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Abstract— Quantum Computing is emerging as one of the 
great hopes for boosting current computational resources and 
enabling the application of ICT for optimizing processes and 
solving complex and challenging domain specific problems. 
However, the Quantum Computing technology has not 
matured to a level where it can provide a clear advantage over 
high performance computing yet. Towards achieving this 
"quantum advantage", a larger number of Qubits is required,  
leading inevitably to a more complex topology of the 
computing Qubits. This raises additional difficulties with de-
coherence times and implies higher Qubit error rates. 
Nevertheless, the current Noisy Intermediate-Scale Quantum 
(NISQ) computers can prove useful despite the intrinsic 
uncertainties on the quantum hardware layer. In order to 
utilize such error-prone computing resources, various concepts 
are required to address Qubit errors and to deliver successful 
computations. In this paper describe and motivate the need for 
the novel concept of Quantum DevOps. which entails regular 
checking of the reliability of NISQ Quantum Computing (QC) 
instances. By means of testing the computational reliability of 
basic quantum gates and computations (C-NOT, Hadamard, 
etc.)it consequently estimates the likelihood for a large scale 
critical computation (e.g. calculating hourly traffic flow models 
for a city) to provide results of sufficient quality. Following this 
approach to select the best matching (cloud) QC instance and 
having it integrated directly with the processes of development, 
testing and finally the operations of quantum based algorithms 
and systems enables the Quantum DevOps concept. 

Keywords—Quantum DevOps, Quantum Computing, 
DevOps, Testing, Framework, IT 

I. INTRODUCTION 

The Quantum Computing (QC) domain entered the 
center stage in recent years due to the advancements of both 
hardware [1][2][3] and software platforms [4]. With its 
potential applications for boosting the optimal solution 
search for NP-hard problems in domains such as health, IoT, 
finance, security, energy, automotive, chemistry, AI, 
manufacturing, communications and infrastructure, QC may 
change information technology (IT) significantly.  

Currently, QC evolves at great speeds from both 
hardware and software perspective. In the past 3 years, 
several new QC hardware platforms have become 
commercially available [5][6][7]. At the same time, open 
source software platforms and programming languages have 
emerged [4]. The goal is to bridge the gap between 
theoretical quantum mechanics (QM) and quantum hardware 
and software development so that QC becomes more feasible 
to use in real-world applications. Multiple obstacles exist in 
this process such as knowledge gaps between theoretical 
Quantum Mechanics and IT developers’ skills and expertise, 
as well as the fact that the available hardware still has 
significant limitations, Moreover the software development, 
integration and testing processes are currently difficult.  

 

Figure 1: DevOps Flow Chart (adapted from [48]) 

Software development is expensive, especially in areas 
where only few standard platforms and tools exist. Thus, 
software development companies must strive to increase 
productivity and reduce time to market by reducing the time 
between software development and IT operations. This has 
driven the broad use of DevOps proceses(Development & 
Operations) as shown in Figure 1. Based on the literature 
\review and different understandings [8]-[13], we formulate  
our extracted perception of the DevOps concept as “An 



emerging paradigm that emphasizes tight collaboration 
processes between Development and Operation departments 
within an IT company in order to achieve continuous 
delivery of reliable software”. According to a 2017 survey 
[14], DevOps adoption has exceeded 50% within tech 
companies. Another report [15] suggests that the DevOps 
market growth is estimated at 20% up to 2026. In this paper 
we focus on QC software application development and 
operations, investigating the applicability and potential 
usefulness of a proposed Quantum DevOps concept.  

This paper is organized as follows: Section II provides an 
overview on past and current work as well as developments 
in QC hardware, software and applications. Section III 
describes the current challenges identified in Quantum 
DevOps from a technical perspective. Section IV gives an 
overview of our approach to outline the necessary steps to 
establish a reference model for DevOps in QC. Section V 
provides details of the overall process architecture for 
developing, integrating, testing and operating Quantum 
Applications. Finally, in Section VI we draw our conclusions 
and provide an outlook on future work. 

II. HISTORY AND RELATED WORK  

QC was first mentioned around 1980 by Benioff [16], 
Menin [17] and Feynman [18] introducing quantum 
computation at a theoretical level. In 1988, the first physical 
realization of a quantum computer using Feynman’s C-NOT 
gate was proposed [19]. 

In 1992, David Deutsch and Richard Jozsa proposed a 
quantum algorithm [20] for distinguishing between balanced 
and constant functions operating on a bit, thereby having an 
advantage over belonging classical algorithms. The next 
significant step was made in 1994, when Peter Shor 
developed his famous algorithm [21] which, in theory, can 
factorize large numbers in polynomial in log(N) time - i.e. 
O((log(N))2(log(log(N)))(log(log(log(N))))) which is a 
polynomial for the term log(N)). This drew a lot of interest to 
the QC domain, as this algorithm could theoretically break 
encryption systems based on large prime numbers, e.g., 
RSA. Another quantum algorithm for database search 
proposed by Lov Grover [22] in 1996 offers a quadratic 
speed improvement over classical algorithms for unindexed 
databases. In 1998, Grover’s search algorithm was 
demonstrated experimentally on a nuclear magnetic 
resonance machine (NMR) for the first time [23]. Between 
2000 and 2010 quantum hardware based on different 
concepts were developed, from improving NMR machines to 
trapped ion technologies [24] and photonics [25].  

Between 2011 and 2019, the first commercially available 
quantum computers entered the market following 2 main 
paradigms: quantum annealing [7][26] and universal models 
of quantum computing using superconducting electronic 
circuits [27] to implement discrete quantum gates [5][6]. 
Additionally, in 2019, Google announced having achieved 
quantum supremacy [28], by demonstrating a solution 
computed in 200 seconds on a quantum processor compared 
to solving the same problem in 10,000 years using a classical 
computer. Despite the various discussions around this result, 
it at least indicates the development direction of current QC 
approaches. 

Current commercially available quantum computers 
include IBM [5], Rigetti [6], D-Wave [7], and IonQ [30]. In 
the research domain, experimental quantum resources are 

utilized through national or international funding projects 
[35][36]. In terms of practical applications, several QC-based 
solutions have emerged. A rise in publications showcase 
quantum computing applied to molecular biology [37], 
nuclear physics [38], traffic optimization [39] and finance 
[40]. This trend confirms the potential of bringing this 
technology to market. 

A big challenge to quantum computation which prevents 
immediately solving many of the big real-world problems 
consists of the noise and errors at the quantum gate level. 
John Preskill coined the name Noisy Intermediate-Scale 
Quantum (NISQ) for this technological era [29]. The current 
technology’s sensitivity to interference, noise, and quantum 
de-coherence affecting quantum gate precision has sparked 
efforts to mitigate computational errors by both hardware 
[30][31][32][33] as well as software approaches [34].  

From the software development perspective, apart from 
the infrastructure providers which have developed associated 
software platforms, such as IBM’s Qiskit [41], Rigetti’s  
Forrest [46] and D-Wave’s Ocean [42], other companies 
have released software development kits (SDKs) such as 
Xanadu Penny Lane [43], Google Cirq [44], Microsoft Q# 
[45]. Additionally, there are also Open Source initiatives 
such as XACC [47] and many others (listed in [4]).  

With regard to DevOps: In the classical computing 
domain, the development and delivery process of IT 
solutions is approaching maturity [6]. Although the context is 
different regarding operations and testing in quantum 
computing, we want to apply the DevOps foundational 
reference processes summarized by Leandro in [50] towards 
proposing Quantum DevOps.  In the next section we outline 
the challenges of and the need for applying DevOps in the 
QC domain. 

III. PROBLEM STATEMENT 

We need to understand and accept that the Quantum 
Computing hardware will continue being unreliable and 
noisy in its calculations for the coming years – mainly due 
to the large complexity of the physical processes, the well-
known problems such as quantum de-coherence times 
(when it comes to entanglement and relying computation), 
as well as due to various other aspects such as the required 
calibrations of the computing environment, uncertainties in 
the cooling temperature of the Qubits and potential errors in 
the controlling FPGAs and control software. In the coming 
NISQ era, quantum devices are expected to have enough 
stable Qubits (50-100) to be able to surpass traditional 
computers in some aspects for certain specific problems. 
However, the Qubits will not be able to perform reliably and 
all the computation will need to be intrinsically designed 
taking into account that the hardware layer is noisy and 
error-prone. 

With this in mind, there is a clear need to provide the 
software tools and means for facilitating NISQ QCs in a 
way to enable the delivery of commercial Quantum 
Computations on top of an unreliable hardware layer. This 
challenge can be organized according to a number of 
research topics of paramount importance, with Quantum 
DevOps as one of the key tools to be researched. 

 



IV. APPROACH 

The main challenge, for which Quantum DevOps is 
required, arises from the uncertainties of NISQ QCs. On 
current QC architectures, even for relatively simple 
algorithms such as the Deutsch algorithm, we see that the 
computations can deliver completely different and even 
wrong results, when running the algorithm at different times 
on the same or on different architectures, e.g. depending on 
the number of Qubits, the cloud access, etc. Hence, there is 
a clear need to regularly check whether the prerequisites for 
a successful computation on a particular QC instance and 
the underlying architecture are fulfilled, in order to select 
the best QC instance and increase the chances for a critical 
optimization problem to be solved with the maximal 
possible correctness. The idea of Quantum DevOps can be 
summarized as:  
 

 At regular intervals, various available QC instances 
are being checked for the calculation of basic gates.  

 This provides an estimation of whether a QC 
instance is currently likely to be able to perform a 
large critical calculation correctly. 

 Based on these checks, the most promising QC 
instance for a calculation is then selected (also 
among different cloud quantum providers). 

 This process is applied in the development, testing 
and operations and merged into a kind of Quantum 
DevOps 

 

Figure 2: Quantum DevOps as an Extension of 
traditional DevOps 

 
The Quantum DevOps is illustrated in Figure 2 as an 

extension of the traditional DevOps concept presented 
above. It consists of the planning (PLAN) and 
coding/programming (CODE) of a quantum algorithm (e.g. 
in Qiskit) and continues with the 
building/compiling/transpiling (BUILD) of the quantum 
code. This basic version of the developed algorithm is tested 
(TEST) in different environments, especially in simulations 
with or without added noise on the qubits. Given that the 
tests in the simulation environment (or in a controlled QC 
environment) were successful, the quantum software can be 
released (RELEASE), which means that the corresponding 
code is made available for deployment or execution on large 
scale cloud quantum computing platforms (such as IBM 
Quantum Experience). Thereby, the algorithm is triggered 
for a large critical computation (e.g. traffic optimization in a 
city) based on regular checks of the current performance of 

different available quantum platforms and instances 
(EVALUATE), which after successfully passing the basic 
checks are candidates for running the large scale 
computation in question. Having selected the proper 
platform(s), the algorithm/system is deployed and 
configured (DEPLOY/CONFIGURE) and subsequently 
executed and monitored (MONITOR) such that resulting 
feedback from the execution process can be provided back 
(FEEDBACK) to the planning and development process in 
general. Hence, we see how the DevOps concept from 
traditional IT can be extended and adapted as to facilitate 
the integrated development and operations of quantum 
based systems in the coming NISQ era. This leads to known 
and established DevOps processes such as Continuous 
Integration (CI) and Continuous Delivery (CD) as illustrated 
in Figure 2.  Based on these considerations, the following 
section details the main processes within the Quantum 
DevOps cycles. 

 

Figure 3: Details of the DEV Phase in Quantum DevOps 

V. PROCESS DESCRIPTION 

Figure 3 and Figure 4 present further details of the 
Quantum DevOps model and belonging reference processes. 
Figure 3 focuses on the Dev part which includes the 
following stages and belonging steps within the stages: 

 Plan – within this stage the algorithm designer 
analyses the problem ahead and aims at capturing 
the technical and system requirements for the 
quantum based system/algorithm to be put in place. 
This results in a particular design for the approach 
towards the realization of the identified 
requirements. 

o Requirements – in this sub-step the 
requirements imposed on the 
system/algorithm have to be captured. The 
requirements can be managed with tools 
such as Doors, ProR and further from the 
domain of requirements engineering. 

o Design – during this sub-step proper 
design models must be derived, i.e. mainly 
system architecture and mathematical 
principles for the quantum 
algorithm/system to be designed. Typical 
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tools for this sub-step include the various 
UML and SysML tools on the market, the 
Modelica and Matlab Simulink based 
modelling software packages in addition to 
design tools such as the Circuit Composer 
of IBM Quantum Experience. 

 Code – within this stage, the code for the belonging 
quantum based system/algorithm needs to be 
developed. 

o Implementation – the Implementation sub-
step is responsible for the development of 
the code in a language of choice such as 
Qiskit or OpenQASM. 

 Build – the current stage transforms the code in the 
corresponding language into specific instructions 
for the topology of the utilized simulation 
architecture or controlled QC test environment. 

o Transpile – the transpilation process is 
extremely important as to enable the 
mapping from the abstract circuit 
representation (e.g. in Qiskit) to the 
specific Qubit topology of the simulator or 
controlled QC test environment.  

 Test – within this stage, the developed algorithm is 
subsequently tested in different environments. 

o Simulate – the test in a simulator in a 
perfect environment without any Qubit 
noise enables the developer to understand 
whether her/his approach functions in 
general and whether it is mathematically 
reasonable. 

o Simulate with noise – in this sub-step it is 
possible to understand whether the 
developed algorithm can function with 
some injected model noise that mimics a 
real Qubit environment. Hence, the 
robustness of the developed quantum 
system/algorithm to noise can be 
systematically examined and improved. 

o Run on QC backend – within this sub-step 
the system/algorithm is further tested on a 
real QC backend in order to improve it and 
evaluate it on a real quantum computer 
with all uncertainties of the NISQ era. 

 Release – in case the above tests where successfully 
passed, the software has to be released, which 
includes the following steps: 

o Package – prepare an overall software 
package for the quantum based 
module/system. 

o Versioning – systematically provide a next 
version of the software release. 

o Changelog – compile and provide a 
changelog with belonging new features, 
bug fixes and ticket/defect IDs 
documenting the addressed aspects. 

 Thereby the above described stages interface at two 
places with corresponding stages from the Ops part as 

illustrated in Figure 4. These are the Release stage of the 
Dev part interfacing and providing input to the Evaluate 
stage of the Ops part as well as the Feedback stage of the 
Ops part interfacing and providing input back to the Plan 
stage of the Dev part. These interactions clearly show where 
the Dev and Ops sub-processes are glued together, in order to 
provide the overall Quantum DevOps process. Hence, in 
order to complete the overall Quantum DevOps picture, 
Figure 4 depicts the stages and belonging steps of the Ops 
sub-process of Quantum DevOps. These include: 

 Evaluate – this stage is at the heart of the Quantum 
DevOps and has been basically described in the 
previous section  thereby formally consisting of the 
following steps: 

o Evaluate QC Backend – execute basic 
computation checks on relevant accessible 
cloud based quantum platforms (also 
including platforms from different 
providers). The checks should include 
computations based on the most important 
circuit gates (C-NOT, Hadamard, Pauli, 
Toffoli gates …), in order to estimate the 
readiness and computational reliability of 
the candidate systems. 

o Select QC Platform – based on the 
evaluations in the previous step, the most 
suitable QC platform is selected to execute 
a required critical large scale computation 
based on the software developed in the 
Dev part of the Quantum DevOps process. 

 Deploy/Configure – the software developed in the 
Dev part is prepared, configured and deployed on 
the most suitable QC platform according to the 
selection from the previous step. 

o Transpile – the software is once again 
transpiled for the characteristics and 
specifics of the most suitable target 
platform from the previous stage. 

o Configure – the software and the target 
hardware platform are configured and 
prepared for execution. 

o Deploy – the software is deployed and 
prepared for execution. 

 Monitor – during this stage the software execution 
is monitored and information is gathered regarding 
the results and belonging execution properties. 

o Monitoring Platform – different hardware 
KPIs are monitored on the hardware 
platform during the execution (e.g. cooling 
temperature), stability of the Qubit 
entanglements … 

o Monitoring Execution – the execution of 
the software is monitored in terms of 
number of shots, results distribution, 
number of iteration, execution times, and 
optimization properties of the algorithms 
etc. 



o Results Collection – finally the results are 
collected and submitted as feedback to the 
Dev part. 

 Feedback – within this stage all the gathered results 
from the monitoring are provided to the Plan stage 
of the Dev part in order to close the loop of 
Quantum DevOps. The communicated information 
can include but is not limited to aspects such as: 
Results Distribution, Optimization Rate, Execution 
Time … 

 

Figure 4: Details of the OPS Phase in Quantum DevOps 
 

To summarize: based on the flows in Figure 3 and 
Figure 4 we can clearly observe how Quantum DevOps can 
be established as a process for the efficient development and 
production of critical and commercial quantum based 
systems in the NISQ era. We clearly see that this 
methodology has the potential to quickly deliver results 
within the development but also towards improving the 
execution of the belonging quantum modules in the face of 
the Qubit error rates of the NISQ era. 

VI. CONCLUSIONS  

The current paper motivated and presented the emerging 
concept of Quantum DevOps. Thereby, we presented our 
initial ideas and considerations which are going to be further 
refined and detailed in our research endeavor. In this line of 
thought, the motivation for Quantum DevOps lies in the 
current need to increase the number of Qubits in commercial 
and experimental QC systems whilst at the same time coping 
with the noise and errors in the Qubits and belonging gates.  

Our experiences with currently available quantum 
computers show that even for relatively simple algorithms 
like the Deutsch–Jozsa, the results can vary strongly in time 
with respect to their correctness and precision depending on 
many aspects including de-coherence times, calibration 
requirements, temperatures of the cooling systems, potential 
issues with the control software and belonging FPGA 
modules. Hence, there is a clear need for a process that 
allows to regularly evaluate the available QC instances in 
terms of their computing capabilities and correctness before 
triggering a critical computation with potential significant 
impact in our everyday lives (e.g. the mobility and traffic 
related simulation towards optimizing routes or public 
transport schedules in a large Smart City). In order to achieve 
this, the processes of software/system development and 
operations need to be glued together with the belonging 
operational aspects allowing feedback and input to be 

constantly exchanged between the various steps of the 
overall procedure. This intrinsically leads to the process of 
Quantum DevOps as described in this paper.  

With regard to the core extensions that we conduct on the 
processes of traditional DevOps, we provide the following 
summary which is at the heart of the Quantum DevOps 
approach: 1) at regular intervals, the accessible QC instances 
are evaluated with respect to the calculation of basic gates 
and quantum computations, 2) the results of these regular 
evaluations are used to select the most promising (cloud) QC 
instance to execute the pending critical computation, 3) this 
process should closely  relate and be applied to the overall 
process of development, testing and operations towards a  
Quantum DevOps.  

Based on the above considerations, we present our 
updates to the steps and adopted/identified definition of 
traditional DevOps towards Quantum DevOps. Furthermore, 
we describe these steps in detail and draft the reference 
processes for enabling commercial applications even in the 
coming NISQ era with all its potential pitfalls. The detailed 
descriptions touch on topics such as requirements 
identification, system and algorithm design, transpiling, 
different types of simulation, packaging, versioning and 
further.  

With respect to future work: we plan to expand and 
implement the concept and processes for algorithms of 
different complexity and involving different cloud quantum 
providers. Furthermore, we plan for thorough evaluations 
including different efficiency measurements and extensive 
numerical evaluations as to be able to provide an 
understanding regarding the efficiency and improvements 
provided by the proposed concepts.  
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