
Copyright 2020 IEEE Globecom Workshops (GC Wkshps):
IEEE GLOBECOM 2020 Workshop on Quantum Communications and Information Technology

Quantum DevOps: Towards Reliable and Applicable
NISQ Quantum Computing

Ilie-Daniel Gheorghe-Pop
Fraunhofer Institute for Open

Communication Systems (FOKUS)
Berlin, Germany

ilie-daniel.gheorghe-
pop@fokus.fraunhofer.de

Nikolay Tcholtchev
Fraunhofer Institute for Open

Communication Systems (FOKUS)
Berlin, Germany

nikolay.tcholtchev@fokus.fraunhofer.de

Tom Ritter
Fraunhofer Institute for Open

Communication Systems (FOKUS)
Berlin, Germany

tom.ritter@fokus.fraunhofer.de

Manfred Hauswirth

Technische Universität Berlin
Fraunhofer Institute for Open

Communication Systems (FOKUS)
Berlin, Germany

manfred.hauswirth@tu-berlin.de

Abstract— Quantum Computing is emerging as one of the
great hopes for boosting current computational resources and
enabling the application of ICT for optimizing processes and
solving complex and challenging domain specific problems.
However, the Quantum Computing technology has not
matured to a level where it can provide a clear advantage over
high performance computing yet. Towards achieving this
"quantum advantage", a larger number of Qubits is required,
leading inevitably to a more complex topology of the
computing Qubits. This raises additional difficulties with de-
coherence times and implies higher Qubit error rates.
Nevertheless, the current Noisy Intermediate-Scale Quantum
(NISQ) computers can prove useful despite the intrinsic
uncertainties on the quantum hardware layer. In order to
utilize such error-prone computing resources, various concepts
are required to address Qubit errors and to deliver successful
computations. In this paper describe and motivate the need for
the novel concept of Quantum DevOps. which entails regular
checking of the reliability of NISQ Quantum Computing (QC)
instances. By means of testing the computational reliability of
basic quantum gates and computations (C-NOT, Hadamard,
etc.)it consequently estimates the likelihood for a large scale
critical computation (e.g. calculating hourly traffic flow models
for a city) to provide results of sufficient quality. Following this
approach to select the best matching (cloud) QC instance and
having it integrated directly with the processes of development,
testing and finally the operations of quantum based algorithms
and systems enables the Quantum DevOps concept.

Keywords—Quantum DevOps, Quantum Computing,
DevOps, Testing, Framework, IT

I. INTRODUCTION

The Quantum Computing (QC) domain entered the
center stage in recent years due to the advancements of both
hardware [1][2][3] and software platforms [4]. With its
potential applications for boosting the optimal solution
search for NP-hard problems in domains such as health, IoT,
finance, security, energy, automotive, chemistry, AI,
manufacturing, communications and infrastructure, QC may
change information technology (IT) significantly.

Currently, QC evolves at great speeds from both
hardware and software perspective. In the past 3 years,
several new QC hardware platforms have become
commercially available [5][6][7]. At the same time, open
source software platforms and programming languages have
emerged [4]. The goal is to bridge the gap between
theoretical quantum mechanics (QM) and quantum hardware
and software development so that QC becomes more feasible
to use in real-world applications. Multiple obstacles exist in
this process such as knowledge gaps between theoretical
Quantum Mechanics and IT developers’ skills and expertise,
as well as the fact that the available hardware still has
significant limitations, Moreover the software development,
integration and testing processes are currently difficult.

Figure 1: DevOps Flow Chart (adapted from [48])

Software development is expensive, especially in areas
where only few standard platforms and tools exist. Thus,
software development companies must strive to increase
productivity and reduce time to market by reducing the time
between software development and IT operations. This has
driven the broad use of DevOps proceses(Development &
Operations) as shown in Figure 1. Based on the literature
\review and different understandings [8]-[13], we formulate
our extracted perception of the DevOps concept as “An

emerging paradigm that emphasizes tight collaboration
processes between Development and Operation departments
within an IT company in order to achieve continuous
delivery of reliable software”. According to a 2017 survey
[14], DevOps adoption has exceeded 50% within tech
companies. Another report [15] suggests that the DevOps
market growth is estimated at 20% up to 2026. In this paper
we focus on QC software application development and
operations, investigating the applicability and potential
usefulness of a proposed Quantum DevOps concept.

This paper is organized as follows: Section II provides an
overview on past and current work as well as developments
in QC hardware, software and applications. Section III
describes the current challenges identified in Quantum
DevOps from a technical perspective. Section IV gives an
overview of our approach to outline the necessary steps to
establish a reference model for DevOps in QC. Section V
provides details of the overall process architecture for
developing, integrating, testing and operating Quantum
Applications. Finally, in Section VI we draw our conclusions
and provide an outlook on future work.

II. HISTORY AND RELATED WORK

QC was first mentioned around 1980 by Benioff [16],
Menin [17] and Feynman [18] introducing quantum
computation at a theoretical level. In 1988, the first physical
realization of a quantum computer using Feynman’s C-NOT
gate was proposed [19].

In 1992, David Deutsch and Richard Jozsa proposed a
quantum algorithm [20] for distinguishing between balanced
and constant functions operating on a bit, thereby having an
advantage over belonging classical algorithms. The next
significant step was made in 1994, when Peter Shor
developed his famous algorithm [21] which, in theory, can
factorize large numbers in polynomial in log(N) time - i.e.
O((log(N))2(log(log(N)))(log(log(log(N))))) which is a
polynomial for the term log(N)). This drew a lot of interest to
the QC domain, as this algorithm could theoretically break
encryption systems based on large prime numbers, e.g.,
RSA. Another quantum algorithm for database search
proposed by Lov Grover [22] in 1996 offers a quadratic
speed improvement over classical algorithms for unindexed
databases. In 1998, Grover’s search algorithm was
demonstrated experimentally on a nuclear magnetic
resonance machine (NMR) for the first time [23]. Between
2000 and 2010 quantum hardware based on different
concepts were developed, from improving NMR machines to
trapped ion technologies [24] and photonics [25].

Between 2011 and 2019, the first commercially available
quantum computers entered the market following 2 main
paradigms: quantum annealing [7][26] and universal models
of quantum computing using superconducting electronic
circuits [27] to implement discrete quantum gates [5][6].
Additionally, in 2019, Google announced having achieved
quantum supremacy [28], by demonstrating a solution
computed in 200 seconds on a quantum processor compared
to solving the same problem in 10,000 years using a classical
computer. Despite the various discussions around this result,
it at least indicates the development direction of current QC
approaches.

Current commercially available quantum computers
include IBM [5], Rigetti [6], D-Wave [7], and IonQ [30]. In
the research domain, experimental quantum resources are

utilized through national or international funding projects
[35][36]. In terms of practical applications, several QC-based
solutions have emerged. A rise in publications showcase
quantum computing applied to molecular biology [37],
nuclear physics [38], traffic optimization [39] and finance
[40]. This trend confirms the potential of bringing this
technology to market.

A big challenge to quantum computation which prevents
immediately solving many of the big real-world problems
consists of the noise and errors at the quantum gate level.
John Preskill coined the name Noisy Intermediate-Scale
Quantum (NISQ) for this technological era [29]. The current
technology’s sensitivity to interference, noise, and quantum
de-coherence affecting quantum gate precision has sparked
efforts to mitigate computational errors by both hardware
[30][31][32][33] as well as software approaches [34].

From the software development perspective, apart from
the infrastructure providers which have developed associated
software platforms, such as IBM’s Qiskit [41], Rigetti’s
Forrest [46] and D-Wave’s Ocean [42], other companies
have released software development kits (SDKs) such as
Xanadu Penny Lane [43], Google Cirq [44], Microsoft Q#
[45]. Additionally, there are also Open Source initiatives
such as XACC [47] and many others (listed in [4]).

With regard to DevOps: In the classical computing
domain, the development and delivery process of IT
solutions is approaching maturity [6]. Although the context is
different regarding operations and testing in quantum
computing, we want to apply the DevOps foundational
reference processes summarized by Leandro in [50] towards
proposing Quantum DevOps. In the next section we outline
the challenges of and the need for applying DevOps in the
QC domain.

III. PROBLEM STATEMENT

We need to understand and accept that the Quantum
Computing hardware will continue being unreliable and
noisy in its calculations for the coming years – mainly due
to the large complexity of the physical processes, the well-
known problems such as quantum de-coherence times
(when it comes to entanglement and relying computation),
as well as due to various other aspects such as the required
calibrations of the computing environment, uncertainties in
the cooling temperature of the Qubits and potential errors in
the controlling FPGAs and control software. In the coming
NISQ era, quantum devices are expected to have enough
stable Qubits (50-100) to be able to surpass traditional
computers in some aspects for certain specific problems.
However, the Qubits will not be able to perform reliably and
all the computation will need to be intrinsically designed
taking into account that the hardware layer is noisy and
error-prone.

With this in mind, there is a clear need to provide the
software tools and means for facilitating NISQ QCs in a
way to enable the delivery of commercial Quantum
Computations on top of an unreliable hardware layer. This
challenge can be organized according to a number of
research topics of paramount importance, with Quantum
DevOps as one of the key tools to be researched.

IV. APPROACH

The main challenge, for which Quantum DevOps is
required, arises from the uncertainties of NISQ QCs. On
current QC architectures, even for relatively simple
algorithms such as the Deutsch algorithm, we see that the
computations can deliver completely different and even
wrong results, when running the algorithm at different times
on the same or on different architectures, e.g. depending on
the number of Qubits, the cloud access, etc. Hence, there is
a clear need to regularly check whether the prerequisites for
a successful computation on a particular QC instance and
the underlying architecture are fulfilled, in order to select
the best QC instance and increase the chances for a critical
optimization problem to be solved with the maximal
possible correctness. The idea of Quantum DevOps can be
summarized as:

 At regular intervals, various available QC instances
are being checked for the calculation of basic gates.

 This provides an estimation of whether a QC
instance is currently likely to be able to perform a
large critical calculation correctly.

 Based on these checks, the most promising QC
instance for a calculation is then selected (also
among different cloud quantum providers).

 This process is applied in the development, testing
and operations and merged into a kind of Quantum
DevOps

Figure 2: Quantum DevOps as an Extension of
traditional DevOps

The Quantum DevOps is illustrated in Figure 2 as an

extension of the traditional DevOps concept presented
above. It consists of the planning (PLAN) and
coding/programming (CODE) of a quantum algorithm (e.g.
in Qiskit) and continues with the
building/compiling/transpiling (BUILD) of the quantum
code. This basic version of the developed algorithm is tested
(TEST) in different environments, especially in simulations
with or without added noise on the qubits. Given that the
tests in the simulation environment (or in a controlled QC
environment) were successful, the quantum software can be
released (RELEASE), which means that the corresponding
code is made available for deployment or execution on large
scale cloud quantum computing platforms (such as IBM
Quantum Experience). Thereby, the algorithm is triggered
for a large critical computation (e.g. traffic optimization in a
city) based on regular checks of the current performance of

different available quantum platforms and instances
(EVALUATE), which after successfully passing the basic
checks are candidates for running the large scale
computation in question. Having selected the proper
platform(s), the algorithm/system is deployed and
configured (DEPLOY/CONFIGURE) and subsequently
executed and monitored (MONITOR) such that resulting
feedback from the execution process can be provided back
(FEEDBACK) to the planning and development process in
general. Hence, we see how the DevOps concept from
traditional IT can be extended and adapted as to facilitate
the integrated development and operations of quantum
based systems in the coming NISQ era. This leads to known
and established DevOps processes such as Continuous
Integration (CI) and Continuous Delivery (CD) as illustrated
in Figure 2. Based on these considerations, the following
section details the main processes within the Quantum
DevOps cycles.

Figure 3: Details of the DEV Phase in Quantum DevOps

V. PROCESS DESCRIPTION

Figure 3 and Figure 4 present further details of the
Quantum DevOps model and belonging reference processes.
Figure 3 focuses on the Dev part which includes the
following stages and belonging steps within the stages:

 Plan – within this stage the algorithm designer
analyses the problem ahead and aims at capturing
the technical and system requirements for the
quantum based system/algorithm to be put in place.
This results in a particular design for the approach
towards the realization of the identified
requirements.

o Requirements – in this sub-step the
requirements imposed on the
system/algorithm have to be captured. The
requirements can be managed with tools
such as Doors, ProR and further from the
domain of requirements engineering.

o Design – during this sub-step proper
design models must be derived, i.e. mainly
system architecture and mathematical
principles for the quantum
algorithm/system to be designed. Typical

Plan

Code

BuildTest

Release

Feedback

Requirements

Design

Implementation

Transpile

SimulateSimulate
with noise

Run on QC
backend

Package

Version

Changelog
DEV

tools for this sub-step include the various
UML and SysML tools on the market, the
Modelica and Matlab Simulink based
modelling software packages in addition to
design tools such as the Circuit Composer
of IBM Quantum Experience.

 Code – within this stage, the code for the belonging
quantum based system/algorithm needs to be
developed.

o Implementation – the Implementation sub-
step is responsible for the development of
the code in a language of choice such as
Qiskit or OpenQASM.

 Build – the current stage transforms the code in the
corresponding language into specific instructions
for the topology of the utilized simulation
architecture or controlled QC test environment.

o Transpile – the transpilation process is
extremely important as to enable the
mapping from the abstract circuit
representation (e.g. in Qiskit) to the
specific Qubit topology of the simulator or
controlled QC test environment.

 Test – within this stage, the developed algorithm is
subsequently tested in different environments.

o Simulate – the test in a simulator in a
perfect environment without any Qubit
noise enables the developer to understand
whether her/his approach functions in
general and whether it is mathematically
reasonable.

o Simulate with noise – in this sub-step it is
possible to understand whether the
developed algorithm can function with
some injected model noise that mimics a
real Qubit environment. Hence, the
robustness of the developed quantum
system/algorithm to noise can be
systematically examined and improved.

o Run on QC backend – within this sub-step
the system/algorithm is further tested on a
real QC backend in order to improve it and
evaluate it on a real quantum computer
with all uncertainties of the NISQ era.

 Release – in case the above tests where successfully
passed, the software has to be released, which
includes the following steps:

o Package – prepare an overall software
package for the quantum based
module/system.

o Versioning – systematically provide a next
version of the software release.

o Changelog – compile and provide a
changelog with belonging new features,
bug fixes and ticket/defect IDs
documenting the addressed aspects.

 Thereby the above described stages interface at two
places with corresponding stages from the Ops part as

illustrated in Figure 4. These are the Release stage of the
Dev part interfacing and providing input to the Evaluate
stage of the Ops part as well as the Feedback stage of the
Ops part interfacing and providing input back to the Plan
stage of the Dev part. These interactions clearly show where
the Dev and Ops sub-processes are glued together, in order to
provide the overall Quantum DevOps process. Hence, in
order to complete the overall Quantum DevOps picture,
Figure 4 depicts the stages and belonging steps of the Ops
sub-process of Quantum DevOps. These include:

 Evaluate – this stage is at the heart of the Quantum
DevOps and has been basically described in the
previous section thereby formally consisting of the
following steps:

o Evaluate QC Backend – execute basic
computation checks on relevant accessible
cloud based quantum platforms (also
including platforms from different
providers). The checks should include
computations based on the most important
circuit gates (C-NOT, Hadamard, Pauli,
Toffoli gates …), in order to estimate the
readiness and computational reliability of
the candidate systems.

o Select QC Platform – based on the
evaluations in the previous step, the most
suitable QC platform is selected to execute
a required critical large scale computation
based on the software developed in the
Dev part of the Quantum DevOps process.

 Deploy/Configure – the software developed in the
Dev part is prepared, configured and deployed on
the most suitable QC platform according to the
selection from the previous step.

o Transpile – the software is once again
transpiled for the characteristics and
specifics of the most suitable target
platform from the previous stage.

o Configure – the software and the target
hardware platform are configured and
prepared for execution.

o Deploy – the software is deployed and
prepared for execution.

 Monitor – during this stage the software execution
is monitored and information is gathered regarding
the results and belonging execution properties.

o Monitoring Platform – different hardware
KPIs are monitored on the hardware
platform during the execution (e.g. cooling
temperature), stability of the Qubit
entanglements …

o Monitoring Execution – the execution of
the software is monitored in terms of
number of shots, results distribution,
number of iteration, execution times, and
optimization properties of the algorithms
etc.

o Results Collection – finally the results are
collected and submitted as feedback to the
Dev part.

 Feedback – within this stage all the gathered results
from the monitoring are provided to the Plan stage
of the Dev part in order to close the loop of
Quantum DevOps. The communicated information
can include but is not limited to aspects such as:
Results Distribution, Optimization Rate, Execution
Time …

Figure 4: Details of the OPS Phase in Quantum DevOps

To summarize: based on the flows in Figure 3 and
Figure 4 we can clearly observe how Quantum DevOps can
be established as a process for the efficient development and
production of critical and commercial quantum based
systems in the NISQ era. We clearly see that this
methodology has the potential to quickly deliver results
within the development but also towards improving the
execution of the belonging quantum modules in the face of
the Qubit error rates of the NISQ era.

VI. CONCLUSIONS

The current paper motivated and presented the emerging
concept of Quantum DevOps. Thereby, we presented our
initial ideas and considerations which are going to be further
refined and detailed in our research endeavor. In this line of
thought, the motivation for Quantum DevOps lies in the
current need to increase the number of Qubits in commercial
and experimental QC systems whilst at the same time coping
with the noise and errors in the Qubits and belonging gates.

Our experiences with currently available quantum
computers show that even for relatively simple algorithms
like the Deutsch–Jozsa, the results can vary strongly in time
with respect to their correctness and precision depending on
many aspects including de-coherence times, calibration
requirements, temperatures of the cooling systems, potential
issues with the control software and belonging FPGA
modules. Hence, there is a clear need for a process that
allows to regularly evaluate the available QC instances in
terms of their computing capabilities and correctness before
triggering a critical computation with potential significant
impact in our everyday lives (e.g. the mobility and traffic
related simulation towards optimizing routes or public
transport schedules in a large Smart City). In order to achieve
this, the processes of software/system development and
operations need to be glued together with the belonging
operational aspects allowing feedback and input to be

constantly exchanged between the various steps of the
overall procedure. This intrinsically leads to the process of
Quantum DevOps as described in this paper.

With regard to the core extensions that we conduct on the
processes of traditional DevOps, we provide the following
summary which is at the heart of the Quantum DevOps
approach: 1) at regular intervals, the accessible QC instances
are evaluated with respect to the calculation of basic gates
and quantum computations, 2) the results of these regular
evaluations are used to select the most promising (cloud) QC
instance to execute the pending critical computation, 3) this
process should closely relate and be applied to the overall
process of development, testing and operations towards a
Quantum DevOps.

Based on the above considerations, we present our
updates to the steps and adopted/identified definition of
traditional DevOps towards Quantum DevOps. Furthermore,
we describe these steps in detail and draft the reference
processes for enabling commercial applications even in the
coming NISQ era with all its potential pitfalls. The detailed
descriptions touch on topics such as requirements
identification, system and algorithm design, transpiling,
different types of simulation, packaging, versioning and
further.

With respect to future work: we plan to expand and
implement the concept and processes for algorithms of
different complexity and involving different cloud quantum
providers. Furthermore, we plan for thorough evaluations
including different efficiency measurements and extensive
numerical evaluations as to be able to provide an
understanding regarding the efficiency and improvements
provided by the proposed concepts.

REFERENCES

[1] H. Huang, D. Wu, D. Fan, X. Zhu, “Superconducting
Quantum Computing: A Review”, 2020, arXiv:2006.10433
[quant-ph]

[2] Tristan Zaborniak, Rogerio de Sousa, “In Situ Noise
Characterization of the D-Wave Quantum Annealer”, 2020,
arXiv:2006.16421v1

[3] [Online] Samuel K. Moore, “Honeywell Claims It Has Most
Powerful Quantum Computer”,
https://spectrum.ieee.org/tech-
talk/computing/hardware/honeywell-claims-it-has-most-
powerful-quantum-computer, retrieved 28.06.2020

[4] [Online] Open-Source Quantum Software Projects,
https://github.com/qosf/awesome-quantum-software, as of
date retrieved 15.06.2020

[5] [Online] Available: https://www.ibm.com/quantum-
computing/, as of date 15.07.2020

[6] [Online] Available: https://rigetti.com/, as of date 15.07.2020
[7] [Online] Available: https://www.dwavesys.com/services, as

of date 15.07.2020
[8] S. K. Bang, S. Chung,Y. Choh, M. Dupuis; “A grounded

theory analysis of modern web applications: knowledge,
skills, and abilities for DevOps”,RIIT 2013,
https://doi.org/10.1145/2512209.2512229

[9] J. Wettinger, U. Breitenbucher, F. Leymann. “Standards-
based DevOps Automation and Integration Using TOSCA”,
In IEEE/ACM International Conference on Utility and Cloud
Computation, 2014

[10] Smeds J., Nybom K., Porres I. “DevOps: A Definition and
Perceived Adoption Impediments”, 2015. Lecture Notes in
Business Information Processing, vol 212. Springer, Cham,
LNBIP 212, pp. 166–177

Evaluate

Deploy/
Configure

Monitor

Feedback

Release

Evaluate QC
Backend

Select QC
Platform

Transpile

Deploy

Configure

Monitoring
Platform

Monitoring
Execution

Results
Collection

Results
Distribution

Execution
Time

Optimisation
Rate

OPS

[11] M. A. McCarthy, L. M. Herger, S. M. Khan and B. M.
Belgodere, "Composable DevOps: Automated Ontology
Based DevOps Maturity Analysis," 2015 IEEE International
Conference on Services Computing, pp. 600-607, doi:
10.1109/SCC.2015.87.

[12] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish
Tanveer. 2016. “What is DevOps? A Systematic Mapping
Study on Definitions and Practices”, Workshop Proceedings
of XP2016, DOI:https://doi.org/10.1145/2962695.2962707

[13] Onokoy, L., & Lavendels, J. (2018). Evolution and
Development Prospects of Information System Design
Methodologies, Applied Computer Systems, 23(1), 63-68.
doi: https://doi.org/10.2478/acss-2018-0008

[14] [Online] Robert Stroud, “2018: The Year Of Enterprise
DevOps”, https://go.forrester.com/blogs/2018-the-year-of-
enterprise-devops/

[15] [Online] Selbyville, Delaware, “ DevOps Market growth
predicted at 20% till 2026: Global Market Insights, Inc.”,
https://www.globenewswire.com/news-
release/2020/04/13/2015016/0/en/DevOps-Market-growth-
predicted-at-20-till-2026-Global-Market-Insights-Inc.html
(accessed 24.06.2020)

[16] Benioff, Paul (1980). "The computer as a physical system: A
microscopic quantum mechanical Hamiltonian model of
computers as represented by Turing machines". Journal of
Statistical Physics. 22 (5): 563–591.
doi:10.1007/bf01011339.

[17] Manin, Yu I (1980). “Computable and Noncomputable” Sov.
Radio.

[18] Richard P. Feynman, “Simulating Physics with Computers”,
1982, International Journal of Theoretical Physics, VoL 21,
Nos. 6/7

[19] K. Igeta and Y. Yamamoto. "Quantum mechanical
computers with single atom and photon fields." International
Quantum Electronics Conference (1988)

[20] David Deutsch and Richard Jozsa (1992). "Rapid solutions of
problems by quantum computation". Proceedings of the
Royal Society of London A. 439: 553–558.
doi:10.1098/rspa.1992.0167.

[21] Shor, P.W., "Algorithms for quantum computation: discrete
logarithms and factoring". Proceedings 35th Annual
Symposium on Foundations of Computer Science. (1994)
IEEE Comput. Soc. Press: 124–134.
doi:10.1109/sfcs.1994.365700.

[22] Grover L.K., “A fast quantum mechanical algorithm for
database search”, Proceedings, 28th Annual ACM
Symposium on the Theory of Computing, (May 1996) p. 212

[23] Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark,
"Experimental Implementation of Fast Quantum
Searching".(April 13, 1998). Physical Review Letters. 80
(15): 3408–3411. doi:10.1103/PhysRevLett.80.3408.

[24] Gulde, S; Riebe, M; Lancaster, G. P. T; Becher, C; Eschner,
J; Häffner, H; Schmidt-Kaler, F; Chuang, I. L; Blatt, R
(January 2, 2003). "Implementation of the Deutsch–Jozsa
algorithm on an ion-trap quantum computer". Nature. 421
(6918): 48–50. doi:10.1038/nature01336.

[25] O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.;
Branning, D. (2003). "Demonstration of an all-optical
quantum controlled-NOT gate". Nature. 426 (6964): 264–
267. doi:10.1038/nature02054.

[26] Kadowaki, T.; Nishimori, H. (1998). "Quantum annealing in
the transverse Ising model". Phys. Rev. E. 58: 5355.
doi:10.1103/PhysRevE.58.5355.

[27] Clarke, John; Wilhelm, Frank K.,"Superconducting quantum
bits". Nature. 453 (7198): 1031–1042. (18 June 2008),
doi:10.1038/nature07128

[28] Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy
using a programmable superconducting processor. Nature

574, 505–510 (2019). https://doi.org/10.1038/s41586-019-
1666-5

[29] Preskill, J., ”Quantum computing in the NISQ era and
beyond”. Quantum 2, 79 (2018), https://doi.org/10.22331/q-
2018-08-06-79

[30] [Online] Available: https://ionq.com/, as of date 15.07.2020
[31] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V.

Negnevitsky, P. Schindler, T. Monz, U. Poschinger, C.
Hempel, J Home, et al., “Assessing the progress of trapped-
ion processors towards fault-tolerant quantum computation,”
Physical Review X, vol. 7, no. 4, p. 041 061, (2017).

[32] [Online] Samuel K. Moore, “Honeywell Claims It Has Most
Powerful Quantum Computer”,
https://spectrum.ieee.org/tech-
talk/computing/hardware/honeywell-claims-it-has-most-
powerful-quantum-computer, visited 29.06.2020

[33] Asaad, S., Mourik, V., Joecker, B. et al. “Coherent electrical
control of a single high-spin nucleus in silicon”, Nature 579,
205–209 (2020). https://doi.org/10.1038/s41586-020-2057-7

[34] A. Holmesyz, M. R. Jokarz, G. Pasandix, Y. Dingz, M.
Pedramx, F. T. Chong, “NISQ+: Boosting quantum
computing power by approximating quantum error
correction”, (Apr 2020), arXiv:2004.04794v2

[35] [Online] QuTech- advanced research center for Quantum
Computing and Quantum Internet by TU Delft and TNO
Available: http://qutech.nl/

[36] [Online] Max Planck-UBC-UTokyo Center for Quantum
Material Available: https://www.fkf.mpg.de/en

[37] C. Outeiral, M. Strahm, J. Shi, G. M. Morris, S.C. Benjamin,
C.M. Deane, “The prospects of quantum computing in
computational molecular biology”, WIREs
Computational Molecular Science, (may 2020),
arXiv:2005.12792 [quant-ph]

[38] A. Roggero, A.C.Y. Li, J. Carlson, R. Gupta, G.N. Perdue,
“Quantum computing for neutrino-nucleus scattering”, Phys.
Rev. D 101, 074038 (Apr 2020),
doi:10.1103/PhysRevD.101.074038}

[39] S.Yarkoni, F. Neukart, E.M. Gomez Tagle, N. Magiera, B.
Mehta, K. Hire, S. Narkhede, M. Hofmann, “Quantum
Shuttle: Traffic Navigation with Quantum Computing”, (Jun
2020), arXiv:2006.14162 [quant-ph]

[40] J. Cohen, A. Khan, C. Alexander, “Portfolio Optimization of
40 Stocks Using the DWave Quantum Annealer”, (Jul 2020),
arXiv:2007.01430 [q-fin.GN]

[41] [Online] IBM Qiskit, Available: https://qiskit.org/, as of date
15.07.2020

[42] [Online] D-Wave Ocean SDK, Available:
https://ocean.dwavesys.com/, as of date 15.07.2020

[43] [Online] Xanadu Penny Lane, Available:
https://www.xanadu.ai/software/, as of date 15.07.2020

[44] [Online] Google Cirq, Available:
https://cirq.readthedocs.io/en/stable/, as of date 15.07.2020

[45] [Online] Microsoft Q#, Available:
https://www.microsoft.com/en-us/quantum/development-kit,
as of date 15.07.2020

[46] [Online] Rigetti Forrest, Available: https://github.com/rigetti
[47] [Online] XACC Framework, Available:

https://github.com/eclipse/xacc, as of date 15.07.2020
[48] [Online] R. D. Vleeschauwer,The Garner DevOps Toolchain,

https://www.bluebridgesoftware.com/blog/26-devops-the-
gartnertoolchain, retrieved Jun 2020

[49] M. I. Zarour. M. Alenezi, N. Alhammad, K. Alsarayrah “A
Research on DevOps Maturity Models”, (2019),
DOI:10.35940/ijrte.C6888.098319

[50] Sousa, Leandro; Trigo, Antonio; and Varajão, João, "DevOps
– foundations and perspectives" (2019). CAPSI 2019
Proceedings. 8.

