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Abstract—Wireless communication in the TeraHertz band
(0.1–10 THz) is envisioned as one of the key enabling tech-
nologies for the future six generation (6G) wireless communica-
tion systems. However, very high propagation attenuations and
molecular absorptions of THz frequencies often limit the signal
transmission distance and coverage range. Benefited from the
recent breakthrough on the reconfigurable intelligent surfaces
(RIS) for realizing smart radio propagation environment, we
propose a novel hybrid beamforming scheme for the multi-hop
RIS-assisted communication networks to improve the coverage
range at THz-band frequencies. We investigate the joint design of
digital beamforming matrix at the BS and analog beamforming
matrices at the RISs, by leveraging the recent advances in deep
reinforcement learning (DRL) to combat the propagation loss.
Simulation results show that our proposed scheme is able to
improve 50% more coverage range of THz communications
compared with the benchmarks. Furthermore, it is also shown
that our proposed DRL-based method is a state-of-the-art method
to solve the NP-bard beamforming problem, especially when
the signals at RIS-empowered THz communication networks
experience multiple hops.

Index Terms—Terahertz communication, reconfigurable intel-
ligent surface, 6G, Massive-MIMO, multi-hop, multiuser, beam-
forming, deep reinforcement learning, alternating optimization.

I. INTRODUCTION

Future sixth generation (6G) wireless communication sys-
tems are expected to rapidly evolve towards an ultra-high
speed and low latency with the software-based function-
ality paradigm [1]–[5]. Although current millimeter-wave
(mmWave) communication systems (30-300 GHz) have been
intergraded into 5G mobile systems, and several mmWave sub-
bands were released for licensed communications, e.g., 27.5-
29.5 GHz, 57-64 GHz, 81-86 GHz, etc., the total consecutive
available bandwidth is still less than 10GHz, which is difficult
to offer Tbps data rates [1]–[3], [6]. To meet the increasing
demand for higher data rates and new spectral bands, the
Terahertz (0.1–10 THz) band communication is considered as
one of the promising technology to enable ultra-high speed
and low-latency communications. Although major progresses
in the recent ten years are empowering practical THz com-
munication networks, there are still many challenges in THz
communications that require innovative solutions. One of the
major challenges is the very high propagation attenuations,
which drastically reduces the propagation distance.

Fortunately, the recently proposed reconfigurable intelligent
surface (RIS) is considered as a promising technology to

combat the propagation distance problem, since RIS can be
programmed to change an impinging electromagnetic (EM)
field in a desired way to focus, steer, and enhance the signal
power towards the object user [4], [5], [7]–[11]. Recently,
RIS-based designs have emerged as strong candidates that em-
power communications at the THz band. Specifically, [1], [3]
presented some promising visions and potential applications
leveraging the advances of RIS to combat the propagation
attenuations and molecular absorptions of THz frequencies.
To remove obstacles of realizing these applications, [12], [13]
proposed the channel estimation and data rate maximization
transmission solutions for massive multiple input multiple
output (MIMO) RIS-assisted THz system. Furthermore, some
beamforming and resource allocation schemes were proposed
in [12], [14]. For example, a cooperative beam training scheme
and two cost-efficient hybrid beamforming schemes were pro-
posed in [12] for the THz multi-user massive MIMO system
with RIS, while a resource allocation based on the proposed
end-to-end physical model was introduced in [14] to improve
the achievable distance and data-rate at THz band RIS-assisted
communications.

All above works assume single-hop RIS assisted systems,
where only one RIS is deployed between the BS and the users.
In practical, similar to multi-hop relaying systems, multiple
RISs can be used to overcome severe signal blockage between
the BS and users to achieve better service coverage. Although
multi-hop MIMO relaying systems have been addressed in the
literature intensively in the context of relay selection, relay
deployment, and precoding design, multi-hop RIS assisted
systems have not yet been studied. In addition, the methodolo-
gies developed for multi-hop relay systems cannot be directly
applied to multi-hop RIS assisted systems, due to different
reflecting mechanisms and channel models. Particularly, the
constraint on diagonal phase shift matrix and unit modulus
of the reflecting RIS makes the joint design of transmit
beamforming and phase shifts extremely challenging.

To address high-dimension, complex EM environment, and
mathematically intractable non-linear issues of communica-
tion systems, the model-free machine learning method as
an extraordinarily remarkable technology has introduced in
recent years [15], [16]. Overwhelming research interests and
results uncovers machine learning technology to be used in
the future 6G wireless communication systems for dealing
with the non-trivial problems due to extremely large dimension
in large scale MIMO systems. To be specific, deep learning
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has been used to obtain the channel state information (CSI)
or beamforming matrix in non-linear communication systems.
In terms of dynamic and mobile wireless scenarios, deep
reinforcement learning (DRL) provides an effective solution by
leveraging the advantages of deep learning, iterative updating
and interacting with environments over the time [16]–[19],.
In particular, the hybrid beamforming matrices were obtained
by DRL for the mobile mmWave systems in [17], while
[18] proposed a novel idea to utilize DRL for optimizing the
network coverage.

In this paper, we present a multi-hop RIS-assisted communi-
cation scheme to overcome the severe propagation attenuations
and improve the coverage range at THz-band frequencies,
where the hybrid design of transmit beamforming at the BS
and phase shift matrices is obtained by the advances of DRL.
Specifically, benefited from the recent breakthrough on RIS,
our main objective is to overcome propagation attenuations
at THz-band communications by deploying multiple passive
RISs between the BS and multiple users. To maximize the sum
rate, formulated optimization problem is non-convex due to the
multiuser interference, mathematically intractable multi-hop
signals, and non-linear constraints. Owning to the presence
of possible multi-hop propagation, which results in composite
channel fadings, the optimal solution is unknown in general.
To tackle this intractable issue, a DRL based algorithm is
proposed to find the feasible solutions.

The notations of this paper are summarized as follows. We
use the H to denote a general matrix. H(t) is the value of H
at time t. HT , and HH denote the transpose and conjugate
transpose of matrix H, respectively. Tr{} is the trace of the
enclosed. For any vector g, g(i) is the ith entry, while gk is
the channel vector for the kth user. ||h|| denotes the magnitude
of the vector. E denotes statistical expectation. |x| denotes the
absolute value of a complex number x, and its real part and
imaginary part are denoted by Re(x) and Im(x), respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Terahertz-Band Channel Model

Unlike the lower frequency band communications, a signal
operating at the THz band can be affected easily by many
peculiarly factors, mainly is influenced by the molecular
absorption due to water vapor and oxygen, which result in
very high path loss for line-of-sight (LOS) links [1]–[3]. On
the other hand, spreading loss also contributes a large pro-
portion of attenuations. In terms of non-line-of-sight (NLOS)
links, besides mentioned peculiarities, unfavorable material
and roughness of the reflecting surface also will cause a very
severe reflection loss [2], [6], [14]. The overall channel transfer
function can be written as,

H(f, d, ζ) =HLOS(f, d)e−j2πfτLOS+
Mrays∑
i=1

HNLOS
i (f, ζi)e

−j2πfτNLOSi ,
(1)

where f denotes the operating frequency, d is the dis-
tance between the transmitter and receiver, the vector ζ =
[ζ1, ..., ζMrays

] represents the coordinates of all scattering

points, and τLOS and τNLOSi denote the propagation delays
of the LOS path and ith NLOS path respectively.

B. Proposed Multi-hop Scheme

As mentioned before, communications over the THz band
are very different with the low frequency band communi-
cations, the transmitted signal suffers from the severe path
attenuations. To address this issue, we introduce a multi-
hop multiuser system by leveraging some unique features of
RISs, which is comprised of a BS, N reflecting RISs and
multiple single-antenna users shown in Fig. 1. We consider
that BS equipped with M antennas communicate with K
single-antenna users in a circular region. Assume that the ith

reflecting RIS, i = 1, · · · , N , has Ni reflecting elements.
A number of K(K ≤ M ) data streams are transmitted
simultaneously from the M antennas of the BS with the
aid of multiple RISs to improve the coverage range of THz
communications. Each data stream is beamforming to one of
the K users by the assistance of RISs.

Remark: In contrast to the traditional precoding architec-
tures, a key novelty of this proposed multi-hop scheme is to
take full advantages of RISs with the unique programmable
feature as an external and portable analog precoder, i.e.,
the RIS functions as a reflecting array, equivalent to introduce
the analog beamfroming to impinge signals, which not only
can remove internal analog precoder at BS that simplifies the
architecture and reduces its cost significantly, but also improve
the beamforming performance of THz-band communication
systems.

We assume that the channel fading is frequency flat, and
the transmitted signal experiences Ik(Ik ≤ N) hops on RISs
to arrive kth user. We denote the channel matrix from the
BS to the first reflecting RIS as H1 ∈ C(N1×M), the channel
matrix from the ith RIS to the (i + 1)th RIS as H(i+1) ∈
C(N(i+1)×Ni). The received signal at the kth user is given as

yk = (gTk
∏

i=1,··· ,Ik

ΦiHi + wk)x + nk (2)

where the vector gk ∈ C(NIk
×1) and wk ∈ C(1×M) denote

the channel from the last RIS to the kth user and the
direct channel from the BS to user k respectively, Φi ,
diag[θi1, θi1, . . . , θiNi

] ∈ C(Ni×Ni) is the phase shift matrix of
the ith RIS, i.e., the ith analog precoding matrix, x ∈ CM×1
is the transmit vector from the BS, and nk is the additive
white Gaussian noise (AWGN) with the zero mean and σ2

n

variance. We further assume that the channel gk, wk, and
Hi for all K users are perfectly known at both the BS
and all users. Although we admit that obtaining these CSIs
are challenging tasks for RIS-based communication systems,
there are already significant methods that are proposed in
existing works [12], [13]. Furthermore, research on the channel
estimation is also beyond the scope of this paper. There-
fore, we have this assumption. The transmit vector x can
be written as x ,

∑K
k=1 fksk, where fk ∈ CM×1 and

sk ∈ CN (0, 1), i.e., under the assumption of Gaussian signals,
denote the beamforming vector and independent user symbols
respectively. The power of the transmit signal from the BS
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Fig. 1. The RIS-based multi-hop for THz communications and proposed practical RIS-based hybrid beamforming architecture.

has the constraint, E [|x|2] = tr(FHF) ≤ Pt wherein
F , [f1, f2, ..., fK ] ∈ CM×K , and Pt is the total transmission
power of the BS.

It should be noted that Φi is a diagonal matrix whose entries
are given by Φi(ni, ni) = θini

= ejφni , where φni
is the

phase shift induced by each element of the RIS. Like a mirror,
the signal goes through the RIS is no energy loss, which means
|Φi(ni, ni)|2=1. The received signal (2) can be further given

yk =

(
gTk

∏
i=1,··· ,Ik

ΦiHi + wk

)
fkxk+

K∑
j,j 6=k

(
gTk

∏
i=1,··· ,Ik

ΦiHi + wk

)
fjxj + nk

(3)

where fm is the beamforming vector for the mth,m 6= k user.
Furthermore, the SINR at the kth user is written as

ρk =
|(gTk

∏
i=1,··· ,Ik ΦiHi + wk)fk|2

|(
∑K
j,j 6=k gTk

∏
i=1,··· ,Ik ΦiHi + wk)fj |2 + σ2

n

(4)

C. Problem Formulation

Our main objective is to combat the propagation attenu-
ations of THz communications by leveraging multi-hop RIS-
assisted communication scheme. Therefore, we use the ergodic
sum rate as the evaluate metric. However, the major obstacles
to maximize the sum rate are to obtain the optimal design of
digital beamforming matrix F and beamforming matrix Φi,∀i,
i.e., phase shift matrix of RISs. The optimization problem is
formulated as follows,

max
F,Φi

C(F,Φi,∀i,wk,∀k,gk,∀k,Hi,∀i) =

K∑
k=1

log2(1 + ρk)

s.t. tr{FFH} ≤ Pt
|θini
| = 1 ∀ni = 1, 2, . . . , Ni.

(5)

Unfortunately, we can easily find that the optimization problem
(5) is a NP-hard problem because of the non-trivial objective
function and the non-convex constraint. As we all know, it
is nearly impossible to obtain an analytical solution by the
traditional methods of mathematical analysis for the multi-hop
optimization. In addition, exhaustive numerical search is also

impractical for large scale networks. Although there are some
existing approximation methods that are proposed based on the
alternating method to find the sub-optimal solutions for single
hop RIS-based system, e.g., [9]–[11], they are difficult to work
for the multi-hop scenario, especially we do not know how
many RIS hops the transmitted signal experienced to arrive
kth user, i.e., Ik(Ik ≤ N) in prior. Instead, in this paper, we
will propose a new method by leveraging the recent advance
on DRL technique, rather than directly solving this challenging
optimization problem mathematically.

III. DRL-BASED DESIGN OF DIGITAL AND ANALOG
BEAMFORMING

In this section, we give the details of the proposed DRL-
based algorithm for hybrid beamforming of multi-hop THz
communication networks utilizing the deep deterministic pol-
icy gradient (DDPG) algorithm.

A. Framework of DRL
Generally, a typical DRL framework consists of six fun-

damental elements, i.e., the state set S, the action set A, the
instant reward r(s, a), (s ∈ S, a ∈ A), the policy π(s, a), tran-
sition function P and Q-function Q(s, a). Note that the policy
π(s, a) denotes the conditional probability of taking action a
on the instant state s. This also means that the policy π(s, a)
needs to satisfy

∑
a∈A,s∈S, π(s, a) = 1. In addition, since

we consider a mobile environment, the transition function P
usually is affected by the environment itself and the action
from the RL agent.

Regarding to our proposed hybrid beamforming problem
that have an approaching infinite state and action space, the
storage size and search complexity of Q-table are extremely
impractical. To overcome these issues, we employ a deep Q-
learning method to approximate the Q-table by leveraging
the universal approximation feature of deep neural networks
(DNNs) [20]. As shown in Fig. 2, our proposed DRL frame-
work uses two DNNs (also named actor network and critic net-
work) to approximate the state/action value function. In other
words, a actor neural network to approximate a policy based
on the observed environment s state and output an action,
while another DNN implements the critic network denoted
Q(θ|s(t), a(t)) to evaluate the current policy according to the
received the rewards.
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Fig. 2. The illustration of the proposed DRL framework, and the actor-critic
DDPG algorithm.

B. Critic and Actor Networks

As can be seen in Fig. 2 that the hardcore of DDPG
structure is the critic and actor networks that are comprised of
a fully connected DNN, where they share the similar structure,
consisted of four layers, i.e., two hidden layers with one input
and output layer. Note that the increase or decrease of the
width of the network depends on the actions, but the last output
layer is up to the number of users. Based on this, we introduce
the batch normalization layer between these two hidden layers
with ReLU activation function. The optimizer used in the critic
and actor networks is Adam with learning rate µ(t)

c = λcµ
(t−1)
c

and µ
(t)
a = λaµ

(t−1)
a , where λc and λa represent their the

decaying rate.
1) Critic Process: The main objective of critic agent is to

evaluate how good a policy is. The input of the critic network
are the current environment state and actions generated by the
actor network, and outputs the Q-function based on the DDPG.
Its learning rate usually is set as smaller to avoid oscillation,
but it needs more time to converge. In order to the negative
inputs, the activation function tanh is obtained for the training
critic network. To remove the correlation of adjacent states, the
input state S needs the whitening process.

2) Actor Process: The function of the actor network is to
learn the current environment based on the DDPG algorithm
(Details can be seen in algorithm 1 of our previous work
[16]) and outputs the actions to the critic network. Unlike the
critic network, the actor needs additional process, i.e., power
modular normalization before the output to implementation
problems for computing the ∆aq(θ

(target)
c |s(t), a). The ap-

proximate policy gradient might yield the error, and it also
could not make sure that we can obtain the optimal solution,
but we can minimize the error by using the compatible features
of transition function.

In the actor-critic RL agent, the policy parameters and
transition function are updated simultaneously, and F needs
to meet the power constraint Tr{FFH} = Pt. In order to
satisfy this condition, a normalization layer is added at the
output of the actor network. Noting that, the signal is changed
the transmission direction after it goes through RISs, but its
amplitude be maintained as |Φi(ni, ni)|2 = 1 since it does
not consume the additional power.

C. Proposed DRL Algorithm

Before we implement the proposed DRL algorithm, the
channel information, Hi, i = 1, · · · , I , wk and gk∀k are
collected by the existing methods that are investigated by some

previous works [12], [13]. The channel information and pre-
vious actions of F(t−1) and Φ

(t−1)
i ,∀i at previous t− 1 state,

the agent obtains the current state s(t). In addition, weight
initialization is also a key factor to affect the learning pro-
cess. The action F and Φi,∀i, networks parameters θ(train)c ,
θ
(train)
a , θ(target)c , and θ(target)a and replay bufferM should be

initialized before running the algorithm. Furthermore, we also
proposed two initialization algorithms, one is based singular
value decomposition (SVD), while another one is utilize the
max-min SINR method.

The algorithm stops when it converges or reaches the
maximum number of iteration steps. The obtained rewards
could not be increased with the taking more actions, we think
that the output Fopt,Φi,opt are the optimal. Noting that the
proposed algorithm might converges the sun-optimal solutions
although our objective is to obtain the optimal digital and ana-
log beamformings. Combing with the previous stated DDPG,
the whole proposed DRL-algorithm can be summarized as
Algorithm 1 in the following.

Algorithm 1 DRL-based hybrid beamforming design for RIS-
based THz Systems
Input: wk,∀k, gk,∀k,Hi,∀i
Output: The optimal a = {F,Φi,∀i}, Q function
Initialization: Memory M; parameters θ

(train)
c , θ

(train)
a ,

θ
(target)
c , θ(target)a ;

beamforming matrices F, Φi,∀i

1: while do
2: for espisode = 0, 1, 2, · · · , Z − 1 do
3: Collect and preprocess w

(n)
k,∀k,g

(n)
k,∀k,H

(n)
i,∀i for the

nth episode to obtain the first state s(0)

4: for t=0, 1, 2, · · · , T − 1 do
5: Update action a(t) = {F(t),Φ

(t)
i,∀i} = π(θ

(train)
a )

from the actor network
6: Implement DDPG Algorithm
7: Update parameters θ

(train)
c , θ

(train)
a , θ

(target)
c ,

θ
(target)
a

8: Input them to the agent as next state s(t+1)

9: end for
10: end for

Until: Convergent or reaches the maximum iterations.
11: end while

In terms of this proposed algorithm, its state, action, reward
and convergence are elaborated in the following.

1) State: The state s(t) is continuous and constructed by
the transmit digital beamforming matrix F(t−1), the analog
beamforming matrices Φ

(t−1)
i ,∀i in the previous t − 1 time

step, and the channel information Hi, i = 1, · · · , I , wk and
gk,∀k. Since the DRL based on the TensorFlow platform
do not support the complex number inputs, we employ two
independent input ports to input the real part and the imag-
inary part of state s separately. We have the dimension of
the state space Ds = 2MK + 2

∑
i=1,··· ,I Ni + 2MN1 +

2
∑
i=1,··· ,I−1NiNi+1 + 2KNI . We assume that there is

no neighboring interference between the different states. To
maximize the transmission distance, assume that each state
can offer some prior knowledge to DRL agent for selecting
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the optimal RIS and analog beamforming. The optimal beam-
forming is related to the channel information and interference
to other users. Then, DRL agent can learn the interference
patten from the historical date, so that it can infer the future
interference at the next time step.

2) Action: Similarly, the action space is also continuous,
and comprised of the digital beamforming matrix F and
analog beamforming matrices Φi,∀i. Furthermore, the real
and imaginary part of F = Re{F} + Im{F} and Φi =
Re{Φi} + Im{Φi} are also separated as two inputs. Its
dimension also depends the parameters of communication
systems, as Da = 2MK + 2

∑
i=1,··· ,I Ni.

3) Reward: The instant rewards is affected by
two main factors: the contributions to throughput
C(F(t),Φ

(t)
i ,wk,gk,Hi=1,··· ,I) and the penalty caused

by the adjusting the beamforming direction under the prior
information, the instantaneous channels Hi=1,··· ,I , hk,∀k and
the actions F(t) and Φ

(t)
i outputted from the actor network.

4) Convergence: Furthermore, there are some factors that
can affect the convergence. For example, the initialization
of action and state parameters plays a key role, which will
introduced in the following. In addition, gradient evolution,
learning rate also pose the affect on convergence. The too
large or small gradient and learning rate both make a algorithm
diverge. We investigate the affect of the learning rate that are
shown in simulation section.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the proposed DRL based algorithm for DRL-based hybrid
beamforming for multi-hop multiuser RIS-assisted wireless
THz communication networks.

A. Simulation Settings

In the following simulations, we consider a single cell
scenario, where there is only one BS, and many RISs that
are randomly deployed in a circular region with the diameter
as 100 m.

1) System Model: We employ the proposed hybrid beam-
forming architecture shown in Fig. 1. In particular, The BS has
M = 8 antennas with the same number of RF chains, and K =
32 mobile users equipped the single antenna and RF chain. To
reduce the complexity of deployment and learning, we adopt
that all N = 64 RISs have the same number of elements, i.e.,
Ni = 128 for all i, and the spacing between elements equal to
2λ. The channel matrices wk,∀k,gk,∀k,Hi−1,∀i are generated
randomly with Rayleigh distribution in the simulations. The
transmission frequency is set as 0.12 THz occupied the fixed
12 GHz bandwidth, and the transmitted power of BS is set as
10 Watt.

2) DRL Settings: Without special highlight, the parameter
settings of the proposed DRL-based beamforming algorithm
are concluded in Table I.

3) Benchmarks: To show the effectiveness of our proposed,
three significant cases are selected as benchmarks. The first
case is an ideal case, where there is no RISs to assist transmit,
i.e., I = 0, and we employ the full digital zero-forcing

TABLE I
PARAMETERS FOR DRL-BASED BEAMFORMING ALGORITHM

Parameters Description Settings

β Discounted rate of the future reward 0.99

µc Learning rate of training critic network update 0.001

µa Learning rate of training actor network update 0.001

τc Learning rate of target critic network update 0.001

τa Learning rate of target actor network update 0.001

λc Decaying rate of training critic network update 0.005

λa Decaying rate of training actor network update 0.005

D Buffer size for experience replay 100000

Z Number of episodes 5000

T Number of steps in each episode 20000

W Number of experiences in the mini-batch 16

U
Number of steps synchronizing target network
with the training network

1

beamforming. The second typical benchmark was already
investigated in some existing works [9], [10], [12], [14], where
there is a just single hop between the BS and each user, and an
alternating optimization method is usually proposed to design
the beamforming matrices.

B. Comparisons with Benchmarks

We compare the proposed DRL-based method described in
Algorithm 1 for multi-hop RIS-assisted wireless THz com-
munication networks as well as three mentioned benchmarks
shown in Fig. 3. It shows that the proposed DRL-based
multi-hop (i.e., I = 2) THz communication scheme nearly
always obtain the best system throughput compared with
the considered three schemes over the whole transmission
distance from 1m to 20m. In particular, we employ the ideally
full digital ZF beamforming for the first benchmark, where
does not have the RIS to assist transmission, its throughput
drops fastest with the increase of the transmission distance.
For example, under the same throughput 1Gbps, we can see
that the proposed DRL-based two-hop scheme obtains around
50% and 14% more transmission distances than that of ZF
beamforming without RIS and single-hop scheme respectively.
What’s more, this performance gap will becomes larger when
the transmission distance increases. Another interesting point
is that the traditional alternating-based method that we adopt
is the proposed method in [10], as this benchmark can obtain
a little better performance than that of the DRL-based beam-
forming single-hop scheme, but much less than that of the
two-hop scheme.

C. Impact of System Settings

To further verify the effectiveness of our proposed scheme,
we have evaluated its rewards performance as a function of
time steps, which is shown in Fig. 4, where we consider the
setting of M = 8, I = 2, Ni = 64,K = 4. It can be seen that,
the sum rate converges with time step t. With the increasing
of SNR, instant and average rewards both increase naturally.
However, it converges faster at the low transmission power
Pt = 5W than that of high transmission power Pt = 30W .
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Fig. 3. Total throughput versus transmission distance. We compare the
performance of four schemes.

This is because the higher transmission power will means
the state spaces of instant rewards are larger, which needs
to more time to converge the local optimal solution. Based on
these results, we also conclude that our proposed DRL-based
algorithm can learn from the environment and feed the rewards
to the agent to prompt the beamforming matrices F and Φi,∀i
converging the local optimal.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

100

101

Fig. 4. Rewards versus steps at Pt = 5W , Pt = 20W , and Pt = 30W
respectively.

V. CONCLUSIONS

In this paper, a novel and practical hybrid beamforming
architecture for multi-hop multiuser RIS-assisted wireless THz
communication networks was proposed, which can effectively
combat the severe propagation attenuations and improve the
coverage range. Based on this proposed scheme, a non-convex
joint design problem of the digital beamforming and analog
beamforming matrices was formulated. To tackle this NP-hard
problem, a novel DRL-based algorithm was proposed, which
is a very early attempt to address this hybrid design problem.
Simulation results show that our proposed scheme is able to
improve 50% more coverage range of THz communications

compared with the considered benchmarks. Furthermore, it
is also shown that our proposed DRL-based method is a
state-of-the-art method to solve the NP-bard beamforming
problem, especially when the signals at RIS-assisted THz
communication networks experience multi hops.
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