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Abstract—Orthogonal frequency-division multiplexing
(OFDM) is widely used in modern wireless networks thanks
to its efficient handling of multipath environment. However, it
suffers from a poor peak-to-average power ratio (PAPR) which
requires a large power backoff, degrading the power amplifier
(PA) efficiency. In this work, we propose to use a neural
network (NN) at the transmitter to learn a high-dimensional
modulation scheme allowing to control the PAPR and adjacent
channel leakage ratio (ACLR). On the receiver side, a NN-
based receiver is implemented to carry out demapping of the
transmitted bits. The two NNs operate on top of OFDM, and
are jointly optimized in and end-to-end manner using a training
algorithm that enforces constraints on the PAPR and ACLR.
Simulation results show that the learned waveforms enable
higher information rates than a tone reservation baseline, while
satisfying predefined PAPR and ACLR targets.

I. INTRODUCTION

With the ever-growing demand for services that depend on
radio connectivity, future wireless systems will need to satisfy
increasingly difficult requirements on the signal characteris-
tics. Due to its low complexity implementation, orthogonal
frequency-division multiplexing (OFDM) is used in many
modern communication systems and is a potential candidate
waveform for the next generation of wireless networks. How-
ever, when used in conjunction with conventional quadrature
amplitude modulation (QAM), the generated signal exhibits
both low spectral containment and high peak-to-average power
ratio (PAPR). The adjacent channel leakage ratio (ACLR) of
OFDM waveforms is typically decreased by the introduction
of guard subcarriers at the cost of a reduced spectral efficiency.
High PAPRs either leads to distortions of the transmitted signal
or to the use of high power backoffs, reducing the power
amplifier (PA) efficiency.

Multiple techniques have been proposed to reduce the PAPR
of OFDM signals, such as clipping and filtering [1], constella-
tion extension [2], and tone reservation [3]. The latter approach
uses a subset of the available subcarriers to create a peak-
canceling signal, and was recently combined with deep neural
networks (NNs) to predict the peak-canceling signal from the
frequency baseband symbols to be transmitted [4]–[6]. In [7],
it has been proposed to treat the communication system as an
autoencoder, where the transmitter and receiver are trained
to jointly minimize the bit error rate (BER) and PAPR of
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the transmission. Although the presented autoencoder shows
promising results, the PAPR is minimized based on a non-
oversampled time-discrete signal, which is not fully represen-
tative of its analog waveform [3]. Moreover, the autoencoder
operates on symbols, meaning that QAM mapping and demap-
ping are still required. Finally, none of these previous works
allow to define target values for the PAPR and ACLR, and
therefore to control the tradeoff between the spectral efficiency
and the PAPR and ACLR requirements.

In this work, we propose to jointly optimize an NN-based
high-dimensional modulation scheme on the transmitter side
and an NN-based detector on the receiver side, that operate on
top of OFDM. The end-to-end system is trained to maximize
an achievable information rate, while satisfying constraints
on the ACLR and PAPR. The key idea is to formulate the
training objectives as a constrained optimization problem,
which is then solved iteratively using the augmented La-
grangian method. To that aim, the achievable rate, ACLR, and
PAPR of the transmission are expressed as functions that can
be evaluated during training and minimized using stochastic
gradient descent (SGD). Evaluations show that the end-to-
end system achieves competitive or higher rates compared
to a tone reservation (TR) baseline, while having similar or
lower ACLRs and PAPRs. As an example, the trained system
outperforms the TR baseline while having a 0.7 dB and 10 dB
reduced PAPR and ACLR, respectively.

II. PROBLEM POSITIONING

A. System model

An OFDM system with N subcarriers is considered, the
subcarriers being indexed by the set N = {−N−1

2 , . . . , N−1
2 },

where N is assumed to be odd for convenience. The matrix
of bits to be transmitted is denoted by B = [b1, . . . ,bN ]

T,
where bn∈N ∈ {0, 1}K are the vectors of bits to be sent and
K is the number of bits per channel uses. B is modulated
onto discrete baseband symbols x ∈ CN that are mapped on
the orthogonal subcarriers, forming the baseband spectrum

S(f) =

N−1
2∑

n=−N−1
2

xn
1√
∆f

sinc
(
f

∆f
− n

)
. (1)
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where ∆f is the subcarrier spacing. The corresponding time-
domain signal, of duration T = 1

∆f
, is

s(t) =

N−1
2∑

n=−N−1
2

xn
1√
T

rect
(
t

T

)
ei2πnt/T (2)

where t ∈ [−T2 ,
T
2 ].

A major limitation of OFDM is its high PAPR, which either
implies that the output signal might suffer from distortions due
to the PA saturation, or that the PA must be operated with a
large power back-off, reducing its power efficiency 1. In the
following, we define the PAPR of a signal as the smallest
threshold e ≥ 0, such that the probability of the ratio between
the instantaneous and average squared signal amplitude being
larger than that e is smaller than a threshold ε ∈ (0, 1):

PAPRε := min e, s. t. P
(
|s(t)|2

E [|s(t)|2]
> e

)
≤ ε. (3)

We do not use the more conventional definition max |s(t)|2
E[|s(t)|2] , as

it only considers the max signal amplitude and is therefore
less representative of the overall power distribution.

To quantify the spectral containment of waveforms, one
typically uses the ACLR, which is defined as the ratio between
the expected out-of-band energy Ex [EO] and the expected in-
band energy Ex [EI ] :

ACLR :=
Ex [EO]

Ex [EI ]
=

Ex [EA]

Ex [EI ]
− 1 (4)

where EA = EO + EI is the total energy of the transmitted
signal. The in-band energy EI is

EI :=

∫ N∆f
2

−
N∆f

2

|S(f)|2 df = xHVx, (5)

where each element va,b of the matrix V is

va,b =
1

∆f

∫ N∆f
2

−
N∆f

2

sinc
(
f

∆f
− a
)

sinc
(
f

∆f
− b
)
df. (6)

The total transmitted energy can be similarly computed in the
time domain :

EA :=

∫ T
2

−T
2

|s(t)|2 dt = xHWx, (7)

where W is such that

wa,b =
1

T

∫ T
2

−T
2

ei2π(a−b)t/T dt. (8)

In the following, an additive white Gaussian noise (AWGN)
channel is considered, and the vector of received baseband
symbols is denoted by y ∈ CN .

1A substantial power backoff is required although digital pre-distortion
(DPD) is widely used to reduce the detrimental effect of such distortions.
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Fig. 1: OFDM signal generated from N = 75 subcarriers.

B. Baseline

One technique to reduce the PAPR of OFDM signals is tone
reservation (TR), in which a subset of R subcarriers (tones)
are used as peak reduction tones (PRTs). These tones do not
carry data, but are used to minimize the peak amplitude of the
time-domain signal. The set of all PRTs is denoted by R ⊂ N ,
and the set containing the remaining D subcarrier used for
data transmission is denoted by D ⊆ N , with D ∪ R = N .
The vector of signals mapped to the PRTs is referred to as the
reduction signal c ∈ CN , and x and c are such that xn∈R = 0
and cn∈D = 0. The vector of transmitted baseband symbols is
denoted by x′ = x + c.

The corresponding continuous-time signal is denoted by
s′(t) and minimizing its PAPR amounts to finding

arg min
c

max
t
|s′(t)|2. (9)

In practice, minimization cannot be performed directly
on the time-continuous signal, and s′(t) must therefore
be discretized. Many previous works only consider a non-
oversampled discrete signal to represent the analog wave-
form [5]–[7]. However, it has been shown that oversampling
is necessary to correctly represent the underlying continuous
signal [3]. Let us denote by z ∈ CN and z ∈ CNOs the signal
sampled with a period T

N and the signal oversampled by a fac-
tor Os, respectively. The difference between them is illustrated
in Fig. 1, where the time-domain signal of an OFDM symbol
is represented with and without oversampling (Os = 5 in this
example). First, it can be observed that the two signals have
very different power peaks, indicated by dashed lines. Second,
z shows many more secondary peaks, which might lie in the
PA saturation region and therefore must be considered when
reducing the signal distortion. This oversampled signal can be
obtained by computing the inverse discrete Fourier transform
(IDFT) of x′ with adequate zero-padding :

z = F−1(x + c), (10)



Fig. 2: Trainable system, where grayed blocks represent train-
able components.

where F−1 ∈ CNO×N is the corresponding IDFT matrix.
The problem (9) can be approximated by minimizing on the

oversampled signal, i.e.,

arg min
c

∥∥g (F−1(x + c)
)∥∥
∞ (11)

where g(·) computes the element-wise squared magnitude
| · |2. Numerous iterative algorithms have been proposed
to approximately solve (11) (see, e.g., [3]). As the func-
tion h(x′) =

∥∥g (F−1(x′)
)∥∥
∞ is convex, we use a convex

solver [8] to solve (11) for each vector of symbols x. More-
over, it was shown that placing PRTs at randomly sampled lo-
cations at each transmission leads to the lowest PAPR [3], [9].
We therefore used such a random PRT allocation as baseline.
Note that neither using a convex solver nor a random PRT
allocation is practical because of the incurred complexity
and overhead required to indicate the PRTs positions to the
receiver. However, it was considered for benchmarking our
approach as it provides the lowest PAPR.

Aside from leveraging TR, the baseline uses a conventional
QAM modulation to map each vector of bits bn∈D to a
baseband symbol xn∈D. These symbols are then transmitted
using an OFDM waveform. Because an AWGN channel is
considered, the receiver recovers the baseband symbols y
by performing a DFT on the subcarriers n ∈ D. The log-
likelihood ratios (LLRs) are then computed using a standard
AWGN demapper.

III. LEARNING A HIGH-DIMENSIONAL MODULATIONS

A. Problem formulation

The proposed end-to-end system architecture is depicted
in Fig. 2. It is composed of a neural tranmsitter and neural
receiver, having trainable parameters respectively denoted by
θ and ψ and that operate on top of OFDM. In the following,
the end-to-end system will be referred to as "E2E" system
for brevity. We aim at optimizing the E2E system to design
a high-dimensional modulation and a corresponding detector
that maximize an achievable rate under PAPR and ACLR
constraints. The considered rate is [10]

C(θ,ψ) =
1

N

N−1∑
n=0

K−1∑
k=0

I (bn,k;y|θ) (12)

− 1

N

N−1∑
n=0

K−1∑
k=0

Ey

[
DKL

(
P (bn,k|y)||P̂ψ(bn,k|y)

)]

which was shown to be achievable assuming a bit metric
decoder [11]. The first term in (12) is the mutual informa-
tion between bn,k and y, and corresponds to an achievable
information rate assuming an ideal receiver. The second term
in (12) is the KL-divergence between the true posterior prob-
ability P (bn,k|y) and the one estimated by our NN-receiver
P̂ψ(bn,k|y). Such probabilities can be obtained from the LLR
corresponding to the bit bn,k, which is defined by

LLR(n, k) := ln

(
P̂ψ(bn,k = 1|y)

P̂ψ(bn,k = 0|y)

)
. (13)

Intuitively, the KL-divergence term corresponds in (12) to a
rate loss due to an imperfect receiver.

Let us denote by γpeak the targeted PAPR and by βleak the
targeted ACLR. In the E2E system, both quantities depend on
the trainable parameters of the neural transmitter. Maximizing
the rate under these constraints can be formulated as the
following optimization problem :

maximize
θ,ψ

C(θ,ψ) (14a)

subject to
1

N
Ex[EA] = 1 (14b)

PAPRε(θ) = γpeak (14c)
ACLR(θ) ≤ βleak (14d)

where (14b) ensures that the average energy per OFDM
symbol equals N .

B. System training
Solving the problem (14) is achieved by using the aug-

mented Lagrangian method detailed in [12, Chapter 3]. This
method converts the constrained optimization problem into
its augmented Lagrangian that is minimized with respect to
the trainable parameters θ and ψ. Because the E2E system
is composed of an NN-based transmitter and receiver, their
parameters can be optimized using SGD as long as the loss
function is differentiable. In this section, we therefore express
the objective (14a) and the constraints (14c) and (14d) as
differentiable functions that can be evaluated during training
and minimized with SGD. The constraint (14b) is enforced
with a normalization layer that is presented in the following.

To ensure a unitary mean energy per symbol, such normal-
ization layer is added to the neural transmitter (see Fig.2) and
need to perform

l∗norm(x) =
x(

1
NEx[EA]

) 1
2

. (15)

Computing the true value of Ex[EA] is of prohibitive com-
plexity due to the 2KN combinations of bits corresponding
to different vectors x. We therefore normalize each batch of
transmitted signals to ensure it has an average energy of one.
Each element j of a batch is denoted by the superscript [j]
and is normalized as follows

lnorm(x[j]) =
x[j](

1
NBs

∑Bs

i=1 x
[i]HWx[i]

) 1
2

(16)



This expression accounts for the correlation that can appear be-
tween the frequency baseband symbols generated by the neural
transmitter. Such correlation would not occur in conventional
bit-interleaved coded modulation systems, as the baseband
symbols would be independent and identically distributed.

As derived in [13], maximizing the rate of the communica-
tion system (14a) is equivalent to minimizing the total binary
cross-entropy (BCE)

LC(θ,ψ) := − 1

N

N−1∑
n=0

K−1∑
k=0

Ey

[
log2

(
P̂ψ(bn,k|y)

)]
(17)

= K − C(θ,ψ).

Because the exact computation of the BCE value would be
of prohibitive complexity, a common practice is to estimate it
using Monte Carlo sampling with batches of size Bs:

LC(θ,ψ) ≈− 1

NBs

N−1∑
n=0

K−1∑
k=0

Bs−1∑
i=0

log2

(
P̂ψ

(
b
[i]
n,k|y

[i]
))

.

(18)

The PAPR constraint (14c) can be interpreted as producing
time-domain signals whose power |s(t)|2 exceeds γpeak with
a low probability. However, evaluating (3) for arbitrary values
of ε requires to count the amount of samples whose energy
are higher than γpeak, which is not differentiable. We propose
to substitute (14c) by a constraint function that penalizes all
signals exceeding the threshold γpeak, which is equivalent to
setting ε = 0 :

Lγpeak(θ) = E

[∫ T
2

−T
2

max
(
0, |s(t)|2 − γpeak

)
dt

]
. (19)

Similarly to Section II-B, let us denote by z = F−1x ∈ CNOs

the vector of discrete time signal oversampled with a factor
Os, where x ∈ CN is the output of the neural transmitter.
The expectation in (19) can be approximated by sending a
batch of signals, while the integral can be approximated using
a Riemann sum, leading to

Lγpeak(θ) ≈ T

BsNO

Bs−1∑
i=0

NOs−1
2∑

t=−NOs−1
2

max
(

0,
∣∣∣z[i]
t

∣∣∣2 − γpeak

)
.

(20)

Finally, inequality constraints such as (14d) can be con-
verted to equality constraints using slack variables q ∈ R+:

ACLR ≤ βleak ⇐⇒ ACLR− βleak = −q. (21)

This constraint can then be enforced my minimizing
Lβleak(θ) + q, with

Lβleak(θ) =
E [EA]

E [EI ]
− 1− βleak (22)

≈
1
Bs

∑Bs−1
i=0 x[i]HWx[i]

1
Bs

∑Bs−1
i=0 x[i]HVx[i]

− 1− βleak. (23)

The problem (14) can then be reformulated for ε = 0 as the
following constrained optimization problem:

minimize
θ,ψ

LC(θ,ψ) (24a)

subject to Lγpeak(θ) = 0 (24b)
Lβleak(θ) + q ≤ 0 (24c)

for which the augmented Lagrangian is [12, Chapter 3]

L(θ,ψ, λp, λl,µp, µl) = LC(θ,ψ)

+ λpLγpeak(θ) +
1

2
µp|Lγpeak(θ)|2 (25)

+
1

2µl

(
max(0, λl + µlLβleak(θ))2 − λ2

l

)
.

One can see that q is not present in (25) since minimizing the
augmented Lagrangian with respect to q can be carried out
explicitly for each fixed pair of {θ,ψ} [12]. The quantities
µp > 0 and µl > 0 are the penalty parameters and λp, λl are
the Lagrange multipliers for the constraint functions Lγpeak(θ)
and Lβleak(θ) respectively. The augmented Lagrangian method
consists in iteratively minimizing (25), each iteration com-
prising multiple steps of SGD followed by an update of the
hyperparameters λp, λl, µp, and µl. The training procedure is
described in Algorithm 1, where λ

(u)
p , λ

(u)
l , µ(u)

p , and µ
(u)
l

denote the value of the hyperparameters at the uth iteration,
and τ ∈ R+ controls the evolution of µp and µl.

Algorithm 1: Training procedure

Initialize θ,ψ, λ(0)
p , λ

(0)
l , µ

(0)
p , µ

(0)
l

for u = 0, ... do
. Perform multiple steps of SGD
on L(θ,ψ, λ, λl, µp, µl) w.r.t. θ and ψ
. Update optimization hyperparameters :
λ

(u+1)
p = λ

(u)
p + µ

(u)
p Lγpeak(θ)

λ
(u+1)
l = max

(
0, λ

(u)
l + µ

(u)
l Lβleak(θ)

)
µ

(u+1)
p = (1 + τ)µ

(u)
p

µ
(u+1)
l = (1 + τ)µ

(u)
l

end

C. System architecture

Both the NN-based transmitter and receiver use ResNet
blocks, originally presented in [14], and which were proven
to be effective in physical layer tasks [10], [15], [16]. A
ResNet block is composed of a residual connection preceded
by two groups of layers, each containing a batch normalization
layer, a ReLU, and a 1D separable convolution (Fig. 3a).
Such a convolution maintains similar performance compared
to a traditional convolution while being less computationally
demanding [17]. All 1D separable convolutions use zero-
padding to maintain the first dimension of constant size.

The neural transmitter (Fig. 3b) is composed of two convo-
lutional layers, multiple ResNet blocks, a layer that converts
2N real numbers to N complex numbers, and a normalization



(a) ResNet block. (b) NN-Transmiter. (c) NN-Receiver.

Fig. 3: Different parts of the end-to-end system, where grayed
blocks are trainable components. The IDFT/DFT operations
and the channel are not represented for clarity.

Sep.
Conv. ResNet blocks Sep.

Conv

Kernel size 1 3 9 15 9 3 1

Dilation
rate 1 1 2 4 2 1 1

# Filters 128

TABLE I: Parameters for the CNN transmitter and receiver.

layer as expressed in (16). The sequence of trainable layers
forms a convolutional neural network (CNN), which takes as
input the matrix of bits B ∈ {0, 1}N×K , where N corresponds
to the 1D convolution dimension and K to the number of input
channels. The last separable convolution has only two filters
such that the output, of dimension N ×2, can be converted to
the baseband frequency symbols x ∈ CN .

The neural receiver, depicted in Fig. 3c, uses a similar
architecture. The signal y is first converted to a matrix
of dimension N × 2, which is processed by the CNN as
two different channels of dimension N . The last separable
convolution has K filters, corresponding to the K LLRs that
need to be predicted for every symbol. The exact parameters
of each trainable component are listed in the next section.

IV. EVALUATIONS

A. Setup

To evaluate the proposed scheme, an OFDM system with
N = 75 subcarriers and an AWGN channel is considered. The
signal-to-noise ratio (SNR) of the transmission is set to 10 dB,
both during training and evaluation. The number of bits per
channel use is set to K = 4, and the baseline uses 16-QAM.

The transmitter and receiver share the same CNN archi-
tecture, whose parameters are listed in Table I. It is worth
noting that dilations are used to increase the receptive field
of the CNNs. The optimization parameters are initialized at
λ

(0)
p = 0, λ

(0)
l = 0, µ

(0)
p = 0.1, and µ

(0)
l = 0.001, and τ

is set to 0.004. The difference in initialization between µ
(0)
p
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3
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Fig. 4: Rates achieved by the baseline and two E2E systems.
The numbers represent the corresponding ACLRs.

0 2 4 6 8

10−4

10−3

10−2

10−1

|s(t)|2 [dB]

C
C

D
F

Baseline with 2 PRTs
E2E system, γpeak = 6 dB

Fig. 5: CCDF of the signal power for two systems having
similar rates.

and µ
(0)
l reflects the fact that Lβleak(θ) is usually two orders

of magnitude higher than Lγpeak(θ). The training process is
composed of 2500 iterations, each including 15 SGD steps are
performed with a batch size of Bs = 1500. During training,
Lγpeak(θ) is approximated using a temporal oversampling factor
of Os = 5, which was found to be enough to accurately
represent the continuous analog waveform [18]. The baseline
is evaluated for R ∈ {0, 2, 4, 8, 16} PRTs, and the E2E system
is trained for γpeak ∈ {4, 5, 6, 7, 8, 9} dB and two ACLR
targets: βleak = −20 dB, which corresponds to the baseline
ACLR, and βleak = −30 dB.

B. Results

In the following evaluations, the target PAPR probability
threshold in (3) is set to ε = 10−3. This is different from the
value used for training, which was set to ε = 0 in order to
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define a differentiable cost function. Fig. 4 shows the rates
and PAPRs achieved by the baseline and the two systems
trained with target ACLRs of -20 dB and -30 dB. The numbers
next to the plots represent the ACLRs of each evaluated
system. Firstly, it can be seen that all E2E systems satisfy
the ACLR targets. Secondly, for PAPRs lower than 7 dB, both
trained systems achieve higher rates than the baseline, which is
particularly interesting since the second system also achieves
a 10 dB lower ACLR. For PAPRs higher than 7.5 dB, the
baseline and the system trained with βleak = −20 dB enable
similar performance. Finally, it can be seen that the the training
procedure allows to control the PAPR of the transmission.
Lower PAPR thresholds ε < 10−3 could be enforced by
choosing a higher scalar τ during training.

To visualize the effect of the PAPR reduction on the signal
energy, the complementary cumulative distribution function
(CCDF) of two systems having similar rates are shown in
Fig.5. These two systems are the baseline with 2 PRTs and
the E2E system trained with γpeak = 6 dB and βleak = −20 dB,
respectively represented with a black square and a red circle
in Fig. 4. The CCDF of the signal energy is expressed as

CCDF|s(t)|2(x) = P
(
|s(t)|2 > x

)
. (26)

It can be seen that the CCDF of the E2E system is significantly
lower than the one of the baseline, which results in a difference
of approximately 1.4 dB at a CCDF of 10−3.

Finally, the power spectral densities (PSDs) of three systems
are shown in Fig. 6. The first one is the baseline with no PRTs.
The second and third ones are E2E systems trained with the
highest PAPR constraint (γpeak = 9 dB) and ACLR constraints
respectively set to βleak = −20 dB and βleak = −30 dB. It can
be observed that the PSD of the baseline and that of the system
trained with βleak = −20 dB are nearly identical, but the PSD
of the system trained with βleak = −30 dB has considerably
less out-of-band energy.

V. CONCLUSION

We have presented an E2E system that can be optimized
to maximize an achievable information rate while satisfying
constraints on the signal PAPR and ACLR. The optimiza-
tion objective and the two constraints were expressed as
differentiable functions that can be minimized using SGD.
The constrained optimization problem was solved using the
augmented Lagrangian method, where the corresponding aug-
mented Lagrangian is minimized iteratively. Numerical results
demonstrated the effectiveness of the proposed approach, with
trained systems that meet ACLR and PAPR targets while
achieving rates comparatively higher than the baseline. This
work can be seen as a first step towards learning of new wave-
forms for future generations of ACLR- and PAPR-constrained
systems. Scaling to more subcarriers and the integration of
more realistic channels constitute possible research directions.
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