
the optimal resource allocation can be obtained. The proof is
completed.

Lemma 2. The k-th client with the maximum allocated
computing resource fs,k should satisfy the equation:

N∑
n=1

εnfs,k
εk + fs,k(T local

k − T local
n)

= Fs. (18)

Proof. When µj
1 and µj

2 are fixed, each training epoch latency
can be described as Tn = T local

n + εn
fs,n

, where εn =

βnKs(
∑L

j=1 µ
j
2ρj +

∑L
j=1 µ

j
2ωj −

∑L
j=1 µ

j
1ρj −

∑L
j=1 µ

j
1ωj)

denotes the server-side computing workload, and T local
n is a con-

stant representing client’s local computing and communication
latency.

For client set U , by enforcing T1 = · · · = Tk = Tn = T , k ∈
U , the equation can be given as

T local
n +

εn
fs,n

= T local
k +

εk
fs,k

,∀k, n ∈ U . (19)

Therefore, to achieve equal per-round training time, we have

fs,n =
εnfs,k

εk + fs,k
(
T local
k − T local

n

) . (20)

To satisfy C4 in P2, the selected k-th client should be the
one with the maximum T local

n to ensure fs,n is nonnegative.
Besides, as discussed in Lemma 1,

∑N
n=1 fs,n = Fs holds for

the optimal solution. By considering (20), we have
N∑

n=1

εnfs,k
εk + fs,k(T local

k − T local
n)

= Fs. (21)

We observe that Eq. (18) exhibits a monotonically increasing
behavior with respect to fs,k. Taking advantage of this property,
we can employ a bisection procedure to efficiently find fs,k
from (18). Then, the optimal fs,n for other clients can be
directly obtained from (20).

After obtaining the optimal server computing resource
allocation scheme, the remaining task involves making split-
layer decisions. This subproblem can be formulated as:

P3 : min
µ1,µ2

T (µ1,µ2) (22)

s.t. C1 :

j∑
j′=1

µj′

2 ≤
j∑

j′=1

µj′

1 ,∀j ∈ {1, ..., L},

C2 : µj
2 ∈ {0, 1}, µj

1 ∈ {0, 1},∀j ∈ {1, ..., L},

C3 :

L∑
j=1

µj
1 = 1,

L∑
j=1

µj
2 = 1.

P3 is a standard mixed integer linear programming (MILP)
problem. Since the number of CNN model layers is typically not
very large, we can directly use an exhaustive search algorithm
to calculate the minimum Tn and obtain µj

1 and µj
2.

Finally, our proposed scheme, termed Layer Splitting and
Computing Resource Allocation (LSCRA), conducts exhaustive
search to ensure that all possible pairs of split layers are
explored. Then, with each pair, we solve the optimal resource
allocation based on bisection procedure from Eq. (18) to find
the minimum delay attained. It is easy to see that LSCRA
can obtain the optimal solution to P1, and the computational
complexity is O(L2logFs).

IV. SIMULATION RESULTS

This section provides the numerical results to evaluate the
learning performance of the proposed U-PSL framework and the
effectiveness of the LSCRA algorithm and split layers strategy.

0 1000 2000 3000
Training Time (seconds)

30

50

70

80

T
es

t A
cc

ur
ac

y
(%

)

U-PSL
PSL
U-SFL
SFL

(a) HAM10000 under IID
setting

0 1000 2000 3000
Training Time (seconds)

30

50

70

80

T
es

t A
cc

ur
ac

y
(%

)

U-PSL
PSL
U-SFL
SFL

(b) HAM10000 under non-
IID setting

0 100 200 300
Training Time (seconds)

60

70

80

90

100

T
es

t A
cc

ur
ac

y
(%

)

U-PSL
PSL
U-SFL
SFL

(c) MNIST under IID set-
ting

0 100 200 300
Training Time (seconds)

60

70

80

90

100
T

es
t A

cc
ur

ac
y

(%
)

U-PSL
PSL
U-SFL
SFL

(d) MNIST under non-IID
setting

Fig. 3: Test accuracy of U-PSL, PSL, U-SFL, SFL on
HAM10000 & MNIST dataset under IID/non-IID setting with
N = 5, Fs = 50GHz.

A. Experiments Settings

In the simulations, we consider N clients randomly dis-
tributed around a wireless edge server. The computing capability
of each client is uniformly distributed within [0.5, 1.5] GHz, and
the computing capability of the server is set to [10, 50] GHz. The
uplink data rate of each client is uniformly distributed within
[5, 30] Mbps, and the downlink data rate is set to [2, 10]×R↑

n

Mbps. Other parameters can be found in Table III.
We evaluate the learning performance of the proposed U-

PSL framework by deploying the ResNet-18 network on two
image classification datasets, HAM10000 [21] and MNIST [22].
Furthermore, we conduct experiments under IID (independent
and identically distributed) and non-IID data settings.

TABLE III: Parameter Settings

Parameter value Parameter value
Fs [10, 50]GHz fn [0.5, 1.5]GHz
N [5, 100] βn 64
Ks

1
32

cycles/FLOPs Kc
1
16

cycles/FLOPs
R↑

n [5, 30]Mbps R↓
n [2, 10]×R↑

nMbps

B. Performance Evaluation of the Proposed U-PSL Framework

In this subsection, we assess the performance of the proposed
U-PSL framework in terms of test accuracy, convergence speed,
training latency, and privacy preservation. We compare U-PSL
with other distributed learning baselines, including PSL, SFL,
and U-SFL, to examine the effectiveness of U-PSL. For fair
comparison, the benchmark schemes also adopt optimal split
layers and server computing resource allocation.

Fig. 4: Smashed data visualization.

Figure 3 demonstrates the test accuracy of these frameworks
on the HAM10000 and MNIST datasets. It can be observed
that U-PSL achieves a similar test accuracy compared to SFL,
U-SFL and PSL as the models converge. Moreover, in some
situations (e.g., Figure 3(a)), U-PSL requires the lowest time
budget to reach a target accuracy. There are two reasons for
this: One is that the client-side submodels in U-PSL are trained
by user-specific data. Therefore, the client-side submodel may
adapt better to user data in the early stages and perform better in
terms of accuracy. The other is that U-PSL eliminates the need
for model exchange between the clients and the server, reducing
communication overhead and resulting in faster convergence
compared to U-SFL and SFL.

Figure 4 illustrates the use of a raw image from HAM10000
to generate smashed data at the first and second cut layers,
which are located after the skip connection of the third and
fourth residual blocks in Resnet-18, respectively. From the
visualization, the outputs significantly differ from the raw data.
Also, it is hard to identify the label. In summary, the U-PSL
framework achieves both data and label privacy protection
while achieving similar or even better performance compared
to other benchmarks.

C. Performance Evaluation of the Proposed LSCRA algorithm

In this subsection, we evaluate the performance of the
proposed LSCRA scheme with respect to the server computing
capacity and the number of service clients. We compare the
proposed method with two benchmarks:

• Benchmark a): Optimal split layers & evenly allocated,
where the server and clients have the same cut layers as
the proposed scheme, and the server computing resource
is evenly allocated.

• Benchmark b): Suboptimal split layers & evenly allocated,
where the cut layers are set to the second performing case,
and the server computing resource is evenly allocated.

Figure 5 illustrates the performance of the per-round training
latency with respect to the server computing capacity. It can be
observed that when the server’s computing capacity is limited,
the proposed scheme significantly reduces the training latency
for each round. This is achieved by allocating more server
computing resources to devices with weaker computing power
and communication conditions.

Furthermore, when the server’s computing capacity ranges
from 10 GHz to 50 GHz, the proposed scheme ensures that the
training time for each round does not decrease significantly. This
is because, in scenarios where the server’s computing capacity

10 20 30 40 50
F

s
(GHz)

55

70

85

95
Proposed scheme
Optimal split layers & evenly allocated
Suboptimal split layers & evenly allocated

T
ra

in
in

g
T

im
e(

se
co

nd
s)

Fig. 5: The performance for per-round training latency versus
the server computing capacity with [10, 50] GHz, N = 100.

10010
45

55

65

70

T
ra

in
in

g
T

im
e(

se
co

nd
s)

Proposed method
Optimal split layers & evenly allocated
Suboptimal split layers & evenly allocated

 40 70
U(number of clients)

Fig. 6: The performance for per-round training latency versus
the number of clients from 10 to 100, Fs = 50 GHz

is sufficiently powerful, the communication time and the local
training time of clients become the dominant factors. However,
even in such cases, our method outperforms benchmark b), by
finding the optimal split layers. This phenomenon demonstrates
the importance of carefully selecting splitting layers and
allocating computing resources. In a nutshell, our method
reduces the training latency with varied computing capabilities,
particularly in scenarios where the resources on the server are
limited.

Figure 6 illustrates the performance of the per-round training
latency with respect to the number of clients. As the number
of clients increases, the time cost for each round associated
with the two benchmarks shows a greater increase compared
to our proposed scheme. This scenario aligns with real-world
communication scenarios where a single server serves a large
number of users.

V. CONCLUSIONS

In this paper, we proposed a novel split learning framework
called U-Shaped Parallel Split Learning (U-PSL) to address
model and label privacy preservation. By taking into account
the additional communication overhead introduced by the U-
shaped neural network, we have designed an effective resource
allocation and layer splitting strategy to minimize the latency
of U-PSL over wireless edge networks. Simulation results
demonstrate that our proposed U-PSL framework retains a
similar accuracy compared to existing SL benchmarks while
preserving label privacy. Our results show the effectiveness and
efficiency of adopting U-shaped SL at wireless edge networks.
For the future work, we plan to derive the convergence results
for our scheme and consider the joint optimization of computing
resources and channel allocation for U-shaped PSL.

VI. ACKNOWLEDGMENT

The work of X. Chen was supported in part by HKU IDS
Research Seed Fund under grant IDS-RSF2023-0012. The work
of X. Huang was supported by Joint Funds of NSFC under
grant U22A2003.

REFERENCES

[1] X. Hou, J. Wang, Z. Fang, Y. Ren, K.-C. Chen, and L. Hanzo, “Edge
intelligence for mission-critical 6G services in space-air-ground integrated
networks,” IEEE Netw., vol. 36, no. 2, pp. 181–189, 2022.

[2] H. Peng and L.-C. Wang, “Energy Harvesting Reconfigurable Intelligent
Surface for UAV Based on Robust Deep Reinforcement Learning,” IEEE
Trans. Wireless Commun., 2023.

[3] X. Hou, J. Wang, Z. Fang, X. Zhang, S. Song, X. Zhang, and Y. Ren,
“Machine-learning-aided Mission-critical Internet of Underwater Things,”
IEEE Netw., vol. 35, no. 4, pp. 160–166, 2021.

[4] H. Peng, A.-H. Tsai, L.-C. Wang, and Z. Han, “LEOPARD: Parallel
Optimal Deep Echo State Network Prediction Improves Service Coverage
for UAV-Assisted Outdoor Hotspots,” IEEE Trans. Cogn. Commun. Netw.,
vol. 8, no. 1, pp. 282–295, 2021.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies For Improving Communication
Efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[6] X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated Learning over
Multihop Wireless Networks with In-Network Aggregation,” IEEE Trans.
Wirel. Commun., vol. 21, no. 6, pp. 4622–4634, 2022.

[7] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A Survey on
Federated Learning for Resource-constrained IoT Devices,” IEEE Internet
Things J., vol. 9, no. 1, pp. 1–24, 2021.

[8] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split Learning For
Health: Distributed Deep Learning Without Sharing Raw Patient Data,”
arXiv preprint arXiv:1812.00564, 2018.

[9] O. Gupta and R. Raskar, “Distributed Learning of Deep Neural Network
over Multiple Agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, 2018.

[10] Z. Lin, G. Qu, X. Chen, and K. Huang, “Split Learning in 6G Edge
Networks,” arXiv preprint arXiv:2306.12194, 2023.

[11] Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang,
“Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks,” arXiv preprint arXiv:2303.15991, 2023.

[12] Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing Large
Language Models to the 6G Edge: Vision, Challenges, and Opportunities,”
arXiv preprint arXiv:2309.16739, 2023.

[13] J. Jeon and J. Kim, “Privacy-sensitive Parallel Split Learning,” in Proc.
ICOIN, 2020.

[14] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
Federated Learning Meets Split Learning,” in Proc. AAAI, 2022.

[15] B. Yin, Z. Chen, and M. Tao, “Predictive gan-powered multi-objective
optimization for hybrid federated split learning,” IEEE Trans. Commun.,
2023.

[16] Z. Yang, Y. Chen, H. Huangfu, M. Ran, H. Wang, X. Li, and Y. Zhang,
“Robust Split Federated Learning for U-shaped Medical Image Networks,”
arXiv preprint arXiv:2212.06378, 2022.

[17] X. Chen, Y. Deng, H. Ding, G. Qu, H. Zhang, P. Li, and Y. Fang, “Vehicle
as a service (VaaS): Leverage vehicles to build service networks and
capabilities for smart cities,” arXiv preprint arXiv:2304.11397, 2023.

[18] H. Ding and K. G. Shin, “Context-aware beam tracking for 5G mmwave
V2I communications,” IEEE Trans. Mobile Comput., vol. 22, no. 6, pp.
3257 – 3269, June 2023.

[19] Z. Lin, L. Wang, J. Ding, B. Tan, and S. Jin, “Channel Power
Gain Estimation for Terahertz Vehicle-to-infrastructure Networks,” IEEE
Commun. Lett., vol. 27, no. 1, pp. 155–159, 2022.

[20] Z. Lin, L. Wang, J. Ding, Y. Xu, and B. Tan, “Tracking and Transmission
Design in Terahertz V2I Networks,” IEEE Trans. Wireless Commun.,
2022.

[21] P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 Dataset,
A Large Collection of Multi-source Dermatoscopic Images of Common
Pigmented Skin Lesions,” Sci. Data, vol. 5, no. 1, pp. 1–9, 2018.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning
Applied to Document Recognition,” Proc IEEE Inst Electr Electron Eng,
vol. 86, no. 11, pp. 2278–2324, 1998.

	Introduction
	System Model and U-PSL Framework
	Head model FP & activations transmission
	Body model FP & activations transmission
	Tail model FP and BP & activations' gradients transmission
	Body model BP & activations' gradients transmission
	Head model BP

	Problem Formulation and Solution Approach
	Simulation Results
	Experiments Settings
	Performance Evaluation of the Proposed U-PSL Framework
	Performance Evaluation of the Proposed LSCRA algorithm

	Conclusions
	Acknowledgment
	References

