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Abstract—One of the main approaches for distance estimation
is the received signal strength (RSS) based techniques. Their
drawbacks include the requirement of accurate knowledge of
the transmit power and antenna gains. Also, the traditional
RSS-based techniques do not take into account the molecular
absorption that occurs at terahertz frequencies. In this paper, we
propose a distance estimation method for the line-of-sight case
that actually takes advantage of the molecular absorption. The
proposed method measures the RSS at two frequencies and does
not require known transmit powers and antenna gains, which are
assumed to be almost the same at the two frequencies. Therefore,
the two frequencies have to be relatively close to each other. The
proposed distance estimation method calculates the difference of
the received powers (in the dB domain) at the two frequencies
and finds the link distance based on it and the humidity level.

Index Terms—Distance estimation, THz communications,
molecular absorption, positioning.

I. INTRODUCTION

The exponential growth of data traffic volume during the last
decade is expected to continue [1]. Such growth is a result of
disruptive technologies such as virtual reality [2] and machine-
to-machine communications in the Internet of Things [3]. As
a result, it is expected that current wireless communication
infrastructures are unable to cope with such traffic demands
[4]. Terahertz (THz) Band (0.1−10 THz) is considered one
of the key enabling technologies to satisfy such high data
rate demands for 6G and Beyond wireless systems [5]. One
drawback of the THz link is that it can be highly attenuated by
atmospheric water vapour [6]. Also, the free space path loss
can be large. Therefore, especially higher THz frequencies are
more suitable for short-range wireless communications.

The link distance estimation between two nodes is important
for multiple applications such as wireless sensor networks
(WSNs). In addition, it is desired to be able to estimate
the nodes’ separation without installing specialized hardware
for distance estimation in low-cost WSNs. In the literature,
various techniques have been proposed for localization and
distance estimation [7]. The received signal strength (RSS)
based approach has gained much attention due to its simplicity
and suitability for estimation of short distances [8]–[10]. Other
techniques include utilizing the time of arrival (TOA) which
measures the propagation time of a radio signal traveling
between a sender and a receiver to estimate their distance.

In practice, TOA-based ranging methods require accurate
knowledge of the time of the transmission for calculating the
time of fly [11]–[13].

In this paper, we measure the RSS at two close-by frequen-
cies and use the difference (in the dB-domain) of the received
powers and channel propagation characteristics, specifically,
humidity level for the link distance estimation. The basic idea
of the proposed RSS-based link distance estimation is simple.
Let us assume that we have two frequencies with molecular
absorption values of, say, 5 dB/m and 8 dB/m for a given
humidity level. The difference in frequency leads to different
loss in molecular absorption. Assume that the transmit powers
and the antenna gains are the same at these two frequencies,
which thereby typically need to be close to each other. If the
received power differs 6 dB between these two frequencies,
we can infer the distance to be 2 meters. We do not need
to estimate or measure the absolute power levels, just their
relative difference. The reason this works is that the molecular
absorption can be specified in terms of dBs per meter unlike
for example free space path loss.

TOA-based ranging method requires accurate knowledge
of the time of the transmission, while the proposed method
requires more sensors (humidity and temperature sensors). The
proposed method does not need to know a lot of information,
which make this method suitable for example for IoT devices
on THz frequencies.

In practice, measuring the distance based just on the power
difference is not straightforward, since we have to take into
account for example path loss variation as a function of
frequency, the impact of phase noice etc. However, if the
frequency gap is not too large, it should be doable.

The distance estimation performance improves as the dif-
ference in molecular absorption among the chosen two fre-
quencies increases. However, there are practical problems with
measuring very low signal powers so frequencies with very
large molecular absorption should be avoided. Therefore, the
approach is most promising for the THz band. Also, if all fre-
quencies have the same level of molecular absorption (flat part
of the absorption curve), the link distance estimation cannot be
done using the approach proposed in this paper. In the lower
frequencies, the molecular absorption due to the oxygen at
around 60 GHz might differ enough compared to the molecular
absorption due to the humidity at the higher frequencies.978-1-6654-3540-6/22 © 2022 IEEE



For example, devices based on the IEEE 802.11ay standard
are operating at around 60 GHz. However, the level of the
molecular absorption at 60 GHz is less than the values typical
at the THz frequencies, while the proposed method could still
be applied with longer link distances. At the THz frequencies,
for example, device-to-device (D2D) communication systems
may prefer operation at frequencies with significant molecular
absorption with the so called molecular absorption peaks due
to the reduced interference between systems [14]. In fact, the
D2D systems may choose a suitable frequency based on the
typically unknown link distance [14].

II. SYSTEM MODEL

The system model for distance estimation is shown in Fig.
1. We assume a transmitter and a receiver with a humidity
sensor, a temperature sensor, and possibly a pressure sensor
in the system. Our aim is to estimate the distance between
the transmitter and the receiver. The distance estimation is
performed at the receiver based on the received signals.
Specifically, an energy detector is used for distance estimation
[15].

The proposed distance estimation approach can be used
with normal wireless communication signals, especially with
wideband single-carrier modulation so that the same modu-
lation symbol is affecting both frequencies. Distance can be
estimated at the same time as the wireless communication is
taking place. It is also possible to transmit a dedicated signal
for distance estimation.

In the channel propagation of the THz band, the molec-
ular absorption is a unique feature of the THz frequencies
compared to lower frequencies. The molecular absorption loss
depends on not only the frequency but also distance, humidity
level, and temperature level. The proposed distance estimation
exploits the feature of the molecular absorption loss.

The received power model for the assumed line-of-sight
case including the free space path loss and molecular absorp-
tion loss is shown in Section IV. Friis’s free space path loss is
used but the fading effect caused by multipath components
is not considered so performance evaluations assume non-
rich multipath environment where the effect of multipath
component is relatively lower. The proposed technique does
not apply a radar-type technique using the reflected signal from
the receiver with some radar cross section.

III. DISTRIBUTION OF RECEIVED SIGNAL STRENGTH

Let us show the model of the received signal strength. We
assume that the received power is estimated with a standard
energy detector. Assume that the received signal power is PR

and let us denote the noise power with Npow. Ideally, the noise
power is Npow = kTKB, where k is the Boltzmann’s constant,
TK is the temperature in Kelvin, and B is the bandwidth of
measurement. We further assume that there are 2K degrees of
freedom in the output, where K can be the number of complex
time-domain samples the energy detector output is based
on K complex baseband inphase-and-quadrature samples. In
practice, we may not need access to the complex baseband

Fig. 1. System model.

samples if the energy detector is equivalently implemented
with analog components.

Usually, the normalized energy detector output is assumed
to follow the non-central chi-squared distribution with 2K
degrees of freedom with noncentrality parameter being in our
case λ = 2KPR/Npow. We divide the energy detector output
with K to get power per sample. Now, based on the theory of
the non-central chi-squared distribution, we get that Gaussian
approximation for the measured received power X has mean
µ = Npow + PR, so that the average measured power is the
sum of the noise power and the received signal power. We
notice that noise power limits how low received signal powers
we can measure. In theory, it would be possible to subtract the
noise power from the received power but this would require
accurate knowledge of the noise power. The uncertainty of
noise power is a well-known limitation of energy detectors
[16]. The variance of the Gaussian approximation of X is
obtained as σ2 = Npow(Npow + 2PR)/K. We notice that as
K approaches infinity, the variance of the measured power
approaches zero. However, it is of course not practical to
measure for very long times.

We approximate also the distribution of received
power in the dB domain as Gaussian. In this case,
based on first terms from the Taylor expansion of
10 log10(X), see https://en.wikipedia.org/w/index.php?
title=Taylor expansions for the moments of functions of
random variables&oldid=1063034706 and [17], we get as
approximation that the mean of the 10 log10(X) is

µLOG = 10 log10(PR +Npow) (1)

and variance is

σ2
LOG =

100Npow(Npow + 2PR)

ln(10)
2
(Npow + PR)

2
K

, (2)

where ln means the natural logarithm.
Fig. 2 shows an example of the Gaussian approximation in

the dB-domain. It can be observed that approximation is good.
Let us assume that we measure received power at two center

frequencies, f1 and f2. Let us denote the measured (noisy)
signal powers X1 and X2. Also denote the received signal
powers with PR,1 and PR,2. Now XdB,1 = 10 log10(X1) and



Fig. 2. Gaussian fit to received power when PR = 10−11 W (-110 dBW /
-80 dBm), K = 100, Npow = 8 ∗ 10−14.

XdB,2 = 10 log10(X2) both have the Gaussian approximation
with mean given by (1) and variance given by (2).

IV. RECEIVED POWER MODEL

The well-known Friis’s equation for free space propagation
tells that received signal power PR is

PR = PT
GTGRc

2

(4πrf)2
, (3)

where PT is the transmitted power, GT is the gain of the
transmitting antenna, GR is the gain of the receiving antenna,
c is the speed of light, r is the link distance, and f is the
frequency.

Based on the Friis’s equation we can estimate the link
distance with

rFriis =

√
PTGTGRc2

PR(4πf)2
. (4)

A drawback with the approach above is that receiver needs
to be able to measure the absolute power levels, it must know
the transmit powers, as well as the transmitter and the receiver
antenna gains. What is more, it will not work well in the
THz frequencies, where molecular absorption is present, as
molecular absorption does not follow the square-law behavior
in terms of distance.

In the THz frequencies, we need also to include the molec-
ular absorption when considering the received power. The
molecular absorption factor is well known to be [18]

e−k(f)r, (5)

where k(f) is a frequency-dependent absorption coefficient
that can be obtained numerically using for example the am
software [19] or the ITU model ITU-R P.676-8, where the
ITU model is up to 1000 GHz [20]. We [21] have proposed

a simplified model for calculating the molecular absorption
coefficient. Also the humidity level needs to be known since it
is the main contributing factor to k(f). This can be obtained
with a humidity sensor in a node. A temperature sensor is
typically also needed.

Combining the Friis’s equation and molecular absorption
loss, we get the received signal power as

PR = PT
GTGRc

2

(4πrf)2
e−k(f)r. (6)

The equation above can also be solved for r provided that PT ,
GT , and GR are known. We assume to store k(f) into a local
memory as a function of the humidity. The result is

rcomb =
2

k(f)
W0

k(f)
√

GRGTPT c2

16PR f2 π2

2

, (7)

where W0 is the principal branch of the Lambert W function
[22].

We can write (6) in the dB domain as

PR[dB] = α− 20 log10(r)− ar, (8)

where α = 10 log10

(
PT

GTGRc2

(4πf)2

)
and a = 10k(f)

ln(10) . In [23, Eq.
(9)], an iterative solution has been presented. For free space
path loss exponent 2, it converges to the same value as our
closed-form solution (7). It should be noted that [23] is about
attenuation due to rain, not gaseous attenuation. However, the
received power can be written in the same form (8) in both
cases. In fact, we can interpret k(f) to contain both gaseous
attenuation and rain attenuation. However, in this case, a rain
sensor or accurate information from a weather database is
needed in addition to the humidity sensor to get the value
of k(f).

V. PROPOSED DISTANCE ESTIMATION TECHNIQUE

In the case that we do not know PT , GT , GR, let us assume
that we measure the received power at two frequencies f1 and
f2. We further assume that we know the absorption coefficients
at both frequencies with the similar humidity information as
discussed above. Assume that the frequencies are sufficiently
close to each other so that PT , GT , and GR are the same.
The ratio between the received power at f1 and the received
power at f2 is denoted as γ. We get that

γ =
f2
2 e−r (kf1

−kf2)

f2
1

. (9)

By multiplying with f2
1

f2
2

and taking the logarithm, we get that
the link distance is

rprop = −
ln
(

γ f2
1

f2
2

)
kf1 − kf2

, (10)

where kf1 and kf2 are the known absorption coefficients.
Different to the basic set-up with on frequncy measurement
above, we do need to know neither the transmit power nor the
antenna gains as typical with received signal strength based



methods. They are just assumed to be equal. We can rewrite
(10) in terms of measured noisy received powers in dB (XdB,1

and XdB,2) as

rprop =
XdB,2 −XdB,1

10 log10(e)(kf1 − kf2)
− 2 ln(f1/f2)

kf1 − kf2
. (11)

It can be noted that the distance estimation only depends on
the difference of the received powers in the dB domain. The
absolute received power levels are not needed avoiding the
necessity of accurate calibration schemes.

VI. ANALYSIS OF THE PROPOSED TECHNIQUE

As the received powers in dB can be approximated as
independent Gaussians, since the thermal noise is independent
in two different frequency channels, (11) has subtraction
of one Gaussian from another Gaussian. Then we get the
Gaussian approximation for the estimated distance with the
proposed algorithm to have mean

µprop =
E[XdB,2]− E[XdB,1]

10 log10(e)(kf1 − kf2)
− 2 ln(f1/f2)

kf1 − kf2
, (12)

where for example E[XdB,2] = 10 log10(PR,2 + Npow) as
given by equation (1). The variance of the estimated distance

σ2
prop =

Var[XdB,2] + Var[XdB,1]

(10 log10(e)(kf1 − kf2))
2
, (13)

where for example Var[XdB,2] is (as given by (2))

Var[XdB,2] =
100Npow(Npow + 2PR,2)

ln(10)
2
(Npow + PR,2)

2
K

. (14)

Now we have a fully theoretical model for the distance
estimation accuracy of the proposed technique.

VII. NUMERICAL RESULTS

Fig. 3 shows a comparison between simulated histogram
and the theoretical probability density function (PDF) by the
Gaussian approximation for the estimated distance. The used
parameters are f1 = 377 GHz, f2 = 378 GHz, transmitter
antenna gain 30 dB, receiver antenna gain 20 dB, K = 100,
Npow = 8 ∗ 10−14. The proposed method works also at
other frequencies given that there is sufficient difference in
absorption coefficient.

The water vapour density, which comes from the relative
humidity level 1, is 7.5 g/m3. The transmitted power inside
each measured band is 1 mW. True distance r = 10 m. It can
be observed that the proposed Gaussian approximation is very
accurate. It can also be seen that the estimator is unbiased for
these input parameters.

For results shown in Fig. 3, the mean square error of the
proposed estimator is 0.0089. The mean square error with the
traditional Friis-based approach using (4) was much larger,
more than 3. This shows that molecular absorption may have to
be taken into account or performance can be greatly reduced.
When taking into account molecular absorption with (7),
performance with the Friis-based approach greatly improved

1see for example https://www.cactus2000.de/js/calchum.pdf

and the mean square error was ≤ 0.0005. As expected,
performance is better than with the proposed approach since
more information is assumed to be known.

Fig. 4 shows the mean square error of the distance esti-
mation with error in the humidity sensor. It can be seen that
the proposed method is sensitive to the error in the humidity.
We see that the positive humidity error is better than negative
humidity error. The shown theoretical values are obtained
by calculating the sum of theoretical bias squared and the
theoretical variance of the estimated distance. It can be seen
that when there is only a small error in the humidity value,
increasing the value of K significantly improves performance.
However, when there is a significant error in the humidity
values, increasing the number of samples K does not much
improve performance. The reason is that there is a bias
component that cannot be reduced by increasing the amount
of averaging. Increasing the number of samples will reduce
the variance but not bias.

Fig. 5 shows the mean square error of the distance esti-
mation as a function of the true distance. As expected, the
mean square error increases with the true distance. We can
see that increase of the mean square error is not linear as a
function of the distance but more like exponential. However,
the approach is promising for reasonable distance range for
indoor use cases.

Fig. 6 shows the mean square error with two different
noise figures (NFs), 0 dB and 20 dB. It can be seen that
performance with a large noise figure is significantly reduced
due to the increased power of the noise at the receiver.
However, even with large noise figure, when the number of
samples (K) is increasing, performance is improving. This
means that bias component is not dominating since increasing
K mainly affects the variance. At very larger number of
samples performance improvement starts gets less, the reason
is the bias component.

Please note that the MSE difference appears very small (less
than 0.01) in Fig. 4 for K = 100 and K = 1E5, compared
to MSE difference in Fig. 6 for K = 100 and K = 1E5
with both NF = 0 dB and 20 dB due to use of linear scale vs
logarithmic scale.

THz radiation power can be quite limited so it is important
to evaluate performance with low transmit power. Fig. 7 shows
the mean square error as a function of the power inside each
measured band. In case where normal wireless communication
signals are used for distance estimation, the power inside each
measured subband comes from the fraction of the total transmit
power of the communication signal within the two measured
sub-bands centered at f1 and f2. When a dedicated signal
is transmitted for distance estimation, power can be focused
on the sub-bands leading to potentially larger power values.
We can see that when power is reduced performance gets
much worse as expected. If the power inside each measured
band is small, performance can be significantly improved by
increasing the number of samples K.

From the above discussion we note that proposed approach
is sensitive the noise figure and the power within the two sub-



Fig. 3. Probability density function (PDF) of the estimated distance, f1 = 377
GHz, f2 = 378 GHz, transmitter antenna gain 30 dB, receiver antenna gain
20 dB, K = 100, Npow = 8 ∗ 10−14. Water vapour density is 7.5 g/m3

(no error assumed in the humidity sensor). Transmitted power inside each
measured band 1 mW. True distance r = 10 m.

Fig. 4. Mean square error of estimated distance with error in the humidity
sensor, f1 = 377 GHz, f2 = 378 GHz, transmitter antenna gain 30 dB,
receiver antenna gain 20 dB, Npow = 8∗10−14. True water vapour density is
7.5 g/m3. Transmitted power inside each measured band 1 mW. True distance
r = 10 m.

bands. However, as the results show, problems related to these
can often be addressed by increasing the number of samples
K. The proposed approach is also sensitive to error in the
assumed humidity value. This problem cannot be solved by
increasing the averaging but instead, in case of problems, more
accurate humidity sensor is needed. In case of THz, there
may be limitation in transmit power and significant spreading
loss. Then, the noise power at the receiver may determine the
potential of distance estimation in THz.

Fig. 5. Mean square error of estimated distance as a function of the true
distance, f1 = 377 GHz, f2 = 378 GHz, transmitter antenna gain 30
dB, receiver antenna gain 20 dB, K = 100, Npow = 8 ∗ 10−14. True
water vapour density is 7.5 g/m3 (no error assumed in the humidity sensor).
Transmitted power inside each measured band 1 mW.

Fig. 6. Mean square error of estimated distance, f1 = 377 GHz, f2 = 378
GHz, transmitter antenna gain 30 dB, receiver antenna gain 20 dB, ideal noise
level (noise figure NF = 0 dB) Npow = 8 ∗ 10−14. Water vapour density
is 7.5 g/m3 (no error assumed in the humidity sensor). Transmitted power
inside each measured band 1 mW. True distance r = 10 m.

VIII. CONCLUSION

In this paper, a simple distance estimation method was
proposed for THz links. It is based on assuming that the
receiver is equipped with a humidity sensor so that it can
calculate the molecular absorption coefficients using a known
model at different frequencies. The receiver measures the
received signal strength at two frequencies and calculates the
received power ratio in the linear domain or the difference
in the dB-domain. Based on the measured difference and the
molecular absorption coefficient, the proposed method can find
the distance between the transmitter and the receiver. The



Fig. 7. Mean square error of estimated distance, f1 = 377 GHz, f2 = 378
GHz, transmitter antenna gain 30 dB, receiver antenna gain 20 dB, noise level
Npow = 8 ∗ 10−14. Water vapour density is 7.5 g/m3 (no error assumed in
the humidity sensor).

results modeled two sources of randomness: the thermal noise
and the error in the humidity sensor output value. The present
work is mostly suited for single carrier systems where the same
modulation system is affecting both measured frequencies.

In the future work, a third source of randomness due to
different modulation symbols at different frequencies could
be studied. It is particularly relevant for multi-carrier systems
with large peak-to-average power ratios of the transmit signals.
Also, effect of multipath could be considered. Since all practi-
cal aspects are difficult to model in a simulation study, we also
plan to verify the performance with practical measurements in
the future work.
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