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Adversarial Attacks with Multiple Antennas Against
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Abstract—We consider a wireless communication system,
where a transmitter sends signals to a receiver with different
modulation types while the receiver classifies the modulation
types of the received signals using its deep learning-based
classifier. Concurrently, an adversary transmits adversarial per-
turbations using its multiple antennas to fool the classifier into
misclassifying the received signals. From the adversarial machine
learning perspective, we show how to utilize multiple antennas
at the adversary to improve the adversarial (evasion) attack
performance. Two main points are considered while exploiting the
multiple antennas at the adversary, namely the power allocation
among antennas and the utilization of channel diversity. First, we
show that multiple independent adversaries, each with a single
antenna cannot improve the attack performance compared to
a single adversary with multiple antennas using the same total
power. Then, we consider various ways to allocate power among
multiple antennas at a single adversary such as allocating power
to only one antenna, and proportional or inversely proportional
to the channel gain. By utilizing channel diversity, we introduce
an attack to transmit the adversarial perturbation through the
channel with the largest channel gain at the symbol level. We
show that this attack reduces the classifier accuracy significantly
compared to other attacks under different channel conditions in
terms of channel variance and channel correlation across anten-
nas. Also, we show that the attack success improves significantly
as the number of antennas increases at the adversary that can
better utilize channel diversity to craft adversarial attacks.

I. INTRODUCTION

Recent advances in deep learning (DL) have enabled nu-

merous applications in different domains such as computer

vision [1] and speech recognition [2]. Upon the success of

these applications, DL has been also applied to wireless

communications where the high-dimensional spectrum data is

analyzed by deep neural networks (DNNs) while accounting

for unique characteristics of the wireless medium such as

waveform, channel, interference, and traffic effects [3]–[5].

Examples of wireless communication applications that benefit

from DL include waveform design [5], spectrum sensing [6],

and signal classification [3].

Despite the benefits of DL, DNNs are known to be suscepti-

ble to adversarial manipulation of their input causing incorrect
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outputs such as classification labels as demonstrated first in

computer vision applications [7]. Therefore, machine learning

in the presence of adversaries has received significant attention

in the computer vision domain and has been extensively

studied in the context of adversarial machine learning [8].

Different types of attacks built upon adversarial machine

learning are feasible in wireless communication systems such

as exploratory attacks [9], adversarial attacks [10], poisoning

attacks [11], membership inference attacks [12], and Trojan

attacks [13]. These attacks have the advantage of being

stealthier than conventional jamming attacks that typically add

interference directly to data transmissions without specifically

targeting the underlying machine learning applications [14].

In this paper, we focus on adversarial attacks (also known

as evasion attacks) which correspond to adding small pertur-

bations to the original input of the DNNs in order to cause

misclassification. These perturbations are not just random but

are carefully crafted to fool the DNNs. Adversarial attacks

on modulation classifier [3] of wireless signals have been

studied in [10] where fast gradient method (FGM) [15] is

used to create adversarial perturbations. In [16]–[18], it has

been shown that the modulation classifier is vulnerable to

various forms of adversarial attacks in the AWGN channel.

Adversarial attacks in the presence of realistic channel effects

and broadcast transmissions have been studied in [19], [20].

The attack setting has been also extended to incorporate

communication error performance [21] and covertness [22].

Our goal in this paper is to investigate the use of multiple

antennas to generate multiple concurrent perturbations over

different channel effects (subject to a total power budget) to

the input of a DNN-based modulation classifier at a wireless

receiver. This problem setting is different from computer

vision applications of adversarial attacks that are limited to

a single perturbation that can be directly added to the DNN’s

input without facing uncertainties such as channel effects. We

assume that the adversary has multiple antennas to transmit

adversarial perturbations in the presence of realistic channel

effects and aims to decrease the accuracy of a modulation clas-

sifier. As shown in [19], transmitting random (e.g., Gaussian)

noise to decrease the accuracy of the classifier at the receiver is

ineffective as an adversarial attack, since random noise cannot

manipulate the input to the DNN in a specific direction as

needed in an adversarial attack. Therefore, increasing the per-

turbation power with random noise transmitted over multiple

antennas remains ineffective. Instead, the adversary needs to

carefully craft the adversarial perturbation for each antenna.
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We design a white-box attack where the adversary knows

the receiver’s classifier architecture, input at the receiver,

and the channel between the adversary and the receiver. The

adversary signal is time-aligned with the transmitted signal

and uses the maximum received perturbation power (MRPP)

attack that was introduced in [19]. First, we show that just

increasing the number of individual adversaries with single

antennas (located at different positions) does not improve the

attack performance. Next, we consider the use of multiple

antennas at a single adversary and propose different methods

to allocate power among antennas at the adversary and to

exploit the channel diversity. We first propose a genie-aided

adversarial attack where the adversary selects one antenna to

transmit the perturbation such that it would result in the worst

classification performance depending on the channel condition

over the entire symbol block (that corresponds to the input to

the DNN at the receiver). Then, we consider transmitting with

all the antennas at the adversary where the power allocation is

based on the channel gains, either proportional or inversely

proportional to the channel gains. However, these attacks

remain ineffective. We propose the elementwise maximum

channel gain (EMCG) attack to utilize the channel diversity

more efficiently by selecting the antenna with the best channel

gain at the symbol level to transmit perturbations.

We show that the EMCG attack outperforms other attacks

and effectively uses channel diversity provided by multiple

antennas to cause misclassification at the receiver. This attack

improvement remains effective regardless of the channel vari-

ance or correlation between channels, whereas the proportional

to the channel gain (PCG) attack is greatly affected by the cor-

relation between channels. Finally, we show that increasing the

number of antennas at the adversary significantly improves the

attack performance by better exploiting the channel diversity

to craft and transmit adversarial perturbations.

The rest of the paper is organized as follows. Section II

provides the system model. Section III introduces adversarial

attacks using multiple antennas. Section IV presents simulation

results. Section V concludes the paper.

II. SYSTEM MODEL

We consider a wireless communication system that consists

of a transmitter, a receiver, and an adversary as shown in Fig.

1. Both the transmitter and the receiver are equipped with

a single antenna. The receiver uses a pre-trained DL-based

classifier on the received signals to classify the modulation

type that is used at the transmitter. The adversary has m
antennas to launch a white-box adversarial attack to cause

misclassification at the receiver. The white-box attack can be

considered as an upper-bound for other attacks with limited

information. The assumptions on the knowledge of the adver-

sary can be relaxed as shown in [19].

The DNN classifier at the receiver is denoted by f(·; θ) :
X → RC , where θ is the set of parameters of the DNN decided

in the training phase and C is the number of modulation types.

Note X ⊂ Cp, where p is the dimension of the complex-

valued I/Q (in-phase/quadrature) inputs to the DNN that can

Transmitter
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x f
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Har2
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n
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Fig. 1. System model.

also be represented by concatenation of two real-valued inputs.

A modulation type l̂(x, θ) = argmaxk fk(x, θ) is assigned by

f to input x ∈ X . In this formulation, fk(x, θ) is the output

of classifier f corresponding to the kth modulation type.

The channel from the transmitter to the receiver is htr,

and the channel from the ith antenna of the adversary to the

receiver is hari , where htr = [htr,1, htr,2, · · ·, htr,p]T ∈ Cp×1

and hari = [hari,1, hari,2, · · ·, hari,p]T ∈ C
p×1. If the

transmitter transmits x, the receiver receives rt = Htrx+n,

if there is no adversarial attack, or receives ra = Htrx +∑m
i=1 Hariδi + n, if the adversary transmits the perturbation

signal δi at the ith antenna, where Htr = diag{htr,1, · ·
·, htr,p} ∈ Cp×p,Hari = diag{hari,1, · · ·, hari,p} ∈ Cp×p,

δi ∈ Cp×1 and n ∈ Cp×1 is complex Gaussian noise. For

a stealth attack, the adversarial perturbations on antennas are

constrained as
∑m

i=1 ‖δi‖22 ≤ Pmax for some suitable power

Pmax. To determine these perturbations with respect to the

transmitted signal x from the transmitter, the adversary solves

the following optimization problem.

argmin
{δi}

m∑

i=1

‖δi‖22

subject to l̂(rtr, θ) 6= l̂(rari(δi), θ), i = 1, 2, ...,m
m∑

i=1

‖δi‖22 ≤ Pmax. (1)

In (1), the objective is to minimize the perturbation power

subject to two constraints where the receiver misclassifies

the received signal and the budget for perturbation power

is not exceeded. However, solving optimization problem (1)

is difficult because of the inherent structure of the DNN.

Thus, different methods have been proposed to approximate

the adversarial perturbation. For instance, FGM is a compu-

tationally efficient method for generating adversarial attacks

by linearizing the loss function of the DNN classifier. We

denote the loss function of the model by L(θ,x,y), where

y ∈ {0, 1}C is the one-hot encoded class vector. Then, FGM

linearizes this loss function in a neighborhood of x and uses

this linearized function for optimization. Since the adversary

uses more than one antenna, the adversary needs to utilize the

diversity of channels to craft more effective perturbations. For

that purpose, we introduce different approaches in Section III.

III. ADVERSARIAL ATTACKS USING MULTIPLE ANTENNAS

In this section, we introduce different methods to utilize

multiple antennas at the adversary to improve the attack perfor-



Algorithm 1: PCG attack with common target

Inputs: input rtr, desired accuracy εacc, power constraint

Pmax and model of the classifier L(θ, ·, ·)
Initialize: ε← 0

C×1, wi =
‖hari

‖2
∑

m
j=1

‖harj
‖2

, i = 1, · · · ,m
for class-index c in range(C) do

εmax ←
√
Pmax, εmin ← 0

for i = 1 to m do

δci =
H

∗
ari

∇xL(θ,rtr,y
c)

(‖H∗
ari

∇xL(θ,rtr,yc)‖2)

end

while εmax − εmin > εacc do
εavg ← (εmax + εmin)/2
xadv ← x− εavg

∑m

i=1 wiHariδ
c
i

if l̂(xadv) == ltrue then εmin ← εavg
else εmax ← εavg

end

ε[c] = εmax

end

target = argmin ε, δi = ε[target]wiδ
target
i for ∀i

mance. Note that the adversary can allocate power differently

to each antenna and increase the channel diversity by using

multiple antennas. Throughout the paper, we apply the targeted

MRPP attack in [19] to generate an attack at the adversary.

The MRPP attack searches over all modulation types to cause

misclassification at the receiver and chooses one modulation

type that needs the least power to cause the misclassification.

A. Single-Antenna Genie-Aided (SAGA) Attack

We first begin with an attack where the adversary allocates

all the power to only one antenna for the entire symbol block

of an input to the classifier at the receiver as shown in Fig.

2(a). In this attack, we assume that the adversary is aided by

a Genie and thus knows in advance the best antenna out of

m antennas that causes a misclassification. Then, the Genie-

aided adversary puts all the power to that one specific antenna

to transmit adversarial perturbation.

B. Proportional to Channel Gain (PCG) Attack

To exploit the channel with the better channel gain, the

adversary allocates more power to better channels. Specifi-

cally, the power allocation for the ith antenna is proportional

to the channel gain ‖hari‖2. The adversarial perturbation that

is transmitted by each antenna is generated using the MRPP

attack as before and transmitted with the power allocated

to each antenna. During the attack generation process, the

adversary can set the common target modulation type of

misclassification (each perturbation aims to cause misclassi-

fication of signals to a common target label) or independent

target (each perturbation aims to cause misclassification of

signals to its own target label) for each antenna.

1) PCG attack with common target: The adversary sets

a common target modulation type for all antennas to cause

specific misclassification at the receiver. The adversary deter-

mines the common target modulation type which needs the

Algorithm 2: PCG attack with independent targets

Inputs: input rtr, desired accuracy εacc, power constraint

Pmax and model of the classifier L(θ, ·, ·)
Initialize: ε← 0

C×1, wi =
‖hari

‖2
∑

m
j=1

‖harj
‖2

, i = 1, · · · ,m
for i = 1 to m do

for class-index c in range(C) do

εmax ←
√
Pmax, εmin ← 0

δci =
H

∗
ari

∇xL(θ,rtr,y
c)

(‖H∗
ari

∇xL(θ,rtr,yc)‖2)

while εmax − εmin > εacc do
εavg ← (εmax + εmin)/2
xadv ← x− εavg

∑m
i=1 wiHariδ

c
i

if l̂(xadv) == ltrue then εmin ← εavg
else εmax ← εavg

end

end

ε[c] = εmax

target = argmin ε, δi = ε[target]wiδ
target
i

end

least power to fool the receiver. The details are presented in

Algorithm 1.

2) PCG attack with independent targets: For the ith an-

tenna, the adversary decides the individual target modulation

type for perturbation δi. Each antenna independently chooses

the target modulation type which uses the least power to cause

misclassification at the receiver. These modulation types may

differ from each other. By setting individual target modulation

type for each antenna, the adversary can exploit the channel

since each antenna chooses what is best for itself. The details

are presented in Algorithm 2.

C. Inversely Proportional to Channel Gain (IPCG) Attack

In contrast to the PCG attack, the adversary allocates more

power to weak channels to compensate for the loss over the

weak channels, i.e., inversely proportional to the channel gain.

The perturbations that are transmitted by each antenna are

generated using the MRPP attack and the power for each

antenna is determined to be inversely proportional to the

channel gain. As in the PCG attack, the IPCG attack can be

also crafted with common target or independent targets for

all antennas. The algorithm is the same as Algorithm 1 for

common target and Algorithm 2 for the independent targets

except that wi changes to be inversely proportional to the

channel, i.e., wi =
1

‖hari
‖2

(

1
∑m

j=1
‖harj

‖2

) , i = 1, · · · ,m.

D. Elementwise Maximum Channel Gain (EMCG) Attack

Unlike the previous attacks that considered the channel gain

of the channel vector with dimension p×1 as a way to allocate

power among antennas, the adversary in the EMCG attack con-

siders the channel gain of each element of the channel to fully

utilize the channel diversity as shown in Fig. 2(b). First, the

adversary compares the channel gain elementwise and selects

one antenna that has the largest channel gain at each instance.



Algorithm 3: EMCG attack

Inputs: input rtr, desired accuracy εacc, power constraint

Pmax and model of the classifier L(θ, ·, ·)
Initialize: ε← 0

C×1, k ← 0
p×1, δi ← 0

p×1 for ∀i
for i = 1 to p do

hvir,i = max{‖har1,i‖2, · · · , ‖harm,i‖2}
k[i] = argmax{‖har1,i‖2, · · · , ‖harm,i‖2}

end

Virtual channel : Hvir = diag{hvir,1, · · · , hvir,p}
for class-index c in range(C) do

εmax ←
√
Pmax, εmin ← 0

δc =
H

∗
vir∇xL(θ,rtr,y

c)
(‖H∗

vir
∇xL(θ,rtr,yc)‖2)

while εmax − εmin > εacc do
εavg ← (εmax + εmin)/2
xadv ← x− εavgHvirδ

c

if l̂(xadv) == ltrue then εmin ← εavg
else εmax ← εavg

end

ε[c] = εmax

end

target = argmin ε, δvir = ε[target]δtarget

for i = 1 to p do

δk[i] = δvir [i]
end

Transmit δi, i = 1, · · · ,m

Adversary

f

n

Receiver

(a)

Adversary

f

n

Receiver

(b)

Fig. 2. Illustration of (a) SAGA attack and (b) EMCG attack.

Specifically, the adversary finds and transmits with the antenna

j∗ = argmaxj=1,···m{‖harj,t‖2} that has the largest channel

gain at instance t. Further, a virtual channel hvir,t at instance t
is defined as the channel with the largest channel gain among

antennas. Then, the adversary generates the perturbation δvir

with respect to hvir = [hvir,1, · · · , hvir,p]T using the MRPP

attack and transmits each element of δvir with the antenna

that has been selected previously. The details are presented in

Algorithm 3.

IV. SIMULATION RESULTS

In this section, we compare the performances of the attacks

introduced in Section III (along with the MRPP attack from
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[19] where the adversary has a single antenna) to investigate

how the number of antennas at the adversary affects the attack

performance. Also, multiple adversaries that are each equipped

with a single antenna and located at different positions are

considered to motivate the need to craft attacks for the

adversary with multiple antennas.

To evaluate the performance, we use the VT-CNN2 classifier

from [23] as the modulation classifier (also used in [10],

[19]) where the classifier consists of two convolution layers

and two fully connected layers, and train it with GNU radio

ML dataset RML2016.10a [24]. The dataset contains 220,000

samples where half of the samples are used for training and

the other half are used for testing. Each sample corresponds to

one specific modulation type at a specific signal-to-noise ratio

(SNR). There are 11 modulations which are BPSK, QPSK,

8PSK, QAM16, QAM64, CPFSK, GFSK, PAM4, WBFM,

AM-SSB and AM-DSB. We follow the same setup of [23],

using Keras with TensorFlow backend, where the input sample

to the modulation classifier is 128 I/Q channel symbols.

In the simulations, we introduce the channel between the

ith antenna at the adversary and the receiver as a Rayleigh

fading channel with path-loss and shadowing, i.e., hari,j =
K(d0

d
)γψhi,j where K = 1, d0 = 1, d = 10, γ = 2.7, ψ ∼

Lognormal(0, 8) and hi,j ∼ Rayleigh(0, 1). We assume that

channels between antennas are independent (except for Fig.

6) and fix SNR as 10dB. We evaluate the attack performance

as a function of the perturbation-to-noise ratio (PNR) from

[10]. The PNR represents the relative perturbation power with

respect to the noise power. As the PNR increases, the power

of the perturbation relatively increases compared to the noise

power making the perturbation more likely to be detected by

the receiver since it becomes more distinguishable from noise.

First, we compare the classifier accuracy of an adversary

equipped with a single antenna using the MRPP attack to the

case of multiple adversaries where each adversary has a single

antenna using the MRPP attack. For a fair comparison, total

power that is used among adversaries is kept the same as the

power used by the single adversary and the power is equally

divided among adversaries. Results are shown in Fig. 3. Note

that for the case of two or more adversaries, adversaries are
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not synchronized and do not collaborate with each other as

they are physically not co-located meaning that they attack

with independent targets. We observe that the accuracy of the

classifier does not drop although more adversaries are used

to attack the classifier. This result suggests that dividing the

power equally is not helpful and thus motivates the need for an

adversary with multiple antennas to choose power allocation

on antennas and exploit the channel diversity.

Adversarial attacks using two antennas with common target

and independent targets are compared in Fig. 4. The PCG

attack outperforms the IPCG attack regardless of whether the

target is common or independent showing that the power

allocation among antennas is important. Also, choosing an

independent target at each antenna performs better than the

common target case for both PCG and IPCG attacks suggest-

ing that choosing the best target (determined by the channel

realization) for each antenna is more effective.

Fig. 5 presents the classifier accuracy at the receiver when

the adversary transmits an adversarial perturbation with m = 2
antennas using different attacks that are introduced in Section

III. The EMCG attack with Gaussian noise transmitted by the

adversary with two antennas is compared with the adversarial

perturbation with two antennas using the MRPP attack at each

antenna. The use of Gaussian noise as perturbation results

in poor attack performance although the EMCG attack is

used to determine the antenna to transmit supporting the
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Fig. 6. Classifier accuracy with respect to different covariances of channels
between antennas.
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use of the MRPP attack. Fig. 5 shows that although the

adversary uses two antennas, the accuracy of the classifier is

higher than the case under the MRPP attack of an adversary

with single antenna when the IPCG attack with independent

targets is used. Also, the performance of the PCG attack with

independent targets is similar to the performance of the MRPP

attack of the adversary with a single antenna although the

adversary puts more power to the better channel. We observe

that the SAGA attack slightly outperforms the MRPP attack of

an adversary with a single antenna suggesting that the SAGA

attack takes advantage of having two channels to choose from.

Moreover, the EMCG attack significantly outperforms other

attacks by fully utilizing the channel diversity.

So far, results have been obtained under the assumption

that channels between the antennas are independent, which

also yields zero covariance. Next, we consider correlation

between the channels and we investigate various attacks of an

adversary with two antennas under different covariance levels.

Results are shown in Fig. 6. We observe that as the covariance

between the antennas increases, the performance of the PCG

attack with common target increases significantly where it is

comparable to the SAGA attack and even outperforms the PCG

attack with independent targets. Note that the PCG attack with

independent targets outperforms the PCG attack with common

target when the channels are independent as shown in Fig. 4. In

contrast, we see that other attack schemes are not significantly

affected by the covariance. Further, we observe that even
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if the covariance is increased to 0.7 the attack performance

slightly decreases compared to when the covariance is 0.2 in

the EMCG attack, the PCG attack with independent targets

and the SAGA attack.

Assuming again independent channels from adversary an-

tennas to the receiver, the classifier accuracy is shown in Fig.

7 when we vary the channel variance. The classifier accuracy

drops as the channel variance increases for all cases due to

the increased uncertainty induced by the increased channel

gain from the adversary to the receiver. Further, the perfor-

mance ratio between MRPP and EMCG attacks increases as

the channel variance increases. We also observe that as the

PNR increases, the gap between MRPP and EMCG attacks

decreases except for the case when the channel variance is 1.

Finally, we evaluate the attack performance of the adversary

with different number of antennas m for the EMCG attack.

Results are shown in Fig. 8 when the variance of channels

is 1. The classifier accuracy decreases as m increases due

to the increased channel diversity available to the adversary

to exploit. Moreover, as the PNR increases, the performance

gap between attacks launched with different m decreases

suggesting that an increase of m in the high PNR region is

not as effective as in the low PNR region.

V. CONCLUSION

We considered a wireless communication system where a

DL-based signal classifier is used at the receiver to classify

signals transmitted from the transmitter to their modulation

types and showed that different methods to craft adversarial

perturbations can be used to exploit multiple antennas at the

adversary. We show that just adding more antennas at the ad-

versary does not always increase the attack performance. Thus,

it is important to carefully allocate power among antennas,

determine the adversarial perturbation for each antenna, and

exploit channel diversity to select which antenna to transmit. In

this context, the proposed EMCG attack significantly outper-

forms other attacks and effectively uses multiple antennas to

evade the target classifier over the air. Next, we showed that the

attack performance holds for different conditions of channels

from the adversary antennas to the receiver and significantly

improves by increasing the number antennas at the adversary.
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