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Abstract—In this work, we consider one-way ultra-reliable and
low-latency communication (URLLC), where only the transmis-
sion in one direction requires URLLC and the transmission
in the opposite direction does not. In order to meet the low-
latency requirement of the one-way URLLC, we propose to
use a truncated channel inversion power control (CIPC) to
eliminate the requirement and the associated overhead of the
training-based channel estimation at the receiver, while utilizing
the multi-antenna technique at the transmitter to enhance the
communication reliability. We first derive the transmission outage
probability achieved by the truncated CIPC by considering the
impact of a finite blocklength and a maximum transmit power
constraint. Then, we determine the optimal constant power of
the received signals in the truncated CIPC, which minimizes the
transmission outage probability. Our examination shows that the
proposed truncated CIPC is an effective means to achieve the
one-way URLLC, where the tradeoff among reliability, latency,
and required resources (e.g., the required number of transmit
antennas, or the required maximum transmit power) is revealed.

I. INTRODUCTION

Ultra-reliable and low-latency communication (URLLC)

is envisioned to support mission critical applications, e.g.,

industrial automation and remote surgery, where the require-

ments of latency and reliability are stringent. Specifically, in

URLLC scenarios, the end-to-end delay and the decoding error

probability are on the order of 1 ms and 10−7, respectively [1].

Some fundamental aspects of URLLC have been studied

in the literature (e.g., [2]–[6]). Considering the low-latency

constraint, the coding blocklength (i.e., channel uses or packet

size) is required to be as short as possible in the context of

URLLC applications [7], [8].

In practice, it is a big challenge to satisfy the quality-of-

service (QoS) requirements (i.e., the ultra-reliable and low-

latency requirements) when the coding blocklength becomes

short and limited. Besides that the decoding error probability

is no longer negligible for finite blocklength, another main

reason is that it is hard to achieve accurate channel state

information (CSI) in wireless networks within such a short

time period. Existing works, aiming at ensuring the QoS re-

quirements of URLLC in the finite blocklength regime, mainly

assumed that the channel state information (CSI) is available

or can be accurately estimated by using negligible channel

uses. For example, radio resource management in the finite

blocklength regime was examined to satisfy QoS requirement

with signalling overhead, for downlink transmission via cross-

layer resource allocation in [9], and for short packet delivery

via joint uplink and downlink optimization in [10]. In [11],

the optimal power allocation was studied for QoS-constrained

downlink multi-user networks in different types of data arrival.

In these works, the cost of channel estimation in the context

of satisfying QoS requirements was ignored by adopting the

aforementioned assumption (i.e., CSI is perfectly available or

estimated by using negligible resources). We note that the

impact of channel estimation overhead on transmitting short

packets in the finite blocklength regime was examined in [12]

and [13]. However, as aforementioned, when the low-latency

requirement is very stringent, we may not have any resource

to conduct channel estimation.

The ultra-reliable requirement cannot be satisfied by re-

transmission or the transmission that requires the traditional

channel estimation in URLLC scenarios. When channel reci-

procity holds, channel inversion power control (CIPC) can

be used for wireless communication, while eliminating the

conventional requirement that a receiver should know CSI to

conduct decoding [14], [15]. This is due to that a transmitter

can use CIPC to vary its transmit signal and power in order to

ensure that the power of the received signals at the receiver is a

constant value, which is a prior agreed between the transmitter

and receiver. We note that CIPC requires that CSI is available

at a transmitter, but it avoids the cost of feeding CSI back

from the transmitter to the receiver. This property leads to

the fact that CIPC may serve as a key enabler of one-way

URLLC in future wireless networks. Although CIPC has been

studied in different communication scenarios (e.g., [14]–[16]),

its performance and the associated optimization of the agreed

constant power have never been investigated in the context of

URLLC. This mainly motivates this work.

In this work, we adopt truncated CIPC to achieve one-

way URLLC, where the maximum transmit power at the

transmitter is considered. Specifically, we first derive the

transmission outage probability achieved by the truncated

CIPC by considering the impact of a finite blocklength and

a maximum transmit power constraint. We then optimize the
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Fig. 1. One-way URLLC.

agreed constant power of the received signals to minimize

this transmission outage probability. We note that one-way

URLLC has a wide range of applications. For example, in

vehicular wireless networks the communication from a vehicle

to a base station that delivers warning information requires

one-way URLLC, while the communication on the other way

(mainly delivering videos or music for entertainment) may

not require URLLC. Similar application scenarios can also

be found in digital medical systems and industrial Internet of

Things.

II. SYSTEM MODEL

In this section, we first detail our considered scenario

of one-way URLLC together with the adopted assumptions.

Then, we explain our proposed scheme (i.e., the truncated

CIPC) in details and present the definition of the resultant

reliability outage probability.

A. Considered Scenario and Adopted Assumptions

As shown in Fig. 1, in this work we consider a one-way

URLLC scenario in a time division duplex (TDD) multiple-

input single-output (MISO) communications system, where an

Nt-antenna transmitter sends urgent information to a single-

antenna receiver with the stringent requirement of latency and

reliability. We denote hu as the Nt × 1 uplink channel vector

from the receiver to the transmitter and denote hd as the 1×Nt

downlink channel vector from the transmitter to the receiver.

As such, the downlink transmission considered in this work

requires URLLC (the downlink transmission should occur

within a finite blocklength T , i.e., T channel uses), while the

uplink transmission does not. All the channels are subject to

independent quasi-static Rayleigh fading. We assume perfect

channel reciprocity in this work, i.e., h
T
u = hd during one

fading block, where h
T
u denotes the transpose of hu. The

entries of each channel are assumed to be independent and

identically distributed (i.i.d.) circularly symmetric complex

Gaussian random variables with zero mean and unit variance,

e.g., hd ∼ CN (0, INt
), where CN (µ, ν) denotes the complex

Gaussian distribution with the mean of µ and the variance of

ν and INt
is an Nt ×Nt identity matrix.

We further assume that the transmitter knows hu perfectly.

This is due to the fact that the uplink transmission does not

have strict requirement on delay, which makes it possible

for the receiver to periodically broadcast pilots such that the

transmitter can estimate hu perfectly. With the perfect channel

reciprocity, the transmitter also knows hd perfectly. We note

that the receiver does not know hu or hd, since there is no

feedback from the transmitter to the receiver. In the downlink

communication, all the channel uses are for data transmission

when urgent information is on demand to transmit. This will

significantly reduce the communication latency and improve

transmission reliability, in order to meet the requirements of

URLLC. To enable the receiver to decode the information

without knowing the accurate CSI, the truncated CIPC (i.e.,

channel inversion power control) will be used at the transmitter

based on the perfectly known hd, which will be detailed in

the following subsection.

B. Truncated Channel Inversion Power Control

In this work, we consider the truncated CIPC at the trans-

mitter to enable the receiver to decode received signals without

knowing hd. The received signal in one channel use is given

by

y =
√

Pahdx+ w, (1)

where w is the AWGN at the receiver with zero mean and

variance σ2
w, x is the transmitted signal, which is subject to

the average power constraint, i.e., E
[
‖x‖2

]
= 1 with E [·]

denoting expectation, and Pa is the transmit power. In order

to counteract the impact of the phase in the downlink channel

at the receiver, the transmitted signal x is designed as

x =
h
†
d

‖hd‖
u, (2)

where u is the information signal transmitted from the trans-

mitter to the receiver. Following (1) and (2), the signal-to-noise

ratio (SNR) at the receiver can be written as γ = Pa‖hd‖2/σ2
w.

In order to counteract the impact of the downlink channel

gain at the receiver, in CIPC the transmitter varies its transmit

power as per ‖hd‖, such that

Pa‖hd‖2 = Q, (3)

where Q is a pre-determined constant value a priori agreed

between the transmitter and receiver. Then, the SNR at the

receiver can be rewritten as

γ =
Q

σ2
w

. (4)

Considering Rayleigh fading for hd, as per (3) we can

see that the transmit power Pa may be infinite to guarantee

Pa‖hd‖2 = Q for some realizations of hd, which is not prac-

tical. As such, in this work we consider the truncated CIPC,

where the transmitter is subject to a maximum transmit power

constraint [15]. Specifically, the transmitter only transmits in-

formation to the receiver when the downlink channel gain (i.e.,

‖hd‖2) is greater than some specific value. Mathematically, the

transmit power is given by

Pa =

{
Q

‖hd‖2 , ‖hd‖2 ≥ Q
Pmax

0, ‖hd‖2 < Q
Pmax

,
(5)

where Pmax is the maximal transmit power. Based on (5),

we can see that the transmitter does not always transmit

information to the receiver due to the maximum transmit

power constraint. As such, in addition to the finite blocklength,



the maximum transmit power is another factor that causes

transmission outage, which should be minimized. Therefore,

in the following subsection we present the definition of the

transmission outage probability, which is used as the perfor-

mance metric for our proposed truncated CIPC.

C. Performance Metric: Transmission Outage Probability

In this subsection, we define the transmission outage proba-

bility that is used to evaluate the performance of our proposed

truncated CIPC scheme.

For a finite blocklength the decoding error probability at the

receiver is not negligible, of which an asymptotic expression

is given by [17]

ǫ(Q) = f

(

log2(1 + γ)−R
√

V/T

)

, (6)

where R is the information transmission rate, V =
(log2 e)

2
[
1− 1/(1 + γ)2

]
is the channel dispersion, f(·) de-

notes the Q-function where f(x) =
∫∞

x e−t2/2/
√
2πdt. We

note that the decoding error probability given in (6) is non-

zero due to the non-zero property of the Q-function.

As per (5), the probability that the transmit power is not

zero, i.e., the probability that the transmitter sends information

to the receiver, is given by

pt(Q) = Pr {Pa ≤ Pmax} . (7)

We note that the transmission outage is not only caused by

the maximum transmit power constraint. When the transmitter

can guarantee Pa‖hd‖2 = Q, an outage can still occur due to

the non-zero decoding errors in the finite blocklength regime.

Therefore, the overall transmission outage probability for our

considered truncated CIPC is given by

Pǫ(Q) = ǫ(Q)pt(Q) + (1− pt(Q)). (8)

We note that, although ǫ(Q) in (8) is conditioned on that the

transmit power is not zero, it is still for a fixed SNR determined

by Q, since in the CIPC the SNR is a constant, which does

not vary with the channel gain. We also note that, for fixed

R and T , this transmission outage probability Pǫ(Q) given in

(8) depends on Q heavily. Intuitively, there exists an optimal

value of Q that minimizes Pǫ(Q), since pt(Q) monotonically

decreases with Q and ǫ(Q) decreases with Q. Therefore, in

the following section we first derive a closed-form expression

for Pǫ(Q) and then we determine this optimal value of Q in

order to minimize Pǫ(Q).

III. PERFORMANCE ANALYSIS AND OPTIMIZATION

FRAMEWORK FOR THE TRUNCATED CIPC SCHEME

In this section, we analyze the transmission outage probabil-

ity of the truncated CIPC scheme, based on which we develop

a framework to optimize the value of Q in order to improve

its performance in the context of URLLC.

A. Transmission Outage Probability Expression

In the following lemma, we derive a closed-form expression

for the transmission outage probability of the truncated CIPC

scheme.

Lemma 1: The transmission outage probability of the trun-

cated CIPC scheme in the context of URLLC is derived as

Pǫ(Q) = 1−



1−
γ
(

Nt,
Q

Pmax

)

Γ(Nt)





×



1− f





√
T
(
ln(1 +Q/σ2

w)−R ln 2
)

√

1− 1
(1+Q/σ2

w)2







 , (9)

where γ(s, x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma

function and Γ(x) = (x− 1)! is the gamma function.

Proof: In order to prove Lemma 1, we have to derive

the expression of Pǫ(Q) given in (8) by deriving the explicit

expressions for pt(Q) and ǫ(Q). We first tackle the probability

pt(Q) = Pr {Pa ≤ Pmax}. Substituting (5) into (7), we have

pt(Q) = 1−Pr

{

‖hd‖2≤
Q

Pmax

}

= 1−
γ
(

Nt,
Q

Pmax

)

Γ(Nt)
, (10)

where fX(x) = xNt−1e−x/Γ(Nt) and FX(x) =
γ (Nt, x) /Γ(Nt) are the probability density function (pdf) and

cumulative distribution function (cdf) of ‖hd‖2, respectively.

Substituting γ = Q/σ2
w into (6), the decoding error proba-

bility can be rewritten as

ǫ(Q) = f





√
T
[
ln(1 +Q/σ2

w)−R ln 2
]

√

1− 1
(1+Q/σ2

w)2



 . (11)

Finally, substituting (10) and (11) into (8), we obtain the

desired result in (9), which completes the proof.

We note that the transmission outage probability Pǫ(Q) is a

monotonically increasing function of the transmission rate R,

since ǫ(Q) monotonically increases with R while pt(Q) is not

a function of R. Meanwhile, Pǫ(Q) monotonically decreases

with Pmax, as pt(Q) increases with Pmax, while ǫ(Q) < 1
does not depend on Pmax. In Section IV, we will examine what

is the required maximum transmit power in order to achieve

URLLC with a certain transmission rate and a maximum

allowable transmission outage probability.

B. Optimization Framework of Q

In this subsection, we focus on determining the optimal

value of Q to minimize the transmission outage probability

Pǫ(Q) for given T , R and Pmax. Then, the optimization

problem at the transmitter is given by

min
Q

Pǫ(Q) (12a)

s.t. R ≤ log2(1 +Q/σ2
w), (12b)

where (12b) is the transmission rate constraint (i.e., the

transmission rate should be no larger than the corresponding

Shannon capacity).



Fig. 2. The transmission outage probability Pǫ(Q) versus the constant value
Q in the truncated CIPC scheme for different values of Nt and T with R =
0.3, Pmax = 10 dB.

Due to the high complexity of the expression for Pǫ(Q)
derived in Lemma 1, it is hard to analytically solve the

optimization problem in (12). We present the following lemma

to aid numerically solving this optimization problem.

Lemma 2: The transmission outage probability Pǫ(Q) of the

truncated CIPC is a convex function of Q when Q0 < Q <
Pmax(NA − 1), where Q0 is the solution of

ln(1+Q)
(1+Q)2−1 = 1

3 .

Proof: See Appendix A.

IV. NUMERICAL RESULTS

In this section, we present numerical results to examine the

performance of the proposed truncated CIPC scheme in the

context of URLLC, based on which we draw useful insights

on the impact of some system parameters on the considered

one-way URLLC.

In Fig. 2, we plot the transmission outage probability Pǫ(Q)
of the truncated CIPC scheme versus different values of Q. In

this figure, we first observe that there indeed exist an optimal

value of Q that minimizes Pǫ(Q). We also observe that this

optimal value is within the interval (Q0, Pmax(Nt−1)), which

demonstrates the correctness of our Lemma 2. In addition,

we observe that the minimum value of Pǫ(Q) significantly

depends on the values of Nt and T , i.e., this minimum value

decreases with Nt or T . This first indicates that the reliability

in URLLC can be improved by using more antennas in the

truncated CIPC scheme. We note that without the considered

CIPC scheme, increasing transmit antenna number may not

improve reliability in URLLC, since the traditional channel es-

timation cost also increases as the number of transmit antennas

increases. In Fig. 2(a), we observe that, in the low regime of

Q, Pǫ(Q) for different values of Nt is almost the same. This

is due to the fact that under this case Pǫ(Q) is dominated by

the decoding error probability ǫ(Q), which is not a function of

Nt. Meanwhile, in the high regime of Q, Pǫ(Q) is different

for different values of ǫ(Q), where Pǫ(Q) is dominated by

the probability that the transmitter sends information, which

Fig. 3. The minimum transmission outage probability P ∗

ǫ
(Q) versus the

maximum transmit power Pmax for different values of R, where Nt = 5,
T = 150.

Fig. 4. The optimal power of receive signal Q versus the maximum transmit
power Pmax for different values of R with Nt = 4 and T = 200.

highly depends on Nt. Similar observations and explanations

can be applied to Fig. 2(b).

In Fig. 3, we plot the minimum transmission outage prob-

ability, denoted by P ∗
ǫ (Q), achieved by the optimal Q in the

truncated CIPC, versus the maximum transmit power Pmax

for different values of R. As expected, in this figure we first

observe that P ∗
ǫ (Q) monotonically decreases with Pmax, since

increasing Pmax can definitely increase pt(Q) for a fixed ǫ(Q).
This demonstrates that the maximum transmit power plays a

critical role in the truncated CIPC, as it determines the specific

channel gain when the transmitter can conduct URLLC to

the receiver. This figure demonstrates that, to guarantee a

certain reliability, the required value of Pmax increases with

the transmission rate R. In addition, we observe that P ∗
ǫ (Q)

increases as R increases, which demonstrates the tradeoff

between the transmission rate R and the reliability.

In Fig. 4, we plot the optimal value of Q, which mini-



mizes the transmission outage probability Pǫ(Q), versus the

maximum transmit power Pmax for different values of the

transmission rate R. In this figure, we first observe the optimal

Q increases with Pmax. Similarly, in this figure we also

observe that the optimal Q increases as the transmission rate

R increases. This is due to the fact that, as R increases, the

decoding error probability ǫ(Q) significantly increases, which

again becomes the key factor limiting the overall transmission

reliability, where we have to increase Q to reduce this ǫ(Q).

V. CONCLUSION

In this work, we proposed using the truncated CIPC to

achieve one-way URLLC in the MISO system. We proved

that the achievable transmission outage probability is a convex

function of the constant received signal power, i.e., Q within

a specific range. Based on that, we investigated the optimal

value of Q to minimize the achievable transmission outage

probability by considering a finite blocklength and a maxi-

mum transmit power constraint. Our outcomes provide useful

guidelines to assist the URLLC designers with the fundamental

problem of determining the minimum required transmit power

to guarantee a target reliability with a certain transmission rate.
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APPENDIX A

PROOF OF LEMMA 2

In order to prove Lemma 2, we analyze the monotonicity

and concavity of Pǫ(Q) with respect to (w.r.t.) Q. We first

derive the first-order derivative of Pǫ(Q) w.r.t. Q as

∂Pǫ(Q)

∂Q
=

∂{pt(Q)}
∂Q

(

ǫ(Q)− 1

)

+ pt(Q)
∂{ǫ(Q)}

∂Q
. (13)

Then, the second-order derivative of Pǫ(Q) w.r.t. Q can be

obtained as

∂2Pǫ(Q)

∂Q2
=

∂2{pt(Q)}
∂Q2

(

ǫ(Q)− 1

)

+ 2
∂{pt(Q)}

∂Q

∂{ǫ(Q)}
∂Q

+ pt(Q)
∂2{ǫ(Q)}

∂Q2
. (14)

To find the sign of
∂2Pǫ(Q)

∂Q2 , we first need to address
∂pt(Q)
∂Q

and
∂2pt(Q)
∂Q2 . According to (10), the first-order derivative of

pt(Q) w.r.t. Q is given by

∂pt(Q)

∂Q
= −

e−
Q

Pmax ( Q
Pmax

)NA−1

PmaxΓ(NA)
< 0. (17)

We find that pt(Q) is a monotonically decreasing function of

Q due to
∂pt(Q)
∂Q < 0. The second-order derivative of pt(Q)

w.r.t. Q is given by

∂2pt(Q)

∂Q2
=

e−
Q

Pmax( Q
Pmax

)NA+1

[

Q− Pmax(NA − 1)

]

Q3Γ(NA)
. (18)

The sign of
∂2pt(Q)
∂Q2 has three outcomes, which are

∂2pt(Q)

∂Q2







< 0, 0 < Q < Pmax(NA − 1)

= 0, Q = Pmax(NA − 1)

> 0, Q > Pmax(NA − 1).

(19)

It is worth mention that Q should be in the range of

(0, Pmax(NA − 1)) for arbitrary Nt. It is due to the fact that

when Q = Pmax(Nt − 1), as per (10) the probability pt(Q)
becomes a function of only the variable Nt, which is

ṗt(Nt) = ṗt(Pmax(Nt − 1)) = 1− γ (Nt, Nt − 1)

Γ (Nt)
. (20)

We note that ṗt(Nt) is a monotonically decreasing function

of Nt and thus 1 − ṗt(Nt) increases and tends to a constant

value (i.e., 0.5) with Nt. However, we note that using more

transmit antennas will not be beneficial to improve reliability

when Q = Pmax(NA − 1). Following (8), we have Pǫ(Q) >
1−pt(Q). As such, for given Pmax, we cannot meet the ultra-

reliable requirement of URLLC by setting Q = Pmax(Nt −
1) and we have to decrease Q in order to further increase

the value of pt(Q). Therefore, reducing the value of Q is

the only solution to guarantee 1 − ṗt(Nt) ≤ 10−7. We also

note that pt(Q) = 1−γ
(

Nt,
Q

Pmax

)

/Γ(Nt) is a monotonically

decreasing function of Q due to
∂pt(Q)
∂Q < 0 proved in (17).

Thus, for Q > Pmax(NA−1), the term 1−pt(Q) will be larger

than 0.5 which also violates the requirement of URLLC.

Then, we calculate the first-order partial derivative of ǫ(Q)
w.r.t. Q, which is given by

∂{ǫ(Q)}
∂Q

= − 1√
2π

exp

(

−A2(Q)

2

)
∂{A(Q)}

∂Q
, (21)

where we set σ2
w = 1 for simplifying the analysis as the value

of σ2
w does not affect the result, which makes γ = Q and

A(Q) =
√
T [ln(1 +Q)−R ln 2]/

√

1− 1/(1 +Q)2.

The second-order partial derivative of ǫ(Q) w.r.t. Q (i.e.,
∂2ǫ(Q)
∂Q2 ) is given in (15) , where the first-order partial derivative

of A(Q) w.r.t. Q is given by

∂{A(Q)}
∂Q

=

√
T
[

1− ln(1+Q)−R ln 2
(1+Q)2−1

]

√

(1 +Q)2 − 1
. (22)

Determining the sign of
∂{ǫ(Q)}

∂Q is equivalent to figure out

the sign of
∂{A(Q)}

∂Q . To address this issue, we first define a

function as

G(x) =
lnx

x2 − 1
, (23)

where x = 1 +Q, and x > 1 due to Q > 0.

We note that d{G(x)}/dx is given by

d{G(x)}
dx

=
x− 2x lnx− 1

x

(x2 − 1)2
=

g(x)

(x2 − 1)2
, (24)

where g(x) = x− 2x lnx− 1/x.

We find that the sign of
d{G(x)}

dx depends on g(x) when

x > 1. It is clear that the first-order derivative of g(x) w.r.t.



∂2ǫ(Q)

∂Q2
=

A(Q)√
2π

exp

(

−A2(Q)

2

){
∂{A(Q)}

∂Q

}2

− 1√
2π

exp

(

−A2(Q)

2

)
∂2{A(Q)}

∂Q2
, (15)

∂2{A(Q)}
∂Q2

=

√
T

(1 +Q)

[

3 [ln(1 +Q)−R ln 2]
(√

(1 +Q)2 − 1
)5

︸ ︷︷ ︸

Ψ1

+
3 [ln(1 +Q)−R ln 2]
(√

(1 +Q)2 − 1
)3

︸ ︷︷ ︸

Ψ2

− 2
(√

(1 +Q)2 − 1
)3

︸ ︷︷ ︸

Ψ3

− 1
√

(1 +Q)2 − 1
︸ ︷︷ ︸

Ψ4

]

. (16)

x is negative, where
d{g(x)}

dx = −
(
1− 1

x2

)
− 2 lnx < 0 for

x > 1. In other words, g(x) decreases with x when x > 1.

As such, we can obtain that g(x) < g(1) = 0. Thus, we can

obtain that
d{G(x)}

dx < 0 for x > 1, which means that G(x) is

a decreasing function w.r.t. x for x > 1. As per L’Hospital’s

rule, we derive

lim
x→1

G(x) = lim
x→1

d{lnx}/dx
d{x2 − 1}/dx = lim

x→1

1

2x2
=

1

2
, (25)

lim
x→∞

G(x) = lim
x→∞

d{lnx}/dx
d{x2 − 1}/dx = lim

x→∞

1

2x2
= 0. (26)

To summarize, we have 0 < G(x) < 1/2 for x > 1. As

such, ∂{A(Q)}/∂Q in (22) can be expressed as

∂{A(Q)}
∂Q

>

√
T [1−G(x)]

√

(1 +Q)2 − 1
>

1
2

√
T

√

(1 +Q)2 − 1
> 0. (27)

Based on the sign of
∂{A(Q)}

∂Q , we have
∂{ǫ(Q)}

∂Q < 0 as per

(21). Next, we derive
∂2{A(Q)}

∂Q2 in (16). As such, the analysis

of the sign of
∂2{A(Q)}

∂Q2 is equivalent to determining the value

of Ψ1 + Ψ2 − Ψ3 − Ψ4. In order to address this problem,

we decompose it into two parts, and calculate Ψ1 − Ψ3 and

Ψ2 −Ψ4, respectively. Firstly, we calculate Ψ1 −Ψ3 as

Ψ1 −Ψ3 <
(
3G(x) − 2

)
/
(√

(1 +Q)2 − 1
)3

. (28)

Similarly, Ψ2 −Ψ4 can be obtained as

Ψ2 −Ψ4 <
(
3G(x)− 1

)
/
√

(1 +Q)2 − 1. (29)

If we have (28) < 0 and (29) < 0 simultaneously, we can

guarantee
∂2{A(Q)}

∂Q2 < 0. We note that (28) < 0 and (29) < 0
are equivalent to 3G(x) − 2 < 0 and 3G(x) − 1 < 0. Thus,

we only need to ensure 3G(x)− 1 < 0 due to 0 < G(x) < 1
2

for x > 1. Now, we substitute G(x) = ln x
x2−1 = ln(1+Q)

(1+Q)2−1 into

3G(x)− 1 < 0, and we have

3G(x)− 1 < 0 =⇒ ln(1 +Q)

(1 +Q)2 − 1
<

1

3

(a)
=⇒ Q > max(Q0, 0).

where
(a)
=⇒ is obtained due to the fact that G(Q) is a decreasing

function w.r.t. Q for Q > 0, where Q0 is the solution to

ln(1 +Q)/(1 +Q)2 − 1 = 1/3.

So far, we prove that Ψ1 + Ψ2 − Ψ3 − Ψ4 < 0 for Q >

Q0. As a result, we have
∂2{A(Q)}

∂Q2 < 0 when Q > Q0. To

summarize, for Q > Q0, we have
∂2ǫ(Q)
∂Q2 > 0 in (15) due to

A(Q) > 0 and
∂2{A(Q)}

∂Q2 < 0. Thus, we have
∂2Pǫ(Q)

∂Q2 > 0 for

Q0 < Q < Pmax(NA − 1), which completes the proof.
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