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Abstract—Combining the high area spectrum efficiency of light it is necessary to jointly consider channel quality, reseur
fidelity (LiFi) and the ubiquitous coverage of wireless fideity availability and user mobility. Therefore, it is tricky toake
(WiFi), hybrid LiFi and WiFi networks have drawn increasing = 4 gecision between horizontal handover (HHO) and vertical
research attention. Meanwhile, the handover issue in hybd . .
networks becomes a hotspot since the coverage areas of LiFic handover (VHO), Wh'Ch refer to the handovers occurrlng
WiFi overlap each other. In addition, LiFi may cause frequert ~between two APs with the same network technology and with
handovers for fast-moving users, while WiFi is susceptibleo different network technologies, respectively.
traffic overload. Consequently, the selection between LiFand A significant number of relevant studies have been carried
WiFi becomes a tricky problem. In this paper we propose a out. In [3], a trajectory-based handover scheme was pro-
novel handover scheme, which adopts a dynamic coefficientavi ’ .
machine learning to adjust the selection preference betweelLiFi posed for ultra-dense networks. This type of method allows
and WiFi. The new method balances channel quality, resource handovers to take place between two non-adjacent APs but
availability and user mobility to make handover decisionsResults relies on the user’s trajectory information. Associating® A
show that compared to the received signal strength (RSS)-sad selection with resource allocation, optimisation-basedd|
and trajectory-based handover methods, the proposed schem 5151 cing methods were developed [4], with enormously high

i g 0, 0,
?::pé?t?vrgl\;/e the user's throughput by up to 260% and 50%, computational complexity. To reduce the processing power,

Index Terms—Hybrid network, light fidelity (LiFi), optical ~ researchers attempted to apply game theory in [5] and fuzzy
wireless communications (OWC), handover, machine learnig, logic in [6]. However, [5] requires quantities of iterat®mo

artificial neural network reach a steady state, whereas [6] can only provide subdptima
solutions. Moreover, [4]-[6] fail to accommodate the impac
of user mobility. In [7], the concept of mobility-aware load
NDOOR wireless communications are facing exponentialyalancing was introduced. This method takes the handosgér co
increasing demands on data traffic, which will increasato account when maximising network throughput, whild sti
3-fold from 2017 to 2020 [1]. As a promising solution toneeding considerable computational complexity.
future indoor wireless communications, hybrid LiFi and WiF In this paper we investigate the use of machine learning in
networks have recently attracted increasing researchtatte the handover process for hybrid networks. So far, a handful
[2]. Such a network combines the ubiquitous coverage of WiBf research work has been conducted in this field. In [8], an
and the high area spectrum efficiency of LiFi, which useartificial neural network (ANN)-based handover method was
light wave as signal bearers. Compared with WiFi, LiFi offerdeveloped for heterogeneous networks. Also using an ANN, a
a number of advantages including: i) huge and unlicensqdality of experience (QoE)-based vertical handover seéhem
optical spectrum, ii) availability in radio frequency (RF)was proposed in [9]. These studies have two limitations: i)
restricted areas, iii) provision of illumination and iv)csee they only manage VHOSs; and ii) resource availability is not
communications. considered. Motivated by this, we propose a novel ANN-based
While the hybrid network can substantially improve indoohandover scheme which takes into account channel quality,
network performance, handover becomes a challenging.isstesource availability and user mobility. Unlike [8] and [9]
This is mainly due to three factors. First, the coverage @angsing ANNs to directly make handover decisions, the new
of a single LiFi access point (AP) is relatively small, usdyal approach employs an ANN to train a dynamic coefficient
with a 2-3 m diameter. As a result, frequent handovers migihich adjusts the selection preference between LiFi and.WiF
occur to mobile users even with a walking speed. Seconth the best of our knowledge, the proposed handover scheme
the coverage areas of LiFi and WiFi overlap each othas the first of its kind in the existing literature.
This makes the handover methods that only rely on channelThe remainder of this paper is organised as follows. The
quality less effective. Third, WiFi is susceptible to traffi system model is introduced in Section I, including network
overload since a WiFi AP has a larger coverage area thdeployment, channel models and light-path blockages. The
a LiFi AP. Consequently, resource availability needs to b®vel handover scheme is proposed in Section Ill. Simuiatio
taken into account to balance the traffic loads. In summangsults are presented in Section IV. Finally, conclusiores a
when executing handovers in a hybrid LiFi and WiFi networldrawn in Section V.

I. INTRODUCTION



Only first-order reflections are considered for the NLoS
paths, since higher-order reflections typically contmblittle
[11]. The NLoS channel gain is denoted W}';°S, which
is expressed in (3). The total gain of a LiFi channel is
Hi, = HiEZS+ H{j‘l';"s. At the receiver, a PD captures photons
and converts them into a photocurrent:

I= deHi,quOda (4)

where R,q denotes the detector responsivity afigog is the
average modulated optical power. The signal-to-interfese
plus-noise ratio (SINR) of the LiFi link between APand
userw is written as follows:

,YiZuA _ (deHi,quod)2 (5)
R NURi Bk + Y. (RpaHjuPmod)?’
=" LiFi AP & Mobile user GET, j#i
<&/ WiFi AP — Movement path where By is the bandwidth of the LiFi AP N s denotes

the power spectral density (PSD) of noise, which is assumed
to be signal independent; afdis the set of APs that employ
the same optical spectrum as AP

Fig. 1. Schematic diagram of an indoor HLWNet.

Il. SYSTEM MODEL B. WIFi Channel Model

Fig. 1 shows the schematic diagram of an indoor HLWNet. The gain of a WiFi channel is given by [12]:
A number of LiFi APs are located in the coverage area of each
WiFi AP. The LiFi APs are arranged in a lattice topology, with Gyt = ‘H\l/vrﬁ
each one operating on a ceiling LED lamp. The WiFi system
uses carrier sense multiple access/collision avoidan&edp where H\j\ﬁ:i defines the channel transfer function, which
inter-cell interference (ICI) at an undetectable level. #ds follows a standard Rayleigh distribution; the shadow fgdin
LiFi, frequency reuse with a factor of 4 is applied to mitigat X is a zero-mean Gaussian random variable with a standard
ICI. The users are assumed to move randomly by following tiviation of 10 dB; and.(-) denotes the free-space path loss:
random waypoint (RWP) model [10]. Time-division multiple
accessing (TDMA) is employed to enable the APs to serve 201ogyq (fed) — 147.5, d < dret

multiple users. L(d) = 275 ,
20 1Og10 (fcﬁ> — 1475, d Z dref

ref

—L(di,u)t+Xo

2
107, (6)

(7)
A. LiFi Channel Model

A LiFi channel consists of two components: line-of-sigh here /. is the _central carrier frequency "?““@.f = 10m Is
(LoS) and non line-of-sight (NLoS) paths. Let, denote t e reference distance. The SINR of a WiFi link can then be
the Euclidean distance of the LoS path betweeniAdhd written as follows:
user u. Let ¢;, and4w;, denote the angles of irradiance i Gf}{ﬁpiPWiFi
and incidence, respectively. The LoS channel gain can be IwiFi =
expressed as [11, eq. (10)]:

(8)

where Nyiri is the PSD of noise at the receiveByis and
Pyiri denote the system bandwidth and transmit power of the
WiFi AP, respectively.

Nwiri Bwiri’

Flos _ (m +1)Apd
L 27rd127u

cos™ ((bi,u)gfgc(wi,u) COS(¢i,u)a (1)

wherem = —1In2/In(cos ®,/5) is the Lambertian emission C. Light-path Blockage

OLdeF a;nd@l/infhtheha:\gollg o?f r:aalf _ir_]te?hSityAE[’_d in_tl?e Two parameters are considered to model the light-path
physical area of the photodiode (PD); is the optical filter blockages: occurrence rate and occupation rate [7]. The oc-

gain; ge(1;,.) denotes the optical concentrator gain, which 'Burrence rate is defined as the average number of blockages

given by: that occur in a time unit. In queueing theory, the Poissontpoi
n2 process (PPP) is widely used to model random events such as
Go(Wi0) = mv 0<%iu< ‘I’max’ ) the arrival of packets at a switch. Here the blockage event_s
0, Yiw > Umax are also assumed to follow the PPP. The occupation rate is

defined as the amount of time that is occupied by blockages
wheren represents the refractive index, aWig,ax is the semi- during a time unit. This parameter is assumed to be uniformly
angle of the field of view (FoV) of the PD. distributed between 0 and 1.



HN,LoS = / ﬁpw COs ((bi,w)gfgc(z/]w,u) COS(’L/]w,u) COS(Q9¢7w) Cos(ﬁw,u)d«Aw- (3)
Ay 7w %w,u

D. Achievable Data Rate 1

The WiFi capacity can be measured by Shannon capacity.
Unfortunately, this does not apply to LiFi sineg; is an ;I:QQ
electrical SINR for non-negative signals. A lower boundhf t
LiFi channel was derived in [13], which can be used fOf;.
Regarding the link between APand useru, the achievable
data rate can be computed as follows:

T

Fig. 2. The basic structure of a neuron.

B; e
2 (1 < “) for a LiFi AP
T T S o
piuBilog, (1 +7\1,(,}‘Fi) ; for a WiFi AP parameters related to the host AP is below any other AP,

the proposed handover scheme starts to count time. The time
counter continues as long as the trigger condition is met, an
otherwise is reset. When the counted time reaches the preset
threshold, a handover decision is made to transfer the user
[1l. PROPOSEDHANDOVER SCHEME from the host AP to the target AP that provides the highest

In this section, a novel handover scheme is proposed @'ue of L.
jointly handle channel quality, resource availability anser g pMachine Learning Algorithm
mobility. Specifically, a dynamic coefficient is introductal

adjust the selection preference between LiFi and WiFi. Thése nglwfagsnﬁg\?; ghol\Jlgetros dperteefrer?":/\e/i;Piocgifglgé?rgguent
coefficient is trained by an ANN to fit different scenarios. ’ A . .
y handovers between LiFi APs. In this case,should be a

A. Handover Scheme number larger than 1 to increase the valuel'pffor WiFi

Our previous work in [14] has shown that the rate of chand¥Ps. When the user is static or moves very slowlyshould
in RSS can indicate whether the user is moving towards tRg 1 to let the user choose the AP that provides the highest
centre of an AP. Combining RSS and its rate of change c¥alue of(;v;. This means that for a static user, the different
effective|y reduce unnecessary handovers by Skippin@i@ertcoverage ranges of LiFi and WiFi do not affect the handover
APs. Taking resource availability into account, the obiject decision. The optimal value of is dependent on a number

function of the proposed handover scheme is formulated @s factors including the user's speed (denoted by, the
follows: separation between two nearest LiFi APs (denotedhthe

o - height of LiFi APs (denoted by{), and the number of LiFi
I — Glyi+A%), i iis aLiFi AP . (10) APs per WiFi AP (denoted byV). The choice ofA can be
AGi(vi + Avy,), if iis a WiFi AP deemed as a function of these factors. However, due to the

wherep; ,, denotes the proportion of time resource that AP
allocates to uset. The parametep; ,, can be determined by
a proportional fairness scheduler in [6, eq. (13)].

where(; denotes the user's satisfaction degree, which in tr%:mpllcated process of making handover decisions, it is not

. . . . asible to derive a closed-form expression for this fuorcti
paper is defined as the ratio of the achievable data rate to 1fie N
. . erefore, we propose to determifenith ANN.
required data ratey; indicates the RSS, whereasy; repre- : . :
; Eig. 2 depicts the basic structure of a neuron. There are a
sents its change of rate. The three above parameters reflect

the impact of resource availability, channel quality anérusnumber of inputs, withr; denoting thei-th input. The output

mobility on handover decisions, respectively. The coedfiti of the j-th neuron is denoted by;. For each pair of input and

A is used to indicate the selection preference between LiFi aRHtPut, there is a weight which is denoted by;. A biasb,

WiFi in the hybrid network. (See details about this coeffitie IS gddgd 0 the_ Welgh_ted sum O.f Inputs. Apart _from_that, an
in Section lI-B.) activation functionf(-) is used to introduce non-linearity into

The handover algorithm in long term evolution (LTE) [15the output of a neuron. Here the activation function is chose

. o . 0. be tanh, which is widely used in ANNs. The output of a
employs the concept of hysteresis to mitigate the plng-pon% b 4 as foll ]
effect. Specifically, the making-decision process is eiggl nEuron can be expressed as Tollows:

when the RSS of the host AP is below that of the target AP.
But the handover decision is not immediately made until the y; = tanh (bj + inwm) - (11)
target AP keeps providing a higher RSS for a certain amount i

of time, with a typical value of hundreds of milliseconds]15 Based on the neuron structure, the ANN modelafan be
Here we use a similar mechanism but with dual triggers: R®8nstructed as shown in Fig. 3. Le} denote thej-th node
and the user’s satisfaction degree. When either of the twothe hidden layer. The notation of weights is modified to



TABLE |

SIMULATION PARAMETERS

Parameter Value
The physical area of the PDjpg 1 cn?
Optical filter gain,g s 1
Refractive indexn 15
Half-intensity radiation angle®; /, 60°
FoV semi-angle of the PD¥max 90°
Detector responsivityRpq 0.53 A/W
Wall reflectivity 0.8
Modulated optical power per LiFi ARPnog | 1 Watt

Input layer Hidden layer ~ Output layer Transmitted power per WiFi ARRwiri 20 dBm
Bandwidth per LiFi AP,Byri 20 MHz

Fig. 3. The ANN model of\. Bandwidth per WiFi AP,Bwiri 20 MHz

PSD of noise in LiFi,Nyii 1021 A2/Hz [7]
PSD of noise in WiFi,Nwiri -174 dBm/Hz [7]

w5, Wherek indicates different layers. Similarly, the biases
pertaining to the hidden nodes are denotedbfy, while the
bias added to the output is denoted isy The ANN output
can be computed by:

A\ = tanh |by + Z tanh
J

(bl,j + Z Iz‘“ﬂ,z‘,j) w2, j
(12)

C. Training and Test

Given inputs, the optimal solution (denoted By can be
obtained numerically by measuring the average throughp

Loss function

Number of iterations

A A
£

I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

&

T T
O Testsample| |
A ANN output

with different values of\. It is worth noting that the output 4 2
range is restricted between -1 and 1 due to the functiaih. 2t

. . . 'y & & 8 s &
As a result, these optimal solutions need to be normalise e e e

before constituting the sample set for training and vaiidat
A 75:25 ratio between the training data and the test data
is adopted. In other words, we randomly choose 3/4 of the
samples to train the ANN system and use the remaining
samples to measure the fitness. Bétdenote the number of

Test sample index

Fig. 4. Training and test results of the ANN model.

training samples. The loss function of the ANN system casrovide a fair comparison. The average overhead of HHO is
be calculated by: about 200 ms in wireless local area networks (WLANS), while
the average overhead of VHO is set to be 500 ms [7]. Other
(13) Parameters are summarised in Table I.
The ANN model is first validated. The initial weights and
The gradient descent method is used to update the Weigwéses are smalllrandom numbers, W.h'l.e the leaming rate is
and biases on each iteration: set to be 0.01. Fig. 4 presents t_hg training and t_est rgsﬂlts 0
the ANN model. We use 75 training samples with different
—n oL ’ combinations of’, S, H and N. As the number of iterations
Owp,i.j increases, the loss function decreases gradually and egach
where n is the learning rate, which controls the step ofXx 10~3 with 10000 iterations. After training, the ANN model
iterations. The backpropagation method is used to redugevalidated with 25 test samples. As shown, the ANN outputs
computational complexity. Specifically, the parameters awell match the expected results, with a mean squared error
updated in the sequence &f, wo ;, b1 ; andwy ; ;. below 4 x 1073,
Now we evaluate the performance of the proposed method
in different scenarios, with the dynamic coefficienyielded
Monte Carlo simulations are implemented to evaluate thxy the trained ANN model. Fig. 5 shows the average achiev-
performance of the proposed method. Two baselines afgle throughput as a function of the user’s speed, while
considered: the standard LTE handover scheme (referredigiht-path blockages are not involved here. As can be seen,
as STD) and the trajectory-based handover method [3]. Al handover methods provide almost the same throughput
methods use the same time-to-trigger of 160 ms [15], when the user’s speed is low. However, as the user’'s speed

M

L:%Z(Am—ﬁm)Q.

m=1

(14)

Wkyi,j = Whyi,j

IV. SIMULATION RESULTS
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Fig. 6. Handover rates of HHO and VHO.

increases, the proposed method achieves a significantighig
throughput than the baseline methods. This is attributeétdeo
dynamic network selection preference. Also, it is obsethedl
the throughput improvement becomes larger fé¥ ,aa S, and
aH.WhenV =5m/s,N =4,5=2mandH = 2.5 m, the

proposed scheme supports an average throughput of 72 Mbﬁ,
which is about 260% higher than STD and 50% higher than

the trajectory-based method.

Finally, the handover rates of HHO and VHO are measur
in different situations of light-path blockages. The saema
of V=5mls,N =4,5 =2m, H =25 m is taken
as an example. As shown in Fig. 6, the proposed meth

£

V. CONCLUSIONS

In this paper, a novel machine learning-based handover
scheme was proposed for hybrid LiFi and WiFi networks.
This approach takes into account channel quality, resource
availability and user mobility, and adopts a dynamic cogfit
to adjust the selection preference between LiFi and WiFi.
This coefficient is trained through ANN for different sceioar
including the user’s speed, the separation between LiFi, APs
the height of LiFi APs, and the number ratio between LiFi
APs and WiFi APs. Simulations were carried out to validate
the ANN model and evaluate the performance of the proposed
handover scheme. Results show that the new method can
effectively avoid frequent handovers, with a handover 8%
less than STD and 27% less than the trajectory-based method.
In terms of achievable throughput, the proposed scheme
outperforms the two baselines by up to 260% and 50%,
respectively. Future work will aim to reduce the complexity
of the ANN model and study its rate of convergence.
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