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Abstract—Intelligent reflecting surfaces (IRSs) are revolu-
tionary enablers for next-generation wireless communication
networks, with the ability to customize the radio propagation
environment. To fully exploit the potential of IRS-assisted wireless
systems, reflective elements have to be jointly optimized with
conventional communication techniques. However, the resulting
optimization problems pose significant algorithmic challenges,
mainly due to the large-scale non-convex constraints induced
by the passive hardware implementations. In this paper, we
propose a low-complexity algorithmic framework incorporating
alternating optimization and gradient-based methods for large-
scale IRS-assisted wireless systems. The proposed algorithm
provably converges to a stationary point of the optimization prob-
lem. Extensive simulation results demonstrate that the proposed
framework provides significant speedups compared with existing
algorithms, while achieving a comparable or better performance.

I. INTRODUCTION

Recently, intelligent reflecting surfaces (IRSs) have emerged

as an energy-efficient and powerful approach for reconfiguring

the wireless propagation environment through programmable

reflection [1]. Equipped with a large number of low-cost

passive reflective elements, e.g., phase shifters and dipoles,

IRSs are able to enhance the quality of the received signals

with limited power consumption and radio frequency (RF)

chains [2]. Furthermore, IRSs can be embedded into exist-

ing environmental objects, e.g., the facades of buildings and

smart t-shirts [3], which greatly reduces the implementation

cost. To sum up, IRSs are key enablers of next-generation

wireless communications by relieving the burdens on hardware

expenditure and energy cost, given their remarkable ability to

customize the radio propagation environment.

The highly non-convex unit modulus constraints induced

by the implementation of phase shifters, however, pose great

algorithmic challenges. Early attempts resorted to semidefinite

relaxation (SDR)-based methods [4], which yield an approx-

imate solution without optimality guarantee. To overcome

this drawback, optimization methods on the complex circle

manifold were developed in [5] and the first-order optimality

is guaranteed. Nevertheless, a common limitation of SDR

and manifold optimization is the high computational cost.

Specifically, in SDR, solving a series of high-dimensional

semidefinite programming (SDP) problems increases the com-

putational burden drastically. In the manifold optimization-

based algorithms, the nested loop architecture slows down

the convergence [6]. Therefore, existing methods for opti-

mizing IRS-assisted systems are only applicable to small-

scale IRSs. However, it is shown in [7] that hundreds of

reconfigurable elements are required to be competitive with

conventional decode-and-forward relaying, when minimizing

the total transmit power or maximizing the energy efficiency. It

has motivated the development of low-complexity algorithms

for large-scale IRSs in recent studies, e.g., fixed point method

[5], which, however, are problem-dependent. These problem-

specific approaches require a laborious process and much prior

knowledge of the considered optimization problems. In other

words, how to develop a general design methodology for large-

scale IRSs is still an open problem.

In this paper, we propose a low-complexity algorithmic

framework for large-scale IRS-assisted systems. Specifically,

we first employ alternating optimization (AO) to decouple

the optimization variables and then leverage a first-order

method for phase optimization. In contrast to the SDR and

manifold optimization-based methods, this framework avoids

convex relaxation, does not need to solve high-dimensional

SDP problems, and gets rid of the nested loops. Thus, it

significantly improves the computational efficiency. Different

from the classic gradient descent (GD) method, the step size is

delicately designed by taking the overall AO procedures into

account to achieve a faster convergence rate. We then prove

that a subsequence of the proposed algorithm is guaranteed to

converge to a stationary point, even when the objective does

not have a Lipschitz continuous gradient. We take IRS-enabled

secure wireless communications and weighted sum-rate max-

imization in IRS-empowered systems as two applications.

Simulations demonstrate that the proposed framework achieves

a significant speedup compared with the SDR-based method,

the manifold optimization-based method, and problem-specific

low-complexity block coordinate descent (BCD) algorithms,

while maintaining a comparable or better performance.

Notations: x is scalar, x is vector, and X is matrix. Let XT ,

X∗, and XH denote the transpose, conjugate, and conjugate

transpose of matrix X, respectively. diag (x1, · · · , xn) repre-



TABLE I
TYPICAL EXAMPLES OF THE GENERAL FORMULATION (1).

Problem Objective function f Conventional communication techniques Q Set constraint X1

Spectral efficiency maximization [5]
Achievable spectral efficiency in

single-user MISO systems
w: Transmit beamforming ‖w‖2 ≤ P

Secrecy rate maximization [8] Sum secrecy rate of K legitimate users
wk: Transmit beamforming,

Z: Artificial noise

∑K
k=1 ‖wk‖

2 +Tr(Z) ≤ P ,
Z � 0

Weighted sum-rate maximization [9] Weighted sum-rate of K mobile users wk: Transmit beamforming
∑K

k=1 ‖wk‖
2 ≤ P

sents a diagonal matrix with entries x1, · · · , xn on its main

diagonal. IM stands for M ×M identity matrix. Operation

Re{X} constructs a matrix by extracting the real parts of

the entries of matrix X while operation ∠(X) extracts the

phases of elements of X. The modulus of a complex number

is denoted by |·| and j =
√
−1 is the imaginary unit. Cm×n

represents the set of all m× n complex-valued matrices. The

Hadamard product is denoted by ⊙.

II. GENERAL FORMULATION AND LOW-COMPLEXITY

ALGORITHMIC FRAMEWORK

In this section, we first provide a general formulation for

the optimization of IRS-empowered wireless communications

and then present a low-complexity algorithmic framework

incorporating alternating optimization and gradient descent.

A. General Formulation

We consider the following general formulation of IRS-

assisted systems

min
Q,Φ

f(Q,Φ)

s.t. |Φi,i| = 1, ∀i,
Q ∈ X1,

(1)

which typically involves two blocks of variables. Q includes

variables of conventional communication techniques, e.g.,

the beamforming vector and artificial noise, while Φ =
diag(ejθ1 , · · · , ejθM ) is the phase shift matrix where θi de-

notes the phase shift of the i-th reflective element of the IRS.

f(Q,Φ) denotes the performance metric to optimize, e.g., the

achievable rate or energy efficiency, X1 denotes the additional

constraints for Q, such as the transmit power constraint, and

|Φi,i| = 1 represents the unit modulus constraint of the IRS.

Table I lists several example applications of the general formu-

lation in the literature. To the best of the authors’ knowledge,

there is no general approach to obtain the optimal solution to

such problems, mainly because of the deeply coupled variables

and non-convex constraint. Hence, a practical algorithm design

is of great importance.

To tackle the coupling of the optimization variables, alter-

nating optimization is often adopted, by iteratively optimizing

one set of variables while fixing the other variables [4], [10].

In particular, in each iteration, we first update Q with Φ

fixed, and then optimize Φ given a fixed Q. These two steps

are defined as two block updates in one iteration. When the

phase shift matrix is given, the original problem reduces to

a conventional communication problem without IRS, which

has been investigated for decades and for which compelling

mechanisms exist. The bottleneck of the whole optimization

problem thus lies in the phase shift update part.

In the t-th iteration and for fixed Q = Q(t), the optimization

problem becomes

min
Φ

f(Φ|Q(t))

s.t. |Φi,i| = 1, ∀i.
(2)

For simplicity, Φ can be rewritten as

Φ = diag
(
ejθ1 , ejθ2, · · · , ejθM

)
= U(Θ),

where Θ = [θ1, θ2, · · · , θM ]T = ∠(Φ), U(·) is a mapping

such that U(Θ) = Φ, and M denotes the total number of

non-zero entries in Φ. As a result, Problem (2) can be recast

into

min
Θ

f(U(Θ)|Q(t)), (3)

which becomes an unconstrained optimization problem and

the effective gradient descent method is favorable for (3).

B. Gradient Descent Method

Recent studies demonstrated that the first-order methods,

e.g., gradient descent, are computationally-efficient and can

often find globally optimal solutions for problems with unit

modulus constraints [11], [12]. This inspires us to apply

variants of GD to solve (3). The update rule of Θ using GD

is given by

Θ(t+1) = Θ(t) − γ(t)∇Θf(X(t)), (4)

where X(t) = (Q(t),Φ(t)), ∇Θf(X(t)) denotes the gradient

in the t-th iteration, and the positive scalar γ(t) denotes

the step size. With the negative gradient being the descent

direction, the selection of an appropriate step size is essential

to promote convergence from remote initial points. Conven-

tional steepest descent tries to identify the global minimizer

of the objective function along the descent direction, which

is too computational-expensive. A more practical strategy is

performing Armijo-Goldstein (AG) line search [13] to make

γ(t) satisfy

f(U(Θ(t) − γ(t)∇Θf(X(t))),Q(t))

≤ f(U(Θ(t)),Q(t))− cγ(t)∇Θf(X(t))T∇Θf(X(t)),
(5)

where 0 < c < 1 is a constant. AG line search enforces a

sufficient decrease in each block update of the phase shifts

in (3), which, however, may be too restrictive for solving the

joint optimization problem (1). To overcome this drawback, we



develop a tailored step size chosen scheme that takes advan-

tage of the joint alternating optimization procedures in tackling

problem (1) while enjoying the convergence guarantee.

Recall that we first optimize min
Q∈X1

f(Q|Φ(t)) with given

Φ(t) and traditional methods could identify a high-performant

solution to this subproblem. This property benefits us to adopt

a more aggressive step size in (3) and ensure an iteration-

wise monotonically decrease of the objective value rather than

block-wise monotonicity in (5). Specifically, step size γ(t) in

our framework is designed such that

f(U(Θ(t) − γ(t)∇Θf(X(t))),Q(t))

≤ f(U(Θ(t)),Q(t−1))
︸ ︷︷ ︸

(a)

−cγ(t)∇Θf(X(t))T∇Θf(X(t)). (6)

The left-hand side in (6) denotes the objective value in the t-th

iteration and (6)(a) is that in the (t−1)-th iteration. The second

term in the right-hand side of (6) enforces the reduction of f

to be proportional to both the step size γ(t) and the gradient,

which helps guarantee the convergence property. In practice,

we progressively approach the largest feasible γ(t). Namely,

starting from γ0 > 0, if the condition in (6) is violated, the

step size is decreased by a factor of 0 < β < 1.

To conclude, unlike conventional methods that restrict a

certain extent decrement in each block, our computationally-

efficient approach guarantees the decrement on an iteration

basis, which leads to a larger step size. The fast convergence

speed will be shown empirically in Section IV. The overall

algorithm is summarized in Algorithm 1 and its convergence

properties are given in the following theorem.

Algorithm 1 Alternating Optimization Based on Gradient

Descent (AO-GD)

1: Construct an initial Φ(0) and let Θ(0) = ∠(Φ(0)). Set an

initial step size γ0 and a step size decay factor β. Let

t = 0;

2: repeat

3: Fix Φ(t) and optimize Q(t);

4: Fix Q(t) and compute the gradient ∇Θf(Q(t),Φ(t));
5: Set step size γ ← γ0;

6: while t 6= 0 and f(U(Θ(t) − γ∇Θf(X(t))),Q(t)) >

f(Φ(t),Q(t−1))− cγ∇Θf(X(t))T∇Θf(X(t)) do

7: γ ← β × γ;

8: end while

9: Θ(t+1) ← Θ(t) − γ∇Θf(X(t));
10: Φ(t+1) ← U(Θ(t+1));
11: t← t+ 1;

12: until convergence.

Theorem 1. Every limit point of the sequence {X(t)} gener-

ated by Algorithm 1 is a stationary point of Problem (1).

Proof: Please refer to the Appendix. The argument is built

on the proof of [14, Theorem 1].

The key procedures in Algorithm 1 are Steps 3 and 4. Step

3 can be solved through conventional methods, and Step 4

involves computing the gradient of the objective function. To

show the generality of the proposed framework, we demon-

strate two applications in the following section and show how

to implement these two key steps for different application

scenarios.

III. APPLICATIONS OF THE PROPOSED FRAMEWORK

In this section, two different problems for IRS-aided wire-

less communication systems are studied, namely, secrecy rate

maximization [10] and weighted sum-rate maximization [9].

A. Secure Wireless Communications via IRS

Consider an IRS-assisted secure wireless communication

system where one transmitter equipped with Nt antennas

serves one single-antenna legitimate user, with the existence

of a single-antenna eavesdropper and an IRS consisting of M

elements. The objective is to maximize the secrecy rate of the

system by jointly optimizing the transmit beamformers and

phase coefficients of IRS elements. The problem formulation

is as follows:

max
w,Φ

f(w,Φ) =
1 + 1

σ2

l

∣
∣hH

l ΦGw
∣
∣
2

1 + 1
σ2
e

|hH
e ΦGw|2

s.t. Φ = diag
(
ejθ1 , ejθ2 , · · · , ejθM

)
,

w ∈ X1 =
{

w0| ‖w0‖2 ≤ P
}

,

(7)

where G ∈ C
M×Nt , hl ∈ C

M×1, and he ∈ C
M×1 denote

the channels from the transmitter to the IRS and from the IRS

to the legitimate receiver and eavesdropper, respectively. The

transmit beamforming vector is denoted by w ∈ C
Nt×1 and

P ≥ 0 is the given transmit power. σ2
l and σ2

e are the variances

of additive complex Gaussian noises at legitimate receiver and

eavesdropper, respectively.

When the phase shift matrix Φ is fixed, the optimal closed-

form solution for beamformer w is given by [10, Lemma 1].

Given the beamforming vector, the original problem can be

rewritten as

max
v

f(v) =
vHYlv

vHYev

s.t. |vk| = 1, k ∈ {1, 2, · · · ,M},
(8)

where v = [ejθ1 , ejθ2, · · · , ejθM ]H and Yi = 1
M
IM +

1
σ2

i

diag(hH
i )GwwHGHdiag(hH

i )H , i ∈ {l, e}. According

to (8), the gradient of the objective function with respect to

Θ = [θ1, θ2, · · · , θM ]T is easily computable and given by

∇Θf =2Re

{
(Yl

∗v∗)⊙ (−jv)
vHYev

}

+ 2Re

{

(vHY1v) · (Ye
∗v∗)⊙ (jv)

(vHYev)
2

}

.

(9)

With [10, Lemma 1] representing Step 3 and (9) representing

Step 4, the proposed AO-GD is well prepared.



B. Weighted Sum-Rate Maximization for IRS-Aided Wireless

Networks

The second application investigates the IRS-aided multiple-

input single-output (MISO) multiuser downlink communica-

tion systems [9]. We aim at maximizing the weighted sum-rate

(WSR) of the users by jointly optimizing the beamforming at

the AP and IRS phase shifts. Let hd,k ∈ C
Nt×1, hr,k ∈ C

M×1,

and G ∈ C
M×Nt be channels from AP to user k, from IRS to

user k, and from AP to IRS, respectively. The received SINR

of k-th user can be written as

γk =

∣
∣
∣

(

hH
d,k + vHHr,k

)

wk

∣
∣
∣

2

K∑

i=1,i 6=k

∣
∣
∣

(

hH
d,k + vHHr,k

)

wi

∣
∣
∣

2

+ σ2
0

, (10)

where v = [ejθ1 , ejθ2, · · · , ejθM ]H and Hr,k =

diag
(

hH
r,k

)

G ∈ C
M×Nt . wk ∈ C

Nt×1 is the transmit

beamforming vector. nk ∼ CN
(
0, σ2

0

)
denotes the additive

white Gaussian noise at the k-th receiver.

Let W = [w1,w2, · · · ,wK ] ∈ C
Nt×K . The WSR maxi-

mization problem is formulated as

max
W,v

f(W,Φ) =

K∑

k=1

ωk log (1 + γk) (11)

s.t. |vi| = 1, i ∈ {1, 2, · · · ,M}, (11a)

W ∈ X1 =

{

F|
K∑

k=1

‖fk‖2 ≤ P

}

, (11b)

where the weight ωk denotes the priority of user k and P is

the downlink transmit power.

To solve Problem (11), we apply the closed-form FP ap-

proach [15] to transform the sum-of-logarithms-of-ratio prob-

lem into the following equivalent problem

max
p,q,W,v

f2(p,q,W,v)

s.t. pk ≥ 0, ∀k = 1, · · · ,K,

(11a), (11b),

where p and q are auxiliary variables, and the new objective

function is given in [9]. One can refer to [9, Eq. (11)-(12)]

to acquire the update rules of pk and qk. When the auxiliary

variables and reflection matrix of IRS are fixed, W is updated

by solving min
w∈X1

f3(W) = f2(p̄, q̄,W, v̄), where p̄, q̄, and

v̄ denote the temporal optimization results in last block. We

adopt a variant of proximal update rule in [16] to update W

in closed-form solution. Detailed procedures can be found in

[9, Eq. (13)-(14)] with extrapolation weight ǫ = 0. Given a

fixed Φ, we iteratively update p, q and W until stopping

criterion ǫ1 triggers. These procedures form Step 3 in our

general framework.

Given p̄, q̄, and W̄, v is optimized through

min
v

f4(v) = vHRv − 2Re
{
vHe

}

s.t. (11a),
(12)
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Fig. 1. Convergence of different step size chosen schemes for different
values of M when Nt = 5, P = 5 dBm, α = 4, rTR = 250 m, and
rRl = rRe = 160 m. (a) M = 60. (b) M = 100.

where R and e are

R =
K∑

k=1

|q̄k|2
K∑

i=1

āi,kā
H
i,k,

e =

K∑

k=1

(
√

ωk (1 + p̄k)q̄
∗
kāk,k − |qk|2

K∑

i=1

b̄∗i,kāi,k

)

,

with āi,k = Hr,kw̄i and b̄i,k = hH
d,kw̄i. Denote Θ =

[θ1, θ2, · · · , θM ]T as expressed in Section II. The gradient is

given by

∇Θf4 = 2Re
{
(Rv − e)

∗ ⊙ (−jv)
}
, (13)

which constitutes Step 4 in Algorithm 1. Overall, we first

cyclically update p, q and W until convergence, and then use

the gradient information (13) to update Φ.

IV. SIMULATION RESULTS

A. Secure Wireless Communications via IRS

In this application, the distance between the transmitter

and IRS is denoted by rTR, while rRl and rRe stand for

the distances from IRS to the legitimate receiver and the

eavesdropper, respectively. Let α be the path loss exponent. All

the other simulation settings are identical as those in [10]. All

algorithms start from a random initial point and the stopping

criterion is that the increment of the normalized objective

function value is less than ξ = 10−6. The simulation results

are averaged over 1000 channel realizations. In Algorithm 1,

we set the initial step size as γ0 = 0.001, the step size decay

factor as β = 0.5, and c = 0.00005.

First, the convergence of the proposed algorithm is evaluated

in Fig. 1 compared with traditional step size chosen strategies,

i.e., the AG line search [13] and Barzilai-Borwein (BB)

rule [17]. It is shown that our proposed AO-GD algorithm

converges faster than traditional schemes. As the value of M

increases, i.e., from M = 60 to M = 100, the gap is more

evident, justifying the efficiency of our framework for large-

scale problems.
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We then compare the performance of the proposed algo-

rithm with other benchmarks in this problem. Specifically, the

following 3 benchmarks are considered:

• Element-wise BCD [10]: The phase shift matrix is

updated by element-wise block coordinate descent.

• AO-SDR [4]: We leverage SDR and Gaussian random-

ization techniques to optimize phase shifts.

• AO-Manopt: The stationary point of (8) is obtained via

manifold optimization [18].

Fig. 2 (left-hand side) shows the average secrecy rate

of different algorithms versus the number of IRS elements.

It is observed that the proposed AO-GD achieves the best

performance in the whole regime. Besides, the average running

time is plotted in Fig. 2 (right-hand side). It is shown that all

three benchmarks are time-consuming, which defers their use

in large-scale IRS systems. The proposed framework requires

the least running time, with more than 10 times speedup

compared with the benchmarks. Overall, Fig. 2 shows that the

proposed framework is capable of obtaining high-performant

solutions while enjoying high computational efficiency.

B. Weighted Sum-Rate Maximization for IRS-Aided Wireless

Networks

In this application, we consider an AP equipped with 4

antennas, and 4 single-antenna users. All the other simulation

parameters are identical as those in [9]. The stopping criterion

of the inner loop is ξ1 = 10−5 and the outer loop is ξ2 = 10−3,

respectively. All the simulation results are averaged over 1000

channel realizations with random initialization.

In Algorithm 1, we set γ0 = 100, c = 0.0001, and step

size decay factor β = 0.5. We compare the performance of

the proposed algorithm with the following 3 baselines:

• Low-Complexity BCD [9]: (11) is decomposed into

four disjoint blocks and the non-convex BCD method is

applied to carry out the stationary solution to (11).

• FP-SDR: We leverage SDR and Gaussian randomization

techniques to optimize phase shifts.
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• FP-Manopt: The stationary point of (12) is obtained via

manifold optimization [18].

Fig. 3 demonstrates the WSR of different approaches with

respect to the size M of IRS when the transmit power is fixed

as P = 10 dBm. We observe that the SDR-based algorithm

has only a small gain which is similar to the random phase

scheme. This is because the solution obtained by SDR is

almost full-rank in this case, leading to a poor performance

after randomization. All the other schemes achieve comparable

performance and remarkable gain as M increases.

Fig. 4 plots the average running time of different methods.

It is shown that Manopt and SDR-based algorithms are time-

consuming and their running time increases enormously as M

increases. It is observed that the proposed framework not only

achieves significant speedup compared with FP-SDR and FP-

Manopt, but also faster than the problem-specific algorithm,

i.e., Low Complexity BCD. The speedup is more significant as

the problem size increases, which demonstrate the scalability

of the proposed framework.

V. CONCLUSIONS

This paper proposed a low-complexity algorithmic frame-

work incorporating alternating optimization and gradient-

based methods for large-scale IRS-assisted wireless systems.

A general formulation and an algorithmic framework were

firstly developed, followed by the convergence proof. Two

examples were provided to demonstrate the efficiency and

effectiveness of the proposed framework. Overall, this paper

provided a simple yet effective approach for large-scale IRS-

assisted systems, which can be easily implemented to different

applications and serves as a good baseline to evaluate more

sophisticated algorithms.

APPENDIX

Proof: We assume that f(·, ·) is differentiable with con-

tinuous gradient and feasible set X is compact. We know from

Step 6 in Algorithm 1 that {f(X(t))} is a monotonically

decreasing sequence which is bounded from below, and it thus

converges. Since set X is bounded, {X(t)} has a convergent
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subsequence. Consider a limit point Z and a subsequence

{X(t)}t∈T converging to Z, so we have lim
T∋t→∞

f(X(t)) =

lim
T∋t→∞

f(X(t+1)) = f(Z). Now we show that Z is a station-

ary point of Problem (1) based on [14]. On one hand, when

Φ(t) is fixed, in every iteration, utilizing existing methods,

Q(t) is the stationary point of minQ∈X1
f(Q|Φ(t)). Therefore,

Z1 is the stationary point of minQ∈X1
f(Q|Z2) and it satisfies

the first order optimality condition

(Q− Z1)
T (∇Qf(Z)) ≥ 0, ∀Q ∈ X1. (14)

On the other hand, it follows from the step size chosen strategy

that for all t ∈ T : f(Q(t),Φ(t+1)) − f(Q(t−1),Φ(t)) ≤
−cγ0βmt∇Θf(X(t))T∇Θf(X(t)) ≤ 0, where γ0β

mt denotes

the step size at the t-th iteration, and hence

lim
T∋t→∞

βmt∇Θf(X(t))T∇Θf(X(t)) = 0. (15)

From (15) we claim that

lim
T∋t→∞

∇Θf(X(t)) = 0. (16)

To show this, we first assume the contrary: we assume

lim
T∋t→∞

∇Θf(X(t)) = ∇Θf(Z) 6= 0. Therefore, we have

lim
T∋t→∞

∇Θf(X(t))T∇Θf(X(t)) > 0, and

lim
T∋t→∞

βmt = 0. (17)

(17) indicates that there exists t̃ such that for T ∋ t ≥ t̃:

f(U(Θ(t) − γ0β
mt−1∇Θf(X(t))),Q(t))

> f(U(Θ(t)),Q(t−1))− cγ0β
mt−1∇Θf(X(t))T∇Θf(X(t)).

Rearranging the terms we get

f(U(Θ(t)
− γ0β

mt−1
∇Θf(X(t))),Q(t))− f(U(Θ(t)),Q(t−1))

βmt−1

> −cγ0∇Θf(X(t))T∇Θf(X(t)).
(18)

Writing the Taylor expansion of f(X) at X =
(U(Θ(t)),Q(t−1)) and letting T ∋ t→∞, we obtain

−∇Θf(Z)T∇Θf(Z) > −c∇Θf(Z)T∇Θf(Z).

Since 0 < c < 1, we can derive ∇Θf(Z)T∇Θf(Z) < 0,

which cannot be true. Therefore, (16) must hold, which

implies ∠(Z2) is the stationary point of minΘ f(U(Θ)|Z1).
Since problem (2) and problem (3) are equivalent, Z2 is the

stationary point of minΦ f(Φ|Z1) with |Φi,i| = 1, ∀i, and it

satisfies the first order optimality condition

(Φ− Z2)
T (∇Φf(Z)) ≥ 0, ∀Φ ∈ X2. (19)

Adding up (14) and (19), we readily observe that Z satisfies

first order optimality condition, i.e., (X− Z)T (∇f(Z)) ≥
0, ∀X ∈ X . The proof is thus completed.
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