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Abstract—Combining the high area spectrum efficiency of light
fidelity (LiFi) and the ubiquitous coverage of wireless fidelity
(WiFi), hybrid LiFi and WiFi networks have drawn increasing
research attention. Meanwhile, the handover issue in hybrid
networks becomes a hotspot since the coverage areas of LiFi and
WiFi overlap each other. In addition, LiFi may cause frequent
handovers for fast-moving users, while WiFi is susceptibleto
traffic overload. Consequently, the selection between LiFiand
WiFi becomes a tricky problem. In this paper we propose a
novel handover scheme, which adopts a dynamic coefficient via
machine learning to adjust the selection preference between LiFi
and WiFi. The new method balances channel quality, resource
availability and user mobility to make handover decisions.Results
show that compared to the received signal strength (RSS)-based
and trajectory-based handover methods, the proposed scheme
can improve the user’s throughput by up to 260% and 50%,
respectively.

Index Terms—Hybrid network, light fidelity (LiFi), optical
wireless communications (OWC), handover, machine learning,
artificial neural network

I. I NTRODUCTION

INDOOR wireless communications are facing exponentially
increasing demands on data traffic, which will increase

3-fold from 2017 to 2020 [1]. As a promising solution to
future indoor wireless communications, hybrid LiFi and WiFi
networks have recently attracted increasing research attention
[2]. Such a network combines the ubiquitous coverage of WiFi
and the high area spectrum efficiency of LiFi, which uses
light wave as signal bearers. Compared with WiFi, LiFi offers
a number of advantages including: i) huge and unlicensed
optical spectrum, ii) availability in radio frequency (RF)-
restricted areas, iii) provision of illumination and iv) secure
communications.

While the hybrid network can substantially improve indoor
network performance, handover becomes a challenging issue.
This is mainly due to three factors. First, the coverage range
of a single LiFi access point (AP) is relatively small, usually
with a 2-3 m diameter. As a result, frequent handovers might
occur to mobile users even with a walking speed. Second,
the coverage areas of LiFi and WiFi overlap each other.
This makes the handover methods that only rely on channel
quality less effective. Third, WiFi is susceptible to traffic
overload since a WiFi AP has a larger coverage area than
a LiFi AP. Consequently, resource availability needs to be
taken into account to balance the traffic loads. In summary,
when executing handovers in a hybrid LiFi and WiFi network,

it is necessary to jointly consider channel quality, resource
availability and user mobility. Therefore, it is tricky to make
a decision between horizontal handover (HHO) and vertical
handover (VHO), which refer to the handovers occurring
between two APs with the same network technology and with
different network technologies, respectively.

A significant number of relevant studies have been carried
out. In [3], a trajectory-based handover scheme was pro-
posed for ultra-dense networks. This type of method allows
handovers to take place between two non-adjacent APs but
relies on the user’s trajectory information. Associating AP
selection with resource allocation, optimisation-based load
balancing methods were developed [4], with enormously high
computational complexity. To reduce the processing power,
researchers attempted to apply game theory in [5] and fuzzy
logic in [6]. However, [5] requires quantities of iterations to
reach a steady state, whereas [6] can only provide suboptimal
solutions. Moreover, [4]–[6] fail to accommodate the impact
of user mobility. In [7], the concept of mobility-aware load
balancing was introduced. This method takes the handover cost
into account when maximising network throughput, while still
needing considerable computational complexity.

In this paper we investigate the use of machine learning in
the handover process for hybrid networks. So far, a handful
of research work has been conducted in this field. In [8], an
artificial neural network (ANN)-based handover method was
developed for heterogeneous networks. Also using an ANN, a
quality of experience (QoE)-based vertical handover scheme
was proposed in [9]. These studies have two limitations: i)
they only manage VHOs; and ii) resource availability is not
considered. Motivated by this, we propose a novel ANN-based
handover scheme which takes into account channel quality,
resource availability and user mobility. Unlike [8] and [9]
using ANNs to directly make handover decisions, the new
approach employs an ANN to train a dynamic coefficient
which adjusts the selection preference between LiFi and WiFi.
To the best of our knowledge, the proposed handover scheme
is the first of its kind in the existing literature.

The remainder of this paper is organised as follows. The
system model is introduced in Section II, including network
deployment, channel models and light-path blockages. The
novel handover scheme is proposed in Section III. Simulation
results are presented in Section IV. Finally, conclusions are
drawn in Section V.



Fig. 1. Schematic diagram of an indoor HLWNet.

II. SYSTEM MODEL

Fig. 1 shows the schematic diagram of an indoor HLWNet.
A number of LiFi APs are located in the coverage area of each
WiFi AP. The LiFi APs are arranged in a lattice topology, with
each one operating on a ceiling LED lamp. The WiFi system
uses carrier sense multiple access/collision avoidance tokeep
inter-cell interference (ICI) at an undetectable level. Asfor
LiFi, frequency reuse with a factor of 4 is applied to mitigate
ICI. The users are assumed to move randomly by following the
random waypoint (RWP) model [10]. Time-division multiple
accessing (TDMA) is employed to enable the APs to serve
multiple users.

A. LiFi Channel Model

A LiFi channel consists of two components: line-of-sight
(LoS) and non line-of-sight (NLoS) paths. Letdi,u denote
the Euclidean distance of the LoS path between APi and
user u. Let φi,u and ψi,u denote the angles of irradiance
and incidence, respectively. The LoS channel gain can be
expressed as [11, eq. (10)]:

HLoS
i,u =

(m+ 1)Apd

2πd2i,u
cosm(φi,u)gfgc(ψi,u) cos(ψi,u), (1)

wherem = − ln 2/ ln(cosΦ1/2) is the Lambertian emission
order, andΦ1/2 is the angle of half intensity;Apd is the
physical area of the photodiode (PD);gf is the optical filter
gain; gc(ψi,u) denotes the optical concentrator gain, which is
given by:

gc(ψi,u) =







n2

sin2(Ψmax)
, 0 ≤ ψi,u ≤ Ψmax

0, ψi,u > Ψmax

, (2)

wheren represents the refractive index, andΨmax is the semi-
angle of the field of view (FoV) of the PD.

Only first-order reflections are considered for the NLoS
paths, since higher-order reflections typically contribute little
[11]. The NLoS channel gain is denoted byHNLoS

i,u , which
is expressed in (3). The total gain of a LiFi channel is
Hi,u = HLoS

i,u +HNLoS
i,u . At the receiver, a PD captures photons

and converts them into a photocurrent:

I = RpdHi,uPmod, (4)

whereRpd denotes the detector responsivity andPmod is the
average modulated optical power. The signal-to-interference-
plus-noise ratio (SINR) of the LiFi link between APi and
useru is written as follows:

γi,uLiFi =
(RpdHi,uPmod)

2

NLiFiBLiFi +
∑

j∈I,j 6=i

(RpdHj,uPmod)2
, (5)

whereBLiFi is the bandwidth of the LiFi AP;NLiFi denotes
the power spectral density (PSD) of noise, which is assumed
to be signal independent; andI is the set of APs that employ
the same optical spectrum as APi.

B. WiFi Channel Model

The gain of a WiFi channel is given by [12]:

Gi,u
WiFi =
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∣
Hi,u
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10
−L(di,u)+Xσ

10 , (6)

where Hi,u
WiFi defines the channel transfer function, which

follows a standard Rayleigh distribution; the shadow fading
Xσ is a zero-mean Gaussian random variable with a standard
deviation of 10 dB; andL(·) denotes the free-space path loss:

L(d) =


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
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20 log10
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fc
d2.75
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, (7)

wherefc is the central carrier frequency anddref = 10 m is
the reference distance. The SINR of a WiFi link can then be
written as follows:

γi,uWiFi =
Gi,u

WiFiPWiFi

NWiFiBWiFi
, (8)

whereNWiFi is the PSD of noise at the receiver;BWiFi and
PWiFi denote the system bandwidth and transmit power of the
WiFi AP, respectively.

C. Light-path Blockage

Two parameters are considered to model the light-path
blockages: occurrence rate and occupation rate [7]. The oc-
currence rate is defined as the average number of blockages
that occur in a time unit. In queueing theory, the Poisson point
process (PPP) is widely used to model random events such as
the arrival of packets at a switch. Here the blockage events
are also assumed to follow the PPP. The occupation rate is
defined as the amount of time that is occupied by blockages
during a time unit. This parameter is assumed to be uniformly
distributed between 0 and 1.



Hi,u
NLoS =

∫
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2(πdi,wdw,u)2
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D. Achievable Data Rate

The WiFi capacity can be measured by Shannon capacity.
Unfortunately, this does not apply to LiFi sinceγi,uLiFi is an
electrical SINR for non-negative signals. A lower bound of the
LiFi channel was derived in [13], which can be used forγi,uLiFi .
Regarding the link between APi and useru, the achievable
data rate can be computed as follows:

ri,u =







ρi,u
Bi

2
log2

(

1 +
e

2π
γi,uLiFi

)

, for a LiFi AP

ρi,uBi log2

(

1 + γi,uWiFi

)

, for a WiFi AP
, (9)

whereρi,u denotes the proportion of time resource that APi
allocates to useru. The parameterρi,u can be determined by
a proportional fairness scheduler in [6, eq. (13)].

III. PROPOSEDHANDOVER SCHEME

In this section, a novel handover scheme is proposed to
jointly handle channel quality, resource availability anduser
mobility. Specifically, a dynamic coefficient is introducedto
adjust the selection preference between LiFi and WiFi. This
coefficient is trained by an ANN to fit different scenarios.

A. Handover Scheme

Our previous work in [14] has shown that the rate of change
in RSS can indicate whether the user is moving towards the
centre of an AP. Combining RSS and its rate of change can
effectively reduce unnecessary handovers by skipping certain
APs. Taking resource availability into account, the objective
function of the proposed handover scheme is formulated as
follows:

Γi =

{

ζi(γi +∆γi), if i is a LiFi AP

λζi(γi +∆γi), if i is a WiFi AP
, (10)

whereζi denotes the user’s satisfaction degree, which in this
paper is defined as the ratio of the achievable data rate to the
required data rate;γi indicates the RSS, whereas∆γi repre-
sents its change of rate. The three above parameters reflect
the impact of resource availability, channel quality and user
mobility on handover decisions, respectively. The coefficient
λ is used to indicate the selection preference between LiFi and
WiFi in the hybrid network. (See details about this coefficient
in Section III-B.)

The handover algorithm in long term evolution (LTE) [15]
employs the concept of hysteresis to mitigate the ping-pong
effect. Specifically, the making-decision process is triggered
when the RSS of the host AP is below that of the target AP.
But the handover decision is not immediately made until the
target AP keeps providing a higher RSS for a certain amount
of time, with a typical value of hundreds of milliseconds [15].
Here we use a similar mechanism but with dual triggers: RSS
and the user’s satisfaction degree. When either of the two

..
.

Fig. 2. The basic structure of a neuron.

parameters related to the host AP is below any other AP,
the proposed handover scheme starts to count time. The time
counter continues as long as the trigger condition is met, and
otherwise is reset. When the counted time reaches the preset
threshold, a handover decision is made to transfer the user
from the host AP to the target AP that provides the highest
value ofΓi.

B. Machine Learning Algorithm

Now we discuss how to determine the coefficientλ. In
general, fast-moving users prefer WiFi to avoid frequent
handovers between LiFi APs. In this case,λ should be a
number larger than 1 to increase the value ofΓi for WiFi
APs. When the user is static or moves very slowly,λ should
be 1 to let the user choose the AP that provides the highest
value of ζiγi. This means that for a static user, the different
coverage ranges of LiFi and WiFi do not affect the handover
decision. The optimal value ofλ is dependent on a number
of factors including the user’s speed (denoted byV ), the
separation between two nearest LiFi APs (denoted byS), the
height of LiFi APs (denoted byH), and the number of LiFi
APs per WiFi AP (denoted byN ). The choice ofλ can be
deemed as a function of these factors. However, due to the
complicated process of making handover decisions, it is not
feasible to derive a closed-form expression for this function.
Therefore, we propose to determineλ with ANN.

Fig. 2 depicts the basic structure of a neuron. There are a
number of inputs, withxi denoting thei-th input. The output
of thej-th neuron is denoted byyj. For each pair of input and
output, there is a weight which is denoted bywi,j . A bias bj
is added to the weighted sum of inputs. Apart from that, an
activation functionf(·) is used to introduce non-linearity into
the output of a neuron. Here the activation function is chosen
to be tanh, which is widely used in ANNs. The output of a
neuron can be expressed as follows:

yj = tanh

(

bj +
∑

i

xiwi,j

)

. (11)

Based on the neuron structure, the ANN model ofλ can be
constructed as shown in Fig. 3. Lethj denote thej-th node
in the hidden layer. The notation of weights is modified to
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Fig. 3. The ANN model ofλ.

wk,i,j , wherek indicates different layers. Similarly, the biases
pertaining to the hidden nodes are denoted byb1,j, while the
bias added to the output is denoted byb2. The ANN output
can be computed by:

λ = tanh



b2 +
∑

j

tanh

(

b1,j +
∑

i

xiw1,i,j

)

w2,j



 .

(12)

C. Training and Test

Given inputs, the optimal solution (denoted byλ̂) can be
obtained numerically by measuring the average throughput
with different values ofλ. It is worth noting that the output
range is restricted between -1 and 1 due to the functiontanh.
As a result, these optimal solutions need to be normalised
before constituting the sample set for training and validation.
A 75:25 ratio between the training data and the test data
is adopted. In other words, we randomly choose 3/4 of the
samples to train the ANN system and use the remaining
samples to measure the fitness. LetM denote the number of
training samples. The loss function of the ANN system can
be calculated by:

L =
1

M

M
∑

m=1

(

λm − λ̂m

)2

. (13)

The gradient descent method is used to update the weights
and biases on each iteration:

wk,i,j = wk,i,j − η
∂L

∂wk,i,j
, (14)

where η is the learning rate, which controls the step of
iterations. The backpropagation method is used to reduce
computational complexity. Specifically, the parameters are
updated in the sequence ofb2, w2,j , b1,j andw1,i,j .

IV. SIMULATION RESULTS

Monte Carlo simulations are implemented to evaluate the
performance of the proposed method. Two baselines are
considered: the standard LTE handover scheme (referred to
as STD) and the trajectory-based handover method [3]. All
methods use the same time-to-trigger of 160 ms [15], to

TABLE I
SIMULATION PARAMETERS

Parameter Value
The physical area of the PD,Apd 1 cm2

Optical filter gain,gf 1
Refractive index,n 1.5
Half-intensity radiation angle,Φ1/2 60°
FoV semi-angle of the PD,Ψmax 90°
Detector responsivity,Rpd 0.53 A/W
Wall reflectivity 0.8
Modulated optical power per LiFi AP,Pmod 1 Watt
Transmitted power per WiFi AP,PWiFi 20 dBm
Bandwidth per LiFi AP,BLiFi 20 MHz
Bandwidth per WiFi AP,BWiFi 20 MHz
PSD of noise in LiFi,NLiFi 10−21 A2/Hz [7]
PSD of noise in WiFi,NWiFi -174 dBm/Hz [7]
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Fig. 4. Training and test results of the ANN model.

provide a fair comparison. The average overhead of HHO is
about 200 ms in wireless local area networks (WLANs), while
the average overhead of VHO is set to be 500 ms [7]. Other
parameters are summarised in Table I.

The ANN model is first validated. The initial weights and
biases are small random numbers, while the learning rate is
set to be 0.01. Fig. 4 presents the training and test results of
the ANN model. We use 75 training samples with different
combinations ofV , S, H andN . As the number of iterations
increases, the loss function decreases gradually and reaches
2×10−3 with 10000 iterations. After training, the ANN model
is validated with 25 test samples. As shown, the ANN outputs
well match the expected results, with a mean squared error
below 4× 10−3.

Now we evaluate the performance of the proposed method
in different scenarios, with the dynamic coefficientλ yielded
by the trained ANN model. Fig. 5 shows the average achiev-
able throughput as a function of the user’s speed, while
light-path blockages are not involved here. As can be seen,
all handover methods provide almost the same throughput
when the user’s speed is low. However, as the user’s speed
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increases, the proposed method achieves a significantly higher
throughput than the baseline methods. This is attributed tothe
dynamic network selection preference. Also, it is observedthat
the throughput improvement becomes larger for aN , aS, and
aH . WhenV = 5 m/s,N = 4, S = 2 m andH = 2.5 m, the
proposed scheme supports an average throughput of 72 Mbps,
which is about 260% higher than STD and 50% higher than
the trajectory-based method.

Finally, the handover rates of HHO and VHO are measured
in different situations of light-path blockages. The scenario
of V = 5 m/s, N = 4, S = 2 m, H = 2.5 m is taken
as an example. As shown in Fig. 6, the proposed method
can effectively suppress frequent VHOs in comparison to the
baseline methods. When the occurrence rate is 3 times per
minute, for example, the proposed method can reduce the
overall handover rate by 68% and 27% against STD and the
trajectory-based approach, respectively.

V. CONCLUSIONS

In this paper, a novel machine learning-based handover
scheme was proposed for hybrid LiFi and WiFi networks.
This approach takes into account channel quality, resource
availability and user mobility, and adopts a dynamic coefficient
to adjust the selection preference between LiFi and WiFi.
This coefficient is trained through ANN for different scenarios
including the user’s speed, the separation between LiFi APs,
the height of LiFi APs, and the number ratio between LiFi
APs and WiFi APs. Simulations were carried out to validate
the ANN model and evaluate the performance of the proposed
handover scheme. Results show that the new method can
effectively avoid frequent handovers, with a handover rate68%
less than STD and 27% less than the trajectory-based method.
In terms of achievable throughput, the proposed scheme
outperforms the two baselines by up to 260% and 50%,
respectively. Future work will aim to reduce the complexity
of the ANN model and study its rate of convergence.
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