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Abstract—We analyze the outage probability of an intelligent
reflecting surface (IRS)-assisted communication network. An
upper bound on the outage probability is formulated based
on the Chernoff inequality. Furthermore, through an exact
asymptotic (a large number of reflecting elements) analysis
based on a saddlepoint approximation, we derive closed-form
expressions of the outage probability for systems with and
without a direct link and obtain the corresponding diversity
orders. Simulation results corroborate our theoretical analysis
and show the inaccuracies inherent in using the central limit
theorem (CLT) to analyze system performance. Our analysis is
accurate even for a small number of IRS elements in the high
signal-to-noise ratio (SNR) regime.

Index Terms—Intelligent reflecting surface, outage probability,
Chernoff bound, saddlepoint approximation

I. INTRODUCTION

Recently, intelligent reflecting surfaces (IRS) have been
considered as an emerging technology for the physical layer
of next-generation wireless communication systems [1]. An
IRS comprises a large number of low-cost reflecting elements,
which can be used to change the phases of incident waves for
different functionalities, such as adding the reflected waves
constructively for an intended user and destructively for other
users [2]. Compared with other related technologies, such as
relaying, IRS can facilitate energy-efficient communication
since, ideally, there is no power consumed by the reflecting
elements [3]. Owing to its prominent benefits, IRS-assisted
communications are able to support key applications in 5G
and beyond communication systems, such as Vehicle-to-
Everything (V2X) communications [4] and Internet of Things
(IoT) [5].

An IRS-assisted communication system can significantly
improve communication performance and enhance security
[6]. Therefore, it is crucial to study the performance of
IRS technology accurately. To date, many research efforts
have been paid to the performance analysis of IRS-assisted
networks from the perspectives of ergodic capacity, channel
distribution and outage probability. For example, [7] and [8]
analyzed the upper bound of the ergodic spectral efficiency.
The capacity degradation caused by phase adjustment errors
was investigated and quantified in [9]. As an essential metric
to evaluate the reliability of the system, the outage probability
has been studied in several works. The authors in [10]

derived an upper bound of the outage probability of an IRS-
assisted system without a direct link based on the central limit
theorem (CLT). As a step further, the work in [11] took into
consideration the phase errors and showed that the channel
distribution is equivalent to Nakagami fading. However, the
CLT is only accurate for a large number of reflecting elements
and can lead to significant approximation errors in the high
SNR regime [12]. To avoid these CLT issues, the authors
in [13], [14] used a gamma distribution to approximate the
fading of each reflecting path. The gamma-based framework
appears to offer a more accurate result. However, the gamma-
based approach provides neither a bound nor an asymptotic
result for the outage probability. In [15], [16], the integral-
form outage probability was expressed by using the Gil-Pelaez
inversion formula [17]. However, closed form expressions
were not obtained and the infinite integration domain of the
Gil-Pelaez integral makes the numerical integration difficult.

This paper investigates the outage probability of an IRS-
assisted system with/without a direct link. First, we use
Chernoff’s generic bounding technique to derive an upper
bound on the outage probability, where the optimal parameter
of the Chernoff bound is obtained using the gradient descent
method (GDM). The obtained bound is tighter compared to
the CLT based methods in high SNR regime, as showed by
the simulation results. Then, to further investigate the outage
probability for a large number of reflecting elements and
high SNR, we derive an asymptotically accurate, closed-form
expression by using the saddlepoint approximation. While in
this paper we focus on double-Rayleigh distributed channel
coefficients, the aforementioned methods can also be used for
other channel distributions, such as double-Nakagami-m and
double-Rician.

II. SYSTEM MODEL

We focus on an IRS with N reflecting elements, labelled
as Rn, n ∈ {1, 2, ..., N}, which assists the communication
between a source node (S) and a destination node (D). S and
D are equipped with one antenna and operate in the half-
duplex mode. The IRS is assumed to work in the far-field of
both S and D, therefore, the distances between S to the Rn
are equal for all n and the distances between the Rn to D are
also the same for any n.



Let h1n, h2n and hL denote the channel coefficients for the
S-to-Rn, the Rn-to-D and the S-to-D channels, respectively,
which are independent, circularly symmetric, complex normal
random variables, each with zero mean and unit variance.
Hence, the magnitudes of h1n, h2n and hL follow the
Rayleigh distribution, same as in [5], [13], [14], [18], [19],
with scale parameter σ = 1√

2
. The independent Rayleigh

fading assumption is valid if a half-wavelength-spaced linear
IRS is set in an isotropic scattering environment [20]. Thus,
the signal received at D can be given by

y =
√
P

(
N∑
n=1

d
−v1/2
1 h1ne

jθnd
−v2/2
2 h2n + d

−vL/2
L hL

)
x+ u,

(1)
where x is the transmitted symbol with zero mean and
unit power and P represents the transmit power of S.
u ∼ CN (0, σ2

u) denotes the additive Gaussian white noise
(AWGN) received by D. θn, n ∈ {1, 2, ..., N} are the phases
of the reflecting elements. dL, d1 and d2 are the distances
between S to D, S to the IRS, and the IRS to D, respectively.
vL, v1 and v2 are the corresponding path loss coefficients.
Each reflecting element is assumed to have unit reflection
coefficient.

A. Perfect Phase Alignment without the Direct Link

If the direct link is blocked by obstacles, such as trees and
buildings, which is more likely to happen when the system
operates at high frequencies, the received SNR can reach its
maximum1 when θn = − arg(h1n) − arg(h2n), and (1) can
be rewritten as

y1 = H1

√
Pd
−v1/2
1 d

−v2/2
2 x+ u, (2)

where H1 =
N∑
n=1
|h1n| |h2n|. Denoting βR = d−v11 d−v22 , the

received SNR is

γ1 =
P

σ2
u

H2
1βR = H2

1γtβR, (3)

where γt = P/σ2
u is the transmit SNR.

B. Perfect Phase Alignment with the Direct Link

When the direct link is present, the phase of the nth
reflecting path should be aligned to the phase of the direct
link, i.e., θn = arg(hL) − arg(h1n) − arg(h2n). Thus, the
received signal can be expressed as

y2 = H2e
j arg(hL)

√
PβRx+ u, (4)

where H2 denotes the composite channel, which is give by

H2 =
N∑
n=1
|h1n| |h2n|+

√
αL |hL|, where αL = d−vLL /βR.

Then, the corresponding received SNR is given by

γ2 = H2
2γtβR. (5)

1In this paper, we apply the continuous phase shifts design the same as
in [10] to show a clear benchmark for the outage probability in high SNR
region. The practical discrete phase shift will be investigated in our future
work.

III. OUTAGE PROBABILITY ANALYSIS

The outage probability is an important measure used to
evaluate the reliability of the system, which is defined as

P
(i)
out (γ) = P (γi < γ) = Fγi (γ) , (6)

where Fγi(·) stands for the CDF of γi; γ denotes the threshold
SNR; i ∈ {1, 2} corresponds to the scenarios without and
with the direct link, respectively. The outage probability for
a certain threshold γ is equivalent to the probability that the
channel coefficient falls below a value related to γ, i.e.,

Pout(γ) = FH1

(√
γ

γtβR

)
. (7)

Based on the outage probability, we can write the diversity
order of the system as

di = lim
γt→∞

− logP
(i)
out

log γt
. (8)

Therefore, in what follows, we will focus on the CDF of the
channel coefficients.

A. Perfect Phase Alignment without the Direct Link

1) Chernoff Bound: Let Gn = |h1n| |h2n|. Since |h1n| and
|h2n| follow the independent Rayleigh distribution with the
parameter σ = 1√

2
, the probability density function (PDF) of

Gn is [21]
fGn(x) = 4xK0(2x), (9)

where K0(·) denotes the modified bessel function of the
second kind with order zero. A Chernoff upper bound on the
CDF of H1, denoted as FH1(s), can be written as

FH1 (s) ≤ min
t>0

ets
N∏
n=1

E
[
e−tGn

]
, (10)

where E
[
e−tGn

]
can be calculated to be

E
[
e−tGn

]
=


1

1− t2

4

−
t arccos
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2

)
2
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4
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1

3
, t = 2.

(11)

Denoting w(t) = ets
∏N
n=1 E

[
e−tGn

]
, we are now in the

position to find the optimal value of t which can minimize
w (t). Fortunately, w (t) is proved to be convex in t.

Lemma 1. w(t) is convex in t.

Proof: Since Gn, n = 1, 2, ..., N are independent random
variables, w(t) can be rewritten as

w(t) = etsE

e−t N∑
n=1

Gn


=

∫ +∞

0

fH1(x)et(s−x) dx,

(12)

where fH1
(x) denotes the probability density function (PDF)

of H1. Due to the fact that et(s−x) is convex in t and fH1
(x) ≥

0, w(t) is convex in t [22, sec. 3.2].



Algorithm 1 Gradient Descent Method for Minimizing w (t)

Input: s, N ;
Output: Minimum of w(t);
1: if w′ (0) ≥ 0 then
2: min

t>0
w (t) = 1;

3: else
4: Initialize a starting point t0 > 0;
5: In the ith iteration, determine a descent direction

∆ti = −w′(ti−1),

and update ti by:

ti = ti−1 + ξi∆ti,

where ξi denotes the step size, which is calculated by
the backtracking line search method;

6: Go back to 5 until the stopping criterion |w′(ti)| ≤ ε
is satisfied, where ε is the tolerance;

7: min
t>0

w (t) = w (ti);
8: end if

Remark 1. It should be noted that w(t) is convex as long
as Gn, n = 1, 2, ..., N are independent. In other words, the
Chernoff bound can be applied to other distribution of Gn,
e.g., double Rice distribution.

It is mathematically intractable to obtain a close-form ex-
pression of the minimum of w(t). Alternatively, we propose a
gradient descent algorithm to find an approximated numerical
result, as shown in Algorithm 1.

2) Saddlepoint Approximation: We again treat the case of
perfect phase adjustment without a direct link. As defined
before, Gn = |h1n||h2n|. We require the distribution of H1 =
N∑
n=1

Gn for large N . Moreover, our interest lies in the tails of

the distribution where the central limit approximation is not
accurate. Hence, we resort to a saddlepoint approximation.
The result is summarised in the following proposition.

Proposition 1. The cumulative distribution function of H1

obeys the asymptotic equivalence

FH1(s) ∼ 2NN !

NN
√

4πN
e−2N(ln( 2N

s )−1)

×
N∑
n=0

(
2N
(
ln
(
2N
s

)
− 1
))n

n!
, N →∞.

(13)

Proof: We give a proof based on the saddlepoint ap-
proximation. Let LH1

(t) = E[e−tH1 ] represent the Laplace
transform of the PDF of H1, denoted as fH1

(x). This is well
defined due to the fact that Gn ≥ 0 for n = 1, . . . , N and
that fact that the Laplace transform of the PDF corresponding
to the random variable Gn, denoted by LG(t), exists. Indeed,
we can write LH1

(t) = LG(t)N due to independence.
Now, the probability density function of H1 can be written

as
fH1(x) =

1

2πi

∫ c+i∞

c−i∞
eNλ(t)dt, (14)

where c is greater than the real part of the singularities of the
integrand and

λ(t) = lnLG(t) +
x

N
t. (15)

The integral is dominated for large N by the saddlepoint of
λ(t). Denote this saddlepoint of λ(t) by t̂. We have that

Q(t̂) := −L
′
G(t̂)

LG(t̂)
=

x

N
(16)

must hold. For large N , we must have that t̂ is large, since
L′G(t̂) ≈ 0. Hence, we expand Q(t) for a large argument with
positive real part. It is straightforward to show that

Q(t) ∼ 2

t
, <{t} → ∞. (17)

It follows that
t̂ ∼ 2N

x
, N →∞. (18)

By considering the second derivative of λ(t) evaluated at large
t, it is possible to show that, indeed, a maximum occurs at t̂.

Deforming the integral contour to pass t̂ and using the
approximation λ(t) ≈ λ(t̂) + (t− t̂)2λ′′(t̂)/2, we have that

fH1(x) ≈ 1

2πi

∫ c+i∞

c−i∞
eN(λ(t̂)+(t−t̂)2λ′′(t̂)/2)dt. (19)

Note that this approximation is asymptotically precise (in
N ). Rearranging, substituting variables (t − t̂ = reiφ), and
evaluating the Gaussian integral yields

fH1(x) ∼ eNλ(t̂)√
2πN

∣∣λ′′(t̂)∣∣ (20)

in the usual way for saddlepoint approximations. One can
evaluate

λ(t̂) ∼ 2− 2 ln
N

x
+ ln

(
ln

(
2N

x

)
− 1

)
(21)

and λ′′(t̂) ∼ x2

2N2 . Hence,

fH1(x) ∼
e2N

(
ln
(
2N
x

)
− 1
)N(

N
x

)2N−1√
πN

, N →∞. (22)

By integrating (22) directly, we arrive at

FH1 (s) ∼ 2N

(N)N
√

4πN
Γ

(
N + 1, 2N

(
ln

(
2N

s

)
− 1

))
.

(23)
The stated asymptotic equivalence for the cumulative distribu-
tion then follows from the properties of the upper incomplete
gamma function.

Remark 2. Based on (7) and (8), the diversity order of the
system without a direct link can be calculated by

d1 = N. (24)

Remark 3. It is worth highlighting that this asymptotic
expression is a refined large deviation result. In fact, to
leading order, we have that

FH1 (s) ∼ 4Ne−2N(ln( 2N
s )−1)

√
4πN

(
ln

(
2N

s

)
− 1

)N
, (25)



from which we observe that the rate function written for large,
finite N is

JN (s) ∼ − 1

N
lnFH1 (s)

∼ − ln 4 + 2

(
ln

(
2N

s

)
− 1

)
− ln

(
ln

(
2N

s

)
− 1

)
+

ln 4πN

2N
.

(26)

Applying the large deviation principle directly (instead of the
saddlepoint approximation) yields all but the O

(
lnN
N

)
term

for the finite rate function. By using the explicit saddlepoint
approximation, however, we obtain additional information
about the exponential decay of the distribution as N grows
large. Furthermore, we see that, crucially, the asymptotic
distribution is accurate for finite N as long as N � s. In
practice, we will be interested in values of s that are inversely
proportional to the average received SNR at the destination
node. Hence, this condition will be met for large enough SNR.
Conversely, when the SNR is on the order of 1/N , we can
resort to a central limit approximation, or perhaps a refined
Edgeworth expansion, for the channel distribution.

B. Perfect Phase Alignment with the Direct Link

1) Chernoff Bound: We now turn to the case of perfect
phase alignment with a direct link. Let D =

√
αL |hL|.

According to the system model, D follows the Rayleigh
distribution with the scale parameter σD =

√
αL
2 . A Chernoff

upper bound of FH2
(s) can be written as

FH2 (s) ≤ min
t>0

etsE
[
e−tD

] N∏
n=1

E
[
e−tGn

]
, (27)

where E
[
e−tD

]
can be calculated to be

E
[
e−tD

]
= 1−

√
παL

2
te
αLt

2

4 erfc
(√

αLt

2

)
. (28)

Let z(t) = etsE
[
e−tD

]∏N
n=1 E

[
e−tGn

]
. Since z(t) can be

rewritten as

z(t) = etsE

e−t
(
D+

N∑
n=1

Gn

) , (29)

we can prove the convexity of z(t) following the same
procedure in Proposition 1. Moreover, the optimal value of t
for minimizing z(t) can be obtained efficiently by the gradient
descent method.

2) Saddlepoint Approximation: The Laplace transform of
fD(s) is

LD (t) = 1−
√
παL

2
te
αLt

2

4 erfc
(√

αLt

2

)
. (30)

Following this, we can write the PDF of H2 as

fH1(x) =
1

2πi

∫ c+i∞

c−i∞
LD (t) eNλ(t)dt, (31)

where c is greater than the real part of the singularities of
the integrand and λ(t) is defined in (15). The integral in (31)

is dominated for large N by t̂, which is the saddlepoint of
λ(t) given in (18). Invoking the saddlepoint approximation by
setting

LD(t) ≈ LD(t̂) and λ(t) ≈ λ(t̂) + (t− t̂)2 λ
′′(t̂)

2
(32)

and evaluating the integral (31), we can arrive at

fH2(x) ∼ LD
(
t̂
) enλ(t̂)√

2πnλ′′(t̂)

∼

1−

√
παLNe

αLN
2

x2 erfc
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×
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, N →∞.

(33)

Based on the asymptotic expression of the complementary
error function for large argument [23], we have

erfc
(√

αLN

x

)
∼
xe
−αLN

2

x2

(
1− x2

2αLN
2

)
√
παLN

, N →∞. (34)

Taking (34) into (33) and integrating (33) directly, we obtain
the CDF of H2:

FH2 (s) ∼
2N
√
N Γ

(
N + 1, 2(N + 1)

(
ln
(
2N
s

)
− 1
))

e2
√
παL(N + 1)N+1

, N →∞.
(35)

According to (7) and (8), the diversity order can then be
derived as

d2 = N + 1. (36)

IV. NUMERICAL RESULTS

In this section, we investigate the outage probability of
the IRS-assisted communication systems and evaluate our
proposed upper bounds and asymptotic results by Monte Carlo
(MC) simulations. We set γ = 0 dB, d1 = 5 m, d2 = 5 m,
dL = 7 m, v1 = 2.5, v2 = 2.5, vL = 3.5.

Fig. 1 illustrates the outage probability versus the transmit
SNR γt when the direct link is blocked. The Chernoff upper
bounds and the asymptotic results based on the saddlepoint
approximation are compared with MC simulations and the
CLT approximation. It can be seen that the CLT approxima-
tion brings significant errors when the number of elements is
small. This confirms the importance of investigating the tails
of the distribution. The Chernoff bounds are more accurate
than the CLT method in the high transmit SNR regime.
For example, when N = 16, the Chernoff bound is more
accurate for γt > 20 dB. We can also observe that increasing
the number of reflecting elements can significantly reduce
the transmit SNR to achieve a given outage probability as
expected. For example, when the outage probability is 10−4,
the transmit SNR is 30 dB for N = 8 and 20 dB for N = 16.
Since the asymptotic behavior of (25) will appear at very
low outage probability for large N , the largest N we use in
analysis is N = 16. It is shown that the CLT approximation
and the saddlepoint approximation match nicely with the
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Fig. 1. Outage probability versus transmit SNR without the direct link for
different N .
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Fig. 2. Outage probability versus transmit SNR with the direct link for
different N .

simulation results in the low and high transmit SNR regimes,
respectively. This confirms that the saddlepoint approximation
is valid in the tails of the distribution where the CLT method
is not accurate.

Fig. 2 shows the outage probability of the system with a
direct link. Similar to the case without a direct link, it can
be seen that the Chernoff bounds and the asymptotic results
based on the saddlepoint approximation are close to the MC
results. Comparing Figs. 1 and 2, we can observe a significant
performance gain due to the existence of a direct link.

V. CONCLUSIONS

In this letter, the outage probability of IRS-assisted com-
munication systems was investigated. It was shown that the
Chernoff upper bound is tighter than the CLT approximation
for high transmit SNR. Besides, numerical and simulation
results confirmed that the reported asymptotic expressions
generated by the saddlepoint approximation are accurate in
the high transmit SNR regime. We also demonstrated that
increasing the number of reflecting elements can significantly
reduce the outage probability for the same transmit SNR.
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