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Abstract—The new wave of digitization induced by Industry
4.0 calls for ubiquitous and reliable connectivity to perform
and automate industrial operations. 5G networks can afford the
extreme requirements of heterogeneous vertical applications, but
the lack of real data and realistic traffic statistics poses many
challenges for the optimization and configuration of the network
for industrial environments. In this paper, we investigate the
network traffic data generated from a laser cutting machine
deployed in a Trumpf factory in Germany. We analyze the traffic
statistics, capture the dependencies between the internal states of
the machine, and model the network traffic as a production state
dependent stochastic process. The two-step model is proposed as
follows: first, we model the production process as a multi-state
semi Markov process, then we learn the conditional distributions
of the production state dependent packet interarrival time and
packet size with generative models. We compare the performance
of various generative models including variational autoencoder
(VAE), conditional variational autoencoder (CVAE), and gener-
ative adversarial network (GAN). The numerical results show
a good approximation of the traffic arrival statistics depending
on the production state. Among all generative models, CVAE
provides in general the best performance in terms of the smallest
Kullback-Leibler divergence.

I. INTRODUCTION

The industrial network infrastructures are facing a radi-
cal transformation to accommodate the communication needs
of today’s manufacturing technologies, Industrial Internet of
Things (IIoT) applications and flexible shopfloor designs.
The current industrial networks are designed for static con-
figuration and specific applications, and they are, therefore,
insufficient to cover the future needs posed by Industry 4.0 [1].
5G systems and beyond are a natural fit for serving the
evolving needs of future industrial environments, by providing
the dynamicity and flexibility that is expected to be supported
in the near future [2]. However, there is a lack of knowledge
about the characteristics of industrial systems, and the typical
configuration of cellular systems tailored to consumer appli-
cations is not able to meet the demanding needs of industrial
applications. Especially for network planning, it is critical to
know and quantify the amount of data to be transmitted, the
statistics of data packets, the endpoints of the communication
and many other details that require the direct observation from
brownfield installations [3].

In general, the existing literature presents simplified findings
from measurements performed over non-industrial networks
or semi-artificial system setups. For example, there is a lot
of literature focusing on the analysis and design of traffic in

Supervisory Control and Data Acquisition (SCADA) networks,
including datasets [4] open to access for researchers. Among
others, [5] analyzes the traffic patterns and models the interar-
rival time and the correlation between packet types generated
in SCADA networks, limiting their observation to the indus-
trial protocols applied therein. However, their evaluation is
based on emulated traffic in test labs and not exemplary of re-
alistic applications running on devices in a working industrial
environment, i.e. not being able to address the complexity of
the real industrial systems [3]. Indeed, the validation of results
with realistic assumptions is very challenging for researchers
in this area due to the unavailability of both production and
network traffic data from industrial systems. Some works,
such as [3], [6], analyze the differences between available
theoretical and empirical traffic models with real brownfield
installations, showing that there is a significant gap in the
literature, especially for traffic estimation and generation. They
provide some interesting findings, but do not share data or
models that can be used to guide the research in this field.
While [3] mainly focuses on the methodology for best practice
in traffic estimation and modeling, the authors in [6] provide
an empirical comparison between the well-known analytical
models suggested from standardization bodies, such as 3rd
generation partnership project (3GPP) and the 5G-Alliance for
Connected Industries and Automation (5G-ACIA) [7], [8], and
real data traffic collected from various factories. Their analysis
focuses on the statistics of interarrival packet time, packet size
and burstiness, showing that the real traffic is significantly
more heterogeneous than the suggested models from 3GPP,
with only limited match concerning the periodic traffic, and
with high over-estimation with respect to the non-periodic
traffic. Along the same lines, the methodology proposed in [9]
considers the whole complexity of an industrial systems, when
collecting all the aggregated traffic in an industrial network.
Although this approach allows for higher complexity and
gives insights for the design of a communication systems
considering the overall network data traffic, it does not provide
enough elements for repeatability. This is the most important
point that we address in this paper. The contributions of the
paper can be summarized as follows:

• First, we analyze the peculiar behavior of some industrial
devices from measurements collected in a Trumpf factory.
Based on the operations of the machines, we can identify
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specific production dependent states of the machines and
model their transitions as a semi-Markov process.

• Then, we apply generative models for reproducing the
statistics of data packets, focusing in particular on the
interarrival time and its dependency on packet size.

• Finally, we compare different models that can be used
for reproducing the traffic pattern of the machine for
each of its production state. We also grant access to
those models and share them publicly with the research
community for validation and testing in various 5G use
cases, e.g., to model a digital twin of an industrial
network [10]. Although our models cannot generalize for
any industrial environment, it still provides a reference
point for realistic industrial installations and can be used
to generate more realistic instances for e.g. industrial
network simulators [11].

The rest of the paper is structured as follows. In Section II,
we describe the datasets and the characteristics of the traffic
flows captured from laser cutting machines in a Trumpf fac-
tory. The methodology for the generative models is discussed
in Section III, while in Section IV we illustrate our findings
and analyze the performance of the applied models. Finally,
Section V concludes the paper with a summary of the findings
and discussion for the applications of the obtained models in
industrial network setups.

II. DATA COLLECTION AND DATASET DESCRIPTION

We consider an exemplary industrial setup of a Trumpf
factory where a laser cutting machine is deployed in a shop
floor and communicates with a central management system
over an industrial fixed network. All the information that have
been exchanged between the machine and the management
system are collected in a log file in .csv format, which
represents the dataset of our evaluation. We filter the original
dataset to capture only the entries needed for analyzing the
statistical properties of the traffic generated by the industrial
machine and to identify the specific characteristics of the
machines, with its life-cycle, operational duty-cycle and status
information to correlate the statistics of the traffic to the
production state of the machine. The filtered dataset contains
the following list of entries.
• Processed Time identifies the date and time of the day

when a specific message has been sent by the machine.
The time granularity is of millisecond scale, which is
appropriate for the estimation of packet interarrival time.

• Data.id specifies the type of message sent by the ma-
chine. It is an ID used by the owner of the machine to
recognize the messages that have been exchanged. We
can use this information to identify control messages
that are sent by the machine to inform about its current
operational state.

• Data.value represents the content of the message. The
content of the message is out of the scope of our evalua-
tion, however some information can be useful to identify
specific status information of the machines. In particular,
we extract together with the Data.id the information

Fig. 1: A Markov chain of state transition of the machine

Running Reentry Stopped Aborted Ended
Running 0 4 296 17 151
Reentry 51 0 36 21 0
Stopped 198 52 0 2 15
Aborted 9 0 31 0 0
Ended 63 0 103 0 0

TABLE I: The number of the total transitions among states

that identifies what is the status of the machine. An
example of how to use such information is described in
the following subsection.

• Data.payload defines the size of each packet that has
been transmitted by the device. The computation of
the payload is rather simple, since we apply binary
conversion to the content of Data.value and we extract
the dimensions in bytes. Although this calculation does
not represent exactly the packet size over the network
interface (since header and encryption are not considered
in the calculation), it still provides coarse estimation of
the amount of data to be transmitted. The payload has
been then quantized in multiple of 32 bytes to align with
the typical minimum packet size of 3GPP standards.

A. Production state transition of the laser cutting machine

As mentioned in the previous subsection, it is possible
to derive the specific operational state of the machine from
the available dataset. Thus, we aim to extract the production
state of the machine, and, based on the state, to infer the
statistical property of the network traffic (in terms of traffic
pattern and distribution). From the dataset, we could retrieve
a subset of meaningful states to be used for evaluation. We
will refer to these states with the following terminology:
[Running, Reentry, Stopped, Aborted, Ended]. The machine
visits each of these states with a certain frequency, remains
in each state for an interval of time, the so-called sojourn
time, and then transitions to a new state. For this reason, we
can represent the state transition of the machine as a Markov
chain. An example is given in Fig. 1. As one can see from
the figure, when the machine is in a Running state, it can
move to any of the other states, but this does not apply for
all the states. For example, from an Aborted state, it is only
possible to transit to Running and Stopped, but not to the other
two states. To give a more comprehensive understanding of
those transitions, we summarize in Table I the number of total
transitions according to the collected dataset for any of those
states. From the available dataset, the most visited states are



Fig. 2: The distribution of sojourn time of the machine per
state

the Running state and the Stopped state, since the machine
most likely meets a stopping criterion after completing some
task when running. While from Table I one can retrieve the
probability of transition among the states, another important
aspect is to determine how long the machine stays in that state.
This result is plotted in Fig. 2, where the sojourn time is shown
in a logarithmic scale for readability purpose. Moreover, the
logarithmic scale also helps understand the order of magnitude
of such scale. As one can notice from the figure, the range of
values can be very large, from few milliseconds up to minutes
or even hours. Especially, the Reentry state differs from other
states, with rather a short sojourn time, while the Running state
is the one which lasts a longer time. By merging the transition
state probability of Table I together with the sojourn time
probability distribution of Fig. 2, one can empirically derive
the continuous-time Markov chain to model the operational
duty-cycle of the machine.

III. MODELING THE PRODUCTION-AWARE NETWORK
TRAFFIC PROCESS

To infer the network traffic process depending on the
production status, first we model the production process as a
semi-Markov process (SMP), then obtain the production state
dependent network traffic statistics, including the distribution
of packet interarrival time and its correlation with packet size.

A. Modeling the Production Process

As shown in Fig. 1, the production process has five states,
Running, Reentry, Stopped, Aborted and Ended, denoted by 1,
2, 3, 4, 5, respectively. A classical method to model such a
multi-state machine is Markov process, which assumes that the
sojourn time for each state follows the exponential distribution.
However, in real-world applications, this assumption usually
does not hold strictly. Thus, we consider to model the multi-
state process of the machine as an SMP [12], which relaxes the
exponential assumption and allows for random sojourn time.

To define an SMP for the production process, we consider
a stochastic process {st}t≥0, where st ∈ S := {1, 2, 3, 4, 5}
denotes the state at time t.
• The transition probability from state i ∈ S to state
j ∈ S is denoted as pij , i.e., whenever the process is
in state i ≥ 0, the probability to enter in state j is pij .
The transition matrix is denoted as P = [pij ] with zero
diagonal entries. Note that this definition of transition

matrix does not include the information about the time
of transition.

• The probability density function of jumping time, i.e., the
time needed before jumping from state i to state j follows
a distribution denoted by Fij(t).

• The distribution of sojourn time, i.e., the time that the
process spends in state i before making a transition
conditioned on the next state, is given by

Hi(t) =
∑
j∈S

pijFij(t). (1)

From the collected data, we can extract the statistics of the
transition probability (e.g., from Table I) and the distribution
of the jumping and sojourn time (e.g., as shown in Fig. 2).

B. Modeling the Production Dependent Network Traffic
Given a production state, we aim to model the network

traffic process conditioned to a given state by approximating
the distributions of packet interarrival time. The state-of-the-art
works often assume that the packet arrival follows a Poisson
process, composing a limitation that the interarrival times are
exponentially distributed with mean 1/λ, where λ is the arrival
rate [13]. However, a number of studies have shown that for
both local-area and wide-area network traffic, the distribution
of packet arrival clearly differs from exponential [14]. In
align with these works, we examine the traffic modeling
empirically for the industrial campus network, and observe
that the distribution vastly differs from Poisson process. In
fact, the traffic bursts appear on a very wide range of time
scales. Thus, we propose to learn the distributions of traffic
arrivals with deep generative methods, such that the pre-trained
models can be loaded to automatically generate production
state dependent network traffic in the industrial environments.

1) Three Generative Models to Compare: We consider the
following three generative models to compare for the industrial
traffic generation, as shown in Fig. 3.

Variational autoencoder (VAE) [15]: In VAE the input
data x is sampled from a parametrized distribution (a.k.a.,
the prior). The encoder maps x to z in a latent space, and
the encoder and decoder are jointly trained to minimize a
reconstruction error between the reconstructed x′ and the real
input x in terms of Kullback–Leibler (KL) divergence [16]
between the parametric posterior and the true posterior.

Conditional variational autoencoder (CVAE) [17]: CVAE
was developed based on the VAE architecture, with the only
difference that CVAE inserts label information c in the latent
space to force a deterministic constrained representation (con-
ditioned by c) of the learned data. In our model, the label
information c is the encoded categorical production state, e.g.,
by encoding the production state st with one hot encoding.

Generative adversarial network (GAN) [18]: The most
popular generative model GAN simultaneously trains a gener-
ative model and a discriminative model. The generative model
synthesizes samples x′ from the latent variables z, while the
discriminative model differentiates between the real sample x
and the synthesized sample x′ and returns a binary output y to
classify both the real data and the fake data from the generator.



VAE Encoder Generativex z x′

CVAE Encoder Generativex z x′

c c

GAN Generative Discriminativez x′ y

Fig. 3: Comparison among three generative models, where
x and x′ are the input and reconstructed/generated samples
respectively, z is the latent vector, y is a binary output which
represents whether it is a real or synthesized sample, and c is
the condition of the production state.

2) Two Traffic Generation Schemes: Given a production
state S ∈ S, the objective is to generate the industrial network
traffic based on the conditional distribution of packet interar-
rival time T and packet size L. We compare the following two
schemes.
• Independent Learning: Assuming that the packet inter-

arrival time and the packet size are independent, for each
state S ∈ S, we have

Pr((T, L)|st = S) = Pr(T |st = S) · Pr(L|st = S).

Thus, we can learn Pr(T |st = S) independently from
Pr(L|st = S) with the previously introduced generative
models. This means, for each state S, we train a single
model for the distribution of packet interarrival time.

• Joint Learning: For each state S ∈ S , we learn a joint
two-dimensional distribution Pr((T, L)|st = S). Such
model captures the correlation between packet arrival
time and packet size, if the correlation exists. This allows
us to train one model under each production state, while
the model has higher dimension of the input (taking both
T and L into account), compared with the independent
learning scheme.

C. Workflow of Generating Industrial Network Traffic

After learning the production process as an SMP, as de-
scribed in Section III-A, and pretraining generative models
for the distributions of production state dependent traffic in-
terarrival time, we can generate the industrial traffic following
the steps provided in Algorithm 1.

Algorithm 1 Generating the industrial network traffic

Require: Inferred P, {Fij}, and Pr((T, L)|S), S ∈ S
Require: Initial index of jump n = 0; initial state sn = 1
Require: Maximum number of state jumps N (max)

1: while n ≤ N (max) do
2: Generate next state sn+1 based on P
3: Generate jumping time based on Fsn,sn+1

4: Before jump to sn+1, generate T and L based on the
pretrained geneartive models of Pr((T, L)|sn).

5: n← n+ 1 when it is the time to jump to state sn+1

6: end while

IV. PERFORMANCE EVALUATION

In this section we show the performance of the generative
models discussed in Section III applied to the dataset illus-
trated in Section II. In particular, we consider two setups for
the generation of the traffic:

1) We use VAE and GAN architectures to learn traffic
distribution for each production state of the machine
independently and compare it with the empirical dis-
tribution of the real data. This results in multiple per-
state models, which is helpful for the evaluation of the
behavior of the industrial environment in the specific
states.

2) We use CVAE architecture to learn the state-dependent
traffic distribution jointly for all states by adding the
production state as a priori information. This leads to a
single model that generates the distribution during the
whole operational duty-cycle of the machine.

The two approaches give flexibility to apply the generative
models in different contexts, depending on the need. In par-
ticular, we apply i) the GAN and VAE on a per-state dataset,
where each dataset is extracted by the original dataset and
filtered according to the production state of the machine. In
contrast, for CVAE we consider ii) the production state of the
machine as a priori information given to the neural networks
as the label condition c. The main difference between the two
approaches is that in i) we obtain multiple models, one for
each production state, while in ii) we have a single model that
can generate the per-state traffic patterns for any production
state. For all three generative models, we consider the same
neural network architecture and hyper-parameter tuning. The
models of encoder and decoder for VAE and CVAE, as well
as generator and discriminator for the GAN, are all built up
with 5 hidden layers, with the number of neurons (32, 64,
32, 16, 32). In all schemes we adopt a learning rate of 0.001,
and the loss functions are built upon the binary cross entropy,
with the addition of the Kullback-Leibler (KL) loss for the
VAE and CVAE. The latent dimensions for interarrival time
distribution only and for the joint distribution of interarrival
time and packet size are 2 and 4, respectively. The training is
performed on the 70% of the whole dataset, which is shuffled
and normalized after being rescaled on a logarithmic scale,
with batch size of 32, for a total of 500 epochs. The numbers
of samples for each state are not homogeneous, resulting in a
total of ca. 15000 of samples for Running state and only ca.
500 for Aborted and Reentry states. For such reason, the testing
is performed on variable number of samples for each state, but
with a sufficient number to draw meaningful distributions.

Below, we show the experimental results when generating
• the distribution of interarrival time of packets only;
• the joint distribution of interarrival time and packet size.

A. Distribution of interarrival time of packets

One of the most important features for traffic estimation
and generation is the interarrival time between packets. This
parameter refers to the interval time between two consecutive
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Fig. 4: Comparison of distributions for all states

transmissions and it is typically varying depending on the spe-
cific applications generating the data traffic. We focus on the
interarrival time since it is also a fundamental unit of measure
for critical applications, where the network must ensure the
correct delivery of the packets in the range of few milliseconds.
Therefore, understanding the interarrival time of packets gives
an important information for scheduling operations and how
to handle priorities among packets. We analyze the different
characteristics of the interarrival time for each state, as defined
in Section II, and compare the generated distributions with
the empirical distribution computed from the original samples.
Namely, we compare the original distribution in Fig. 4(a) with
the ones generated with GAN, VAE and CVAE in Figs. 4(b),
4(c) and 4(d), respectively. In particular, the shaded bars
show the histograms obtained from the distributions, while
the solid lines show the approximation of the continuous
distributions generated by the seaborn modules of histplot. For
each figure, we compare the generated distribution with the
empirical distribution to analyze the properties and similarities
between the plotted samples. Moreover, the x-axis is plotted
in logarithmic scale for the ease of visualization, since the
range of the samples is quite large, from few milliseconds
till minutes of interarrival time. However, the logarithmic
scale gives a good understanding of the order of magnitude,
showing that, for example, in the Running state it is possible
to identify three main peaks, the first in the order of tens
of milliseconds, the second in the order of tens of seconds,
while the third one in the order of minutes. When comparing
the results for each state, one can appreciate that VAE and
CVAE generate, in general, distributions very close to the real
data. In contrast, GAN seems unable to intercept all the peaks
of the original distributions, in particular when observing the
samples of interarrival times in the order of minutes. By
looking at individual states, one can also notice how some
states cannot be retrieved properly, both by GAN and VAE,
due to the limited amount of data for the training. This is
particularly true for the Aborted and Reentry states, which are
the states less visited by the machine and, therefore, produce
limited amount of samples. However, CVAE also gives a good
approximation for those states, resulting in good accuracy for
each state. To give a more comprehensive comparison among
the proposed models, we also compare the KL divergence for
each state in Table II. The values considering the interarrival

time only are referred to as VAE 1D, CVAE 1D, GAN 1D.
As already shown from the plotted distributions, the CVAE
obtains in general better results, providing similar values for
each state, differently from VAE and GAN. However, VAE has
comparable (if not better) performance for most of the states
with enough samples for the training. Finally, the CVAE is able
to generalize in a single model the distributions for all states,
given also the high similarity of those distributions among
some states.

B. Joint distribution of interarrival time and packet size

In this section, we analyze the joint distribution of in-
terarrival time and packet size by comparing the results of
the 2D distributions generated by the three models with the
empirical distribution. For the sake of space and clarity, we
only show a 3D plot of the 2D distribution for the Running
state in Fig. 5, while referring at the KL divergence values
in Table II, computed for the interarrival time distribution
only, for generic comparison and discussion. The plots in
the figure show the bars in the different colors to further
highlight the difference in number of counts in the obtained
histogram. We apply the logarithmic scale at both x-axis and
y-axis for the interrarrival time (in ms) and packet size (in
bytes), respectively. One can notice that most of the packets
for Running state are transmitted with short interarrival time
(of few milliseconds) and have small packet sizes, while only
few transmissions are established with large packet sizes. As
for the 1D distribution, the VAE and CVAE outperforms GAN,
showing more similarities in the distribution, confirmed by
the lower values in the KL divergence in Table II (comparing
the values of VAE 2D, CVAE 2D, GAN 2D). By comparing
the values in Table II, one can deduce that interarrival time
and packet size are not strongly correlated, given that the
performance of the joint distribution do not outperform the
one obtained with the interarrival time only. We remark that
the scope of this paper is to give insights about the traffic
pattern in industrial network and to share the generative
models discussed for reproducing the realistic environments.
The provided generative models can be used by the entire
research community to build more realistic simulators and
emulators for the industrial 5G use cases. The pre-trained
model can be found in [10].
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Fig. 5: Comparison of the joint 2D distribution for the Running state

Running Reentry Stopped Aborted Ended
VAE 1D 0.40 4.27 0.52 0.50 0.34

CVAE 1D 0.26 0.38 0.34 0.47 0.36
GAN 1D 2.54 2.25 1.23 4.43 1.33
VAE 2D 0.33 0.35 0.49 0.78 0.35

CVAE 2D 0.28 0.95 0.36 0.69 0.38
GAN 2D 1.02 2.28 2.08 4.43 1.74

TABLE II: Model comparison based on KL divergence

V. CONCLUSION

In this paper we analyze the traffic patterns of a laser cutting
machine deployed in a Trumpf factory. From the collected
dataset, we can identify the different production states of the
machine and extract the production state dependent statistics
of the industrial network traffic. Specifically, we show that
the production state process can be represented as a semi-
Markov process, by modeling the transition probabilities and
the sojourn time for each state. Moreover, we propose different
architectures for generating traffic models that can mimic
the statistics of the production dataset. VAE and GAN are
considered for generating per-state traffic models, while CVAE
is considered as a generic model to generate the traffic patterns
for every state, by adding the conditional information of
the state to the generator. We compare the performance of
the different architectures and observe that CVAE reproduces
samples closer to the empirical distribution computed from
real data when considering only the statistics of the interarrival
time, while VAE outperforms the other models for the joint
distribution of interarrival time and packet size. The obtained
models are also made publicly available to allow researchers
to reproduce more realistic industrial environments for their
research activities. The integration of those models in an
industrial network simulator will be part of the future works.
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