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Abstract—Machine-learning-based prediction of future wire-
less link quality is an emerging technique that can potentially
improve the reliability of wireless communications, especially at
higher frequencies (e.g., millimeter-wave and terahertz technolo-
gies), through predictive handover and beamforming to solve line-
of-sight (LOS) blockage problem. In this study, a real-time online
trainable wireless link quality prediction system was proposed;
the system was implemented with commercially available laptops.
The proposed system collects datasets, updates a model, and in-
fers the received power in real-time. The experimental evaluation
was conducted using 5 GHz Wi-Fi, where received signal strength
could be degraded by 10 dB when the LOS path was blocked by
large obstacles. The experimental results demonstrate that the
prediction model is updated in real-time, adapts to the change in
environment, and predicts the time-varying Wi-Fi received power
accurately.

Index Terms—mm-wave, machine learning, camera assisted,
implementation, 5G, beyond 5G

I. INTRODUCTION

Wireless communication technology has evolved over the
years and is presently one of the most advanced and sought-
after technology. However, the bandwidth of a wireless net-
work is limited. To overcome this well-established limitation,
it is anticipated that the fifth-generation (5G) and beyond-
5G wireless networks would attain higher-frequency bands,
including 3–6 GHz, the millimeter wave (mmWave), and
THz bands (28 GHz, 60 GHz, and above 100 GHz) [1].
These higher-frequency bands offer huge bandwidths and
potentially enable data rates of several tens or hundreds of
Gbit/s. However, owing to the high attenuation and diffraction
losses, the blockage of the line-of-site (LOS) path profoundly
degrades the wireless link quality. Specifically, in mmWave
communications, the received power suddenly drops by 20
dB or more when a LOS path is blocked by moving obstacles
such as pedestrians or vehicles [2]. Therefore, the link quality
of the communication systems operating at higher frequency
bands varies rapidly due to the LOS path blockage.

To overcome this problem, vision-assisted radio frequency
(RF) prediction [3], [4], learning-based proactive wireless
control (handover [5], and beamforming [6]) approaches
have been developed. These works leverage a camera to
observe the communication environments and obtain infor-
mation about moving obstacles that cause severe attenuation
on the mmWave and THz link when they block the LOS
path. We have demonstrated that the time-varying mmWave
received power can be predicted from camera imagery by
applying a contemporary machine learning (ML) approach [3].

AP

Camera

Camera
Images

STA1

Network
Instruction

STA2

Moving
obstacle

Network Controller

Measured 
Link Quality 

of STA2
Edge Server

Preprocessing
Unit

Future  
Link Quality 

of STA1

Future  
Link Quality 

of STA2

Measured 
Link Quality 

of STA1

ML Unit

Fig. 1: System model. Dotted lines indicate wireless links,
whereas solid lines indicate wired links.

The vision-based RF prediction is a new paradigm that can
potentially solve the blockage problems in mmWave and
THz communications, and there are many challenges and
opportunities.

The critical issue in developing a high-accuracy prediction
model is that the model training process requires a large
training dataset; moreover, the expected computation cost is
high. Existing studies [3], [5] conducted offline model training.
The training dataset was populated first; subsequently, an ML
model was trained using the dataset. Therefore, offline training
causes a delay between the times when the data are obtained
and when the model is updated, although the dataset of images
and received power can be obtained and accumulated moment
by moment. The delay prevents the model from adapting to
the real-time environment.

In this study, an online model training and prediction
system was proposed for the image-based received power
prediction. The main contributions of this study are threefold:
(1) design of an online training and prediction system of the
image-based received power prediction that collects datasets,
updates a model, and infers the received power in real-time;
(2) implementation of the online system with 5 GHz Wi-Fi
received power prediction using a standard laptop equipped
with a camera; and (3) demonstrating that the prediction
model was updated in real-time, adapted to the change in
environment, and accurately predicted the time-varying Wi-Fi
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received power. Notably, the experiments using 5 GHz Wi-
Fi instead of mmWave communications are still reasonable to
evaluate the image-based received power prediction since the
received signal strength can be degraded by 10 dB, similar to
mmWave communications, when the LOS path is blocked by
large obstacles.

The rest of this paper is organized as follows: Section II
describes the proposed online prediction system. Experimental
setups and implementation are described in Section III. Sec-
tion IV provides experimental results, and Section V concludes
this paper.

II. ONLINE TRAINING FRAMEWORK FOR IMAGE-BASED
RECEIVED POWER PREDICTION

A. System Design
Figure 1 presents a system model based on the previous

works [3], [7]. The system consists of an access point (AP), a
camera, an edge server, a network controller, and N stations
(STAs). The server is connected to the AP, camera, and
network controller by a wired local area network. The STAs
are connected to the network via a wireless connection to the
AP, and periodically receive and send packets. The wireless
link quality (e.g., received power, throughput, and packet loss
rate) of an STA is degraded when obstacles, e.g., a moving
human or car, block the LOS path between the AP and a
particular STA. This study considers the received power as
the wireless link quality and amis to predict the received
power. The AP measures the received power of signals from a
particular STA and sends the power information to the server.
The camera captures color images and sends them to the
server. We have assumed a simple case in which the LOS path
between an STA and the AP always lies in the field of view of
the camera. The server predicts the future received power for
each STA using the camera images and current received power
as inputs. Using the predicted received power information, the
network controller sends the appropriate command to the AP,
such as a request for handover or a beamforming instruction.

B. Online Training and Prediction Procedure
The server contains an ML unit and a preprocessing unit,

functioning parallelly. The preprocessing unit combines color
images and received power of each STA to extract the features
and sends them to the ML unit. Additionally, the preprocessing
unit computes a label, predicts the future received power
effectively, and sends feature–label pairs to the ML unit. The
details of the feature extraction and labeling are described in
section II-C.

The ML unit holds N ML models; i-th model predicts
the future received power of the i-th STA. Each ML model
predicts the future received power every time the feature is
received. To train ML models, the ML unit contains N training
dataset queues. The i-th queue contains a certain number of
feature–label pairs dataset to train i-th model.

In our system model, the prediction of N ML models
are processed in parallel, whereas the training of each ML
model is processed sequentially; there are two reasons for
such a design. First, prediction requires more immediacy than
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Fig. 2: Feature extraction process.

training, since the prediction delay prevents real-time control
of wireless links while the training is conducted in the back-
ground. Second, model training requires huge computation,
and computation resources can be occupied by model training
if conducting training multiple models parallelly. The ML
unit sequentially trains the ML model using the dataset in
its training dataset queue. If a model is still in the training
process, and the other model attempts to start training, the
latter cannot start until the former has finished its training.

C. Data Processing and Labeling

The feature extraction and labeling method are based on [3],
[7]. In this section, we aim to (1) analyze the irradiated power
of an STA, (2) present the feature extraction and labeling
method, which is designed to predict the future STA received
power. In the implemented system, the feature extraction and
labeling are conducted parallelly for multiple STAs.

We consider that the camera unit sends F images per
second, the preprocessing unit receives F images and sends F
feature samples per second to the ML unit. The AP sends the
value of the received power of a frame transmitted by an STA
to the preprocessing unit; let the received power at t be rt. In
the preprocessing unit, the images and received power values
of the STA are used as input to generate a feature sample.

As shown in Fig. 2, our feature extraction includes three
steps: image loading, image reduction, and image combination.
First, let it be the W ×H RGB image, which the camera unit
captured at time t. In the image loading step, the RGB image
it is loaded from the camera unit to the preprocessing unit. In
the image reduction step, the RGB image is reduced to w×w
gray image to reduce the computation cost; let i′t be the gray
image reduced from it.

In the image combination step, Nimg gray images and
Nr received power values are combined to generate a fea-
ture sample. First, Nimg gray images, captured in the in-
terval t − (Nimg − 1)T0 to t, are combined to form It =[
i′t−(Nimg−1)T0

· · · i′t
]
, where T0 is time interval of im-

ages consisting a feature. Next, after sampling the received



TABLE I: Parameters of feature extractions and labeling
Name of parameters Value

Camera frame rate F 10 fps
Row RGB image size W ×H 1280× 720

Reduced gray image size w × w 40× 40
Num. images of a feature sample Nimg 5

Time interval of each image To 0.5 s
Num. received power value of a feature sample Nr 21

Dimension of a feature sample xt 8021
How far future the system predicts Tf 1.0 s

power captured in the interval from t − (Nimg − 1)T0 to
t, with the sampling frequency of T0(Nimg − 1)/Nr, we
obtain the sequence of Nr received power values rt =
{rt−(Nimg−1)T0

· · · rt}. Subsequently, It and rt are stacked
and reshaped to 1-dimensional (1D) array, which results in a
feature sample xt. The feature sample xt is w2Nimg + Nr

dimension vector and carries geometric information up to
(Nimg−1)T0 seconds ago. The feature sample xt is generated
every time the image it received; finally, xt is sent to the ML
unit.

Let us consider predicting the received power in the future
Tf seconds. The feature vector xt is associated with rt+Tf

,
resulting in the training dataset Dt = {xt, rt+Tf

}. The training
dataset Dt is sent to the training unit. The ML unit stores the
training dataset in a training queue, which can contain Nq

training samples; hence, the dataset generated in recent Nq/F
seconds is used for the training. The parameters of feature
extractions and labeling are summarized in Table I.

D. Machine Learning Training Algorithm

Existing studies [3], [5] employed conventional long short-
term memory (LSTM) networks (ConvLSTM) because Con-
vLSTM performs well on ML tasks with spatio-temporal
features such as moving images. However, the graphics pro-
cessing unit (GPU) and enormous computation resources are
required for quickly running ConvLSTM. In this research, the
intention was to implement the system with minimal compu-
tation resources available in the edge server. The ML model
must work quickly using only such computation resources,
without GPU.

For the ML model, we used light gradient boosting machine
(LightGBM) [8], which is an efficient implementation of the
gradient boosting regression tree (GBRT) [9]. GBRT works
by sequentially adding predictors to an ensemble, each one
correcting its predecessor. Instead of tweaking the instance
weight at every iteration, GBRT tries to fit the new predictors
to the residual errors made by the previous predictors. Light-
GBM can run fast without GPU; it is reported that GBRT
and LightGBM perform well on image-based ML tasks [10].
Therefore, we expect that the LightGBM can capture the image
features and predict the received power from images.

As a first step in the ML model training process, each
training dataset is randomly divided into two categories:
updating and validation datasets, obeying the 8:2 ratio. The
model is updated using only the updating dataset for the

TABLE II: Experimental equipment.
Txs WZR-HP-AG300H

Laptop
MacBook Pro (2018)

Processor: 2.3GHz quad-core Intel Core i5
Memory: 8GB 2133MHz LPDDR3

TABLE III: Hyperparameters of the ML model training
Hyperparameter Value

Num. leaf 100
Maximum depth of the tree 8

Splitting criterion Root raised mean squared error
Num. boosting round 10

Num. early stopping round 2

multiple boosting rounds. For each round, the model is eval-
uated on the validation dataset. The training terminates when
pre-determined boosting rounds are performed or when the
validation loss is increased after several rounds consecutively,
which indicates that the model has started to overfit.

III. EXPERIMENTAL SETUP

A. Implemented System

The implemented system includes two Tx nodes as STAs,
an Rx node as an AP, a camera, and an edge server. We
used a laptop equipped with a camera as the Rx, camera,
and edge server. For easy received power measurements, Wi-
Fi routers were used as the Tx nodes, which transmitted
beacons periodically. The devices used for the experiment were
described in Table II. The Tx nodes transmitted IEEE 802.11
beacon frames every 0.1 seconds at the same channel on the
5G band. The Rx node measured the received power of the
frame irradiated by a Tx node and sent the measured value
to the server. The camera sends the RGB image to the server
every 0.1 seconds, i.e., achieves the frame rate of 10 fps.

For the model training, we used the training queue size
Tq = 50 s, which means that the training queue contains the
dataset generated in recent 50 s. The hyperparameters of the
ML model training process are displayed in Table III.

B. Experimental Environment

The experiments were conducted in two locations: indoor
and outdoor. The setups in the locations are shown in Fig 3
and 4, respectively. According to the Japanese 5 GHz band
regulation, for outdoor and indoor locations, wireless channel
100 (5.5 GHz) and 36 (5.18 GHz) were used, respectively.
The Tx nodes were placed at either Point A or Point B. A
human moved an obstacle along the x-axis between the Tx
nodes and Rx node, and they attenuated signals. The obstacle
was a movable metal panel, with height and width of 1.7m
and 0.9m, respectively.

C. Experimental Scenario

For both locations, two experimental scenarios were ap-
plied: stationary and mobile scenarios, where Tx nodes were
stationary and moving, respectively. The mobility pattern is
summarized in Table IV. In the stationary scenario, positions
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Fig. 3: Settings of an outdoor environment. The height of Point
A and Point B is 0.25m and that of Rx node is 0.75m
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Fig. 4: Settings of indoor environment. The height of Point A
and Point B is 0.35m and that of Rx nodes is 0.75m

TABLE IV: Positions of Tx nodes in stationary or mobile
scenarios.

Scenario Tx nodes Time

0 s− 300 s 300 s− 600 s

Stationary Tx0 Point A Point A
Tx1 Point B Point B

Mobile Tx0 Point A Point B
Tx1 Point B Point A

of the Tx nodes were fixed during the experiment. Conversely,
in the mobile scenario, positions of the Tx nodes were ex-
changed at 300 s, i.e., Tx0 was moved from Point A to Point
B, and Tx1 was moved from Point B to Point A at 300 s.
Regardless of location or scenario, the experiment took 600
seconds to complete.

D. Prediction Methods with Different Features

This study compared three ML-based prediction methods
with different features and a native prediction method. The
first ML-based prediction method uses received power and
images described in Sect. II-C. We denote this method to be
received power and image-based prediction method (RP-Im),
which comprises the primary method of this study. The second
ML-based prediction method uses received power, which is the
received power part of the RP-Im features. We denote this to
be received power method (RP). The third one uses the images,

TABLE V: Average computation time of each process.
Step Average computation time (ms)

ML prediction 1.3
Data combination 8.2
Image reduction 30

Image load 57
Total 96

which is the image part of the features of RP-Im method. We
denote this to be the image method (Im). The last is the native
prediction method, which predicts that the future received
power is the current one. A more frequent blockage implied
a higher prediction error of the native prediction method.

IV. EXPERIMENTAL RESULTS

A. Computation Time

Table V shows the measured computation time required for
the future received power prediction of the RP-Im method for
each step involved in the experiment. As described in II-C,
four steps, i.e., image load, image reduction, image combina-
tion, and ML prediction, are required to make a prediction.
”Total” is the sum of computation times for these four steps,
which denotes the latency from the time when the camera
captured an image to the time when the future received power
is predicted.

Average total step time is less than 0.1 s; this is sufficiently
short to predict 1 s future received power. Looking at the
computation time for each step, the image load and image
reduction step are required 90%, whereas ML prediction
consumed less than 2% of total step time. Thus, to reduce
total latency more, we must improve the image processing by
hardware acceleration or GPU.

B. Time Series of Prediction

Figures. 5 and 6 depict the time series of the measured and
predict the received power of the RP-Im method for two Tx
nodes, for the stationary and mobile scenarios, respectively,
for an outdoor location. Let us focus on Fig. 5. For both Tx
nodes, Tx0 and Tx1, the predicted received power gradually
matches with the actual values as time passes. Figure 5 (a)
depicts the results between the 80 s and 90 s, the predicted
received power does not match the measured power. This can
be explained by the fact that it takes time to collect training
data required for improving the model. Figure 5 (c) depicts
the results between the 500 s and 510 s, the predicted received
power matches the measured power much better because the
model was trained using a larger dataset.

Figure 6 (a) depicts the received power between 204 s and
214 s where the model was well trained; the predicted received
power matches the measured power. Figure 6 (b) depicts the
results between 333 s and 343 s where the positions of the
Tx nodes were exchanged; the predicted power substantially
differs from the measured power for each. However, the
predicted power for Tx0 looks similar to the measured power
for Tx1, and vice versa. This is because the models were not
trained well and not adapted to the new environment where the
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Fig. 5: Predicted and measured received power of the RP-Im method on the stationary scenario at the outdoor location. Tx0
was at Point A and Tx1 was Point B during all the processes. (a) – (c) depict results in different time slots.
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Fig. 6: Predicted and measured received power of the RP-Im method on the mobile scenario at the outdoor location. At 300 s,
Tx0 was moved from Point A to B and Tx1 was moved from Point B to A. (a) – (d) depict results in different time slots.

positions of Tx nodes were changed. This is possible because
the positions of Tx0 and Tx1 were exchanged at 300 s, as
prescribed in the mobile scenario. As shown in Figs. 6 (c)
and (d), the models were gradually adapted to the Tx positions
and provided more accurate received power prediction.

C. Prediction Accuracy Comparison with Various Prediction
Methods

Tables VII and VIII show the comparison of four prediction
methods described in III-D in terms of prediction error in
the mobile scenario, where the Tx nodes were exchanged at
300 s. On comparing the naive prediction and three ML-based
methods with different features, before 300 s, we find that
the three ML-based methods outperform the native prediction
method in terms of prediction error. This result shows that,
without the change of the environment, the ML-based pre-
dictions are more accurate than that of native method. From

300 s to 400 s (immediately after the environment change), the
three ML-based methods perform inferior or equivalent to the
native prediction method. This means that from the time at
which the environment changes until the time at which the
model adapts to this change, the prediction error of the ML-
based methods is higher than that of the native prediction
method. However, between 400 s and 600 s, the three ML-
based methods outperformed the native prediction method.
After the model adapts to the environment change, the ML-
based methods outperform native method. The time taken to
adapt to the new environment is about 100 s because the ML-
based methods outperform the native method at a time between
400 s and 500 s. This time is unacceptably long for a mobile
communication system. However, this is sufficiently short for
different scenarios, such as mm-wave wireless lead-in line to
indoor.

The comparison of the ML-based methods with different



Effect of the input feature on the prediction error (dB) in mobile scenario of Tx0. Gray shaded columns indicate the best
performing method at each time.

TABLE VII: Indoor location
Time Native prediction RP-Im Im RP

100 s ∼ 200 s 1.75 1.04 1.03 1.30
200 s ∼ 300 s 1.52 0.92 0.96 1.15
300 s ∼ 400 s 2.66 2.95 2.89 2.71
400 s ∼ 500 s 2.10 1.55 1.58 1.89
500 s ∼ 600 s 2.63 1.41 1.43 2.03

TABLE VIII: Outdoor location
Time Native prediction RP-Im Im RP

100 s ∼ 200 s 3.28 2.03 2.13 2.55
200 s ∼ 300 s 3.20 1.84 1.82 2.53
300 s ∼ 400 s 2.87 3.56 3.32 3.31
400 s ∼ 500 s 3.22 2.35 2.30 2.47
500 s ∼ 600 s 3.24 2.34 2.38 2.41

Effect of training queue size on the prediction error (dB), evaluated on mobile scenario of Tx0. Gray shaded columns indicate
the best performing method at each time.

TABLE X: Indoor location
Time Tq

15 (s) 50 (s) ∞

100 s ∼ 200 s 1.24 1.04 1.03
200 s ∼ 300 s 1.11 0.92 0.87
300 s ∼ 400 s 2.57 2.95 2.81
400 s ∼ 500 s 1.52 1.55 1.68
500 s ∼ 600 s 1.53 1.41 1.45

TABLE XI: Outdoor location
Time Tq

15 (s) 50 (s) ∞

100 s ∼ 200 s 2.16 2.03 1.79
200 s ∼ 300 s 1.84 1.84 1.79
300 s ∼ 400 s 3.56 3.56 3.56
400 s ∼ 500 s 3.18 2.35 2.49
500 s ∼ 600 s 2.83 2.34 2.28

features shows that the prediction errors of the RP-Im and
Im methods are similar, and both are lower than that of the
RP method. As shown by existing studies [3], [5], [7], an
image was more informative than other features for the future
received power prediction.

D. Prediction Accuracy for Various Training Queue Size

Tables X and XI show the effect of the training queue size in
terms of prediction error on the mobile scenario using the RP-
Im method. Considering the training queue size, the following
fact is worth noting: for a larger training queue size, the data
points that populate the dataset used for the training are older.
For example, taking the training queue size Nq and camera
frame rate F (fps), the dataset generated from Nq/F seconds
ago to the present is used for training. Let us denote Nq/F
as Tq.

Until 300 s, when the positions of Tx nodes were changed,
the larger Tq is associated with the lower prediction error
because a larger training dataset is used for a larger Tq.
Between 300 s and 400 s, the prediction error of Tq = ∞
is inferior or equivalent to that of Tq = 50s or Tq = 15 s.
Considering the training at time t seconds, where t > 300,
i.e., after the positions of Tx nodes were changed, when Tq is
larger than t − 300, the training dataset used include the old
data that was generated before 300 s. Using this old dataset
prevents the ML model from adapting to a new setting. This
negative effect of old data is maybe more severe for a large
Tt.

V. CONCLUSION

This study proposed a real-time online trainable wireless
link quality prediction system and implemented the system
with commercially available laptops. The indoor and outdoor

experiments demonstrated that the prediction model was up-
dated in real-time, adapted to the environment change, and
accurately predicted the time-varying Wi-Fi received power.
Out future works include developing online training and
prediction method to learn and predict the received power for
moving STAs.
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