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Abstract—With the development of industrialization, air pol-
lution is also steadily on the rise since both industrial and
daily activities generate a massive amount of air pollution. Since
decreasing air pollution is critical for citizens’ health and well-
being, air pollution monitoring is becoming an essential topic. In-
dustrial Internet of Things (IIoT) research focuses on this crucial
area. Several attempts already exist for air pollution monitoring.
However, none of them are improving the performance of IoT
data collection at the desired level. Inspired by the genuine Yet
Another Next Generation (YANG) data model, we propose a
YAng-based DAta model (YA-DA) to improve the performance
of IIoT data collection. Moreover, by taking advantage of digital
twin (DT) technology, we propose a DT-enabled fine-grained IIoT
air quality monitoring system using YA-DA. As a result, DT
synchronization becomes fine-grained. In turn, we improve the
performance of IIoT data collection resulting in lower round-trip
time (RTT), higher DT synchronization, and lower DT latency.

Index Terms—Industrial Internet of Things (IIoT), Air Quality
Monitoring, Yet Another Next Generation (YANG) Data Model,
Digital Twins (DT).

I. INTRODUCTION

The fast urbanization of the human population and the
increasing industrial activities have a consequential impact on
global air quality. The rapid development of cities significantly
increases the pollutants produced by the ever-increasing num-
ber of vehicles, traffic volume, industrial sites, etc. According
to data from the World Health Organization (WHO), ninety-
nine percent of the global population is exposed to air pollution
at different levels [1]. Air quality significantly impacts daily
life, and prolonged exposure to air pollution can injure the res-
piratory, immune, and nervous systems and even result in the
development of cancer [2]. Therefore, air quality monitoring
is becoming essential to protect and improve the life quality of
citizens in overcoming these problems. Thanks to the Internet
of Things (IoT) technological advancement, the number of
IoT-connected devices is rapidly increasing. According to the
forecasts, the number of IoT-connected devices worldwide will
reach around 29.4 billion by 2030 [3]. One of the most signifi-
cant applications of the IoT is the Industrial Internet of Things
(IIoT). Gartner Report also envisions that IIoT devices will
populate more than half of IoT devices soon. IIoT focuses on
the connectivity of intelligent machines in different domains

such as transportation, manufacturing, healthcare systems, etc.
Therefore, it is an essential concept for air quality monitoring.

Combining the robust data model-driven automation needed
in IIoT with device and network efficiency is crucial. IIoT
devices have interfaces to manipulate connected equipment.
To correctly manage resources on each device, all relevant
data model interfaces must be known during development.
Yet Another Next Generation (YANG) is a data modeling
language for device configuration. It is rich enough to express
the characteristics of the related data model. The YANG model
is a popular topic in the networking industry as it is easy to
learn and can describe complex programmatic interfaces [4].
It provides many different mechanisms for IoT devices [5].
For instance, it supports distributed authorship to use modules
from various sources together; language extensions, and model
extensions without centralized control; it provides lifecycle,
conformance model, platform-specific model deviations for ac-
tual deployment, etc. Furthermore, interoperability is essential
between IoT devices and the rest of the IP world. In next-
generation network systems, all devices will connect, called
the Internet of Everything; network elements and IoT devices
will configure together. At this point, YANG can be used as
the data modeling language to manage network elements, and
services [6]. Another promising technology is the digital twin
(DT), which has rapidly become an essential part of industrial
applications. It bridges the gap between physical and digital
spaces by creating a real-time virtual replica of the objects
in the system. DT provides a high-performance simulation
model for analysis, testing, configuration, and optimization.
Recently, DT-based visualization has become an important
issue, especially with the smart city concept. With the help of
DT-based visualization, air pollution levels can be visualized
in real time across the city.

The amount of data being processed is increasing rapidly in
parallel with the advancement of technology. For this reason,
only relevant data should be processed in the related system
so that the system can use it more efficiently for specific
applications such as air quality monitoring, anomaly detection,
etc. [7]. Thus, the overload in the system is reduced. Data
collection efficiency is essential for IIoT systems since it can
seriously affect the freshness of the data captured and the
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Fig. 1. The proposed system architecture.

decision-making process. Besides, efficient IIoT data collec-
tion reduces energy consumption, latency, network lifetime,
and overall cost. However, existing air pollution monitoring
works have high Round-trip time (RTT), relatively low DT
synchronization, and relatively high DT delay. Therefore, IoT-
based air quality monitoring was inefficient. In this paper,
we are improving the performance of IoT data collection by
proposing a new data model called the YAng-based DAta
model (YA-DA), based on the YANG model. By taking
advantage of DT technology, we propose a DT-enabled fine-
grained IIoT air quality monitoring system using YA-DA.
After implementing the YA-DA data structure, our approach
has lower RTT, higher DT synchronization, and lower DT
latency. We will provide more detail in the following sections.

The rest of the paper is organized as follows. Section II
provides a survey of related studies in the literature. The pro-
posed solution and the performance evaluation are explained
in Section III and Section IV respectively. We conclude the
paper in Section V.

II. RELATED WORK

Since data collection is an essential part of sensor devices
and related technologies such as IIoTs and wireless sensor
networks (WSN), there are many works published in this
research area to propose different models, architectures, and
contributions in the domains. I. Ali et al. gave a comprehensive
review of the data collection in the IoT, WSN, and sensor cloud
research domains [8]. The findings show that studies on data
collection are relatively consistent with stable output in the last
five years. They also provided critical research challenges and
future research directions for data collection in related research
domains. Z. Sheng et al. proposed a lightweight approach to
enable device management of wireless sensor devices by tak-
ing advantage of the recent development of IPv6-based open
standards for accessing wireless resource-constrained networks
[9]. They developed a prototype to test the performance of the
proposed approach in managing wireless sensor devices, thus
contributing to IoT data collection development. W. Osamy
et al. suggested an intelligent data collection technique to
determine energy-aware disjoint dominating sets that work as

data collection nodes in each round to improve overall WSN
lifetime [10]. They mainly focused on energy conservation to
enable the efficient functioning and lifetime of WSNs. They
provided the efficiency of the proposed technique mathemati-
cally and in simulation. N. Koroniotis et al. presented a smart
airport cyber twins security-oriented IIoT testbed SAir-IIoT
[11]. It comprises multiple heterogeneous IIoT devices and
communication protocols that can be accessed remotely as a
service, automatically interconnected with each other. They
proposed a data management tool that dynamically collects,
analyzes, and labels network-acquired and telemetry IIoT data.
In another work, S. Chen et al. proposed a privacy-preserving
data collection and computation offloading scheme for efficient
and secure big sensory data collection in fog-assisted IoT [12].
The simulation results show that the proposed method is an
efficient data collection and computation offloading scheme
with a strong privacy preservation property. C. T. Cheng
et al. designed the concurrent data collection trees for IoT
applications [13]. Their results show that the proposed tree
structures perform better in data collection processes.

Some works focus on air quality monitoring taking advan-
tage of DT technology in the literature. G. Mylonas et al.
gave a detailed review of current DT research in the field of
intelligent cities and also drew parallels with the applications
of Industry 4.0 [14]. They emphasized the importance of
pollution monitoring in the smart city domain and reviewed
the current works of pollution monitoring. They also presented
the open challenges of city-scale DTs. G. Schrotter et al.
presented a city-scale DT of Zurich to facilitate use in several
applications like air and noise pollution monitoring [15]. They
presented a study that promotes the active digital participation
of citizens in urban planning procedures by visualizing a
variety of data covering various applications, such as thermal
monitoring of the city. They note the significance of using
open spatial data in encouraging dissemination and devel-
oping new applications. H. Lehner et al. discussed a new
strategy for producing the three-dimensional city model and
the geographical data of Vienna, which completely rethinks
geographical data in the geographical data workflows [16].
After discussing the effect of the level of detail of three-



dimensional city representation, they provided the simulation
results that calculate the pollution dispersion inside a city.
In another work, T. Nochta et al. provided a city-scale DT
prototype presented to tackle congestion, air pollution, growth
management, and the limited capacity of the local energy
infrastructure issues in the Cambridge city region [17]. They
underlined the importance of city-scale DT to reflect the
specifics of the urban and socio-political context. Y. Liu et
al. proposed a federated learning-based aerial-ground air qual-
ity sensing framework for fine-grained three-dimensional air
quality monitoring and forecasting [18]. They also proposed
a graph convolutional neural network-based extended short-
term memory model for ground sensing systems. Overall, most
current air pollution monitoring DT works focus on the smart
city domain, particularly the city-scale DT.

None of the previous studies specifically covered IIoT-
based air quality monitoring in terms of data collection. So,
their performance was relatively low. Thanks to the proposed
approach, the performance in the particular DT-based air
pollution monitoring model will be increased. The improved
performance metrics with our solution are DT synchronization,
DT latency, and RTT.

III. PROPOSED SOLUTION

Our proposed system consists of a physical network with
physical objects and a digital twin network with digital twins
and brain components. The proposed architecture is shown
in Fig. 1. A replica of physical objects and synchronization
between physical objects and digital twins are built. The
IoT gateway collects sensor data and provides cyber-physical
interaction between the physical objects and the digital twin.
Then, sensor data is taken by the digital twin. After that, the air
quality monitoring system takes the only desired data thanks
to the software-defined YA-DA data model.

In the proposed system, we have spatial and temporal
complexity. Spatial complexity is related to memory usage
in the system. It needs to minimize by pulling only the
relevant data into the air quality monitoring system. Temporal
complexity pertains to end-to-end delay. It should be reduced
to enhance the quality of service of the system. The software-
defined YA-DA data model provides fine-grained air quality
monitoring and reduces the computational time in the system
by preventing the system from overloading. Thus, the system’s
operation becomes more efficient, and we reduce the spatial
and temporal complexity.

A. Software-defined YAng-based DAta Model (YA-DA)

YANG is a data modeling language for configuration, and
monitoring [21]. It is originally designed to model data for the
Network Configuration (NETCONF) protocol. NETCONF is a
network management protocol. It provides basic programming
features for convenient and robust automation of network
services. After a YANG module has defined data hierarchies,
it can use for NETCONF-based operations. These can include
state data, configuration, notifications, and remote procedure
calls. All data sent between a NETCONF client and a server

TABLE I
SEMANTIC MODEL OF AIR MONITORING SENSORS BASED ON

THE YA-DA DATA STRUCTURE

Software-defined YA-DA Data Model for Air Quality Monitoring

container AirParticleURI {
description “Air Monitoring Particle Sensor”
list value {

key “pm2.5-data”;
leaf pm1-data {type air-sensor;}
leaf pm2.5-data {type air-sensor;}
leaf pm10-data {type air-sensor;}

}
}

container AirTemperatureURI {
description “Air Monitoring Temperature Sensor”
leaf value {type air-sensor;}

}

container AirHumidityURI {
description “Air Monitoring Humidity Sensor”
leaf value {type air-sensor;}

}

container AirGasesURI {
description “Detectable Air Quality Gases”
container value {

leaf carbon-monoxide-data {type air-sensor;}
leaf nitric-oxide {type air-sensor;}
leaf nitrogen-dioxide {type air-sensor;}
leaf sulphur-dioxide {type air-sensor;}
leaf ethanol {type air-sensor;}
leaf hydrogen {type air-sensor;}
leaf ammonia {type air-sensor;}
leaf methane {type air-sensor;}
leaf ozone {type air-sensor;}

}
}

can be described. NETCONF is just one of many protocols
that can be used with YANG. For instance, RESTCONF and
the Constrained Application Protocol (CoAP) Management
Interface (CoMI), etc. NETCONF is more CPU and memory
efficient than RESTful and gRPC services [22].

The hierarchical organization of data is modeled as a tree
in which each node has a name-value pair or a set of child
nodes in YANG. It provides clear and brief descriptions of
nodes along with the interaction between these nodes. A
YANG module includes a combination of related definitions.
It can import definitions from external modules and contain
explanations from submodules. Moreover, the hierarchy can
extend by allowing a module to add data nodes to the order
defined in another module.

By taking the above advantages of the YANG model, we
designed the YA-DA data model to improve the performance
of the IIoT data collection. We developed the YA-DA model in
tree data structure because tree data structure performs better
in IIoT data collection. We defined four main data node types
in the YA-DA data model as in the YANG for data modeling:



TABLE II
THE SPECIFICATIONS OF DATASETS

Dataset Number of Features Number of Samples Number of Used Samples

TON-IoT [19]

Fridge Activity 6 59944 1000
Garage Door Activity 6 59587 800
GPS Tracker Activity 6 58960 2200
Modbus Activity 7 51106 2000
Motion Light Activity 6 59488 1000
Thermostat Activity 6 52774 1000

AQ&U [20] 11 522000 2000

leaf nodes, leaf-list nodes, container nodes, and list nodes.
• Leaf Node contains at most one instance in the data tree.

A leaf has a value but no child nodes.
• Leaf-List Node defines a set of uniquely identifiable nodes

rather than a single node. Each node has a value but no
child nodes.

• Container Node is used to group related nodes in a
subtree. A container has no value but rather a set of child
nodes of any type, such as leaves, lists, containers, leaf
lists, etc.

• List Node defines a sequence of list entries. Each entry
is defined like a container and is uniquely identified by
the values of the key leaves. A list can define multiple
key leaves and may contain any number of child nodes
of any type, including leaves, lists, containers, etc.

The semantic model of air quality monitoring sensors based
on YA-DA data structure is shown in table I.

Since the amount of sensor data in the system is more than
desired and needed, the air quality monitoring system can
become very slow. It is necessary to import only the required
data into the system. Therefore, we also use a software-
defined YA-DA model to accomplish this. In this work, we
defined an air quality KPI. Thanks to the YA-DA Paths, the
system receives only the relevant data from the digital twin.
Thus, we get an increasingly efficient, fine-grained system.
The hierarchy between the mentioned terms can be better
represented in Fig. 2.

Sensor Data

YA-DA Path

YA-DA Model

Air Quality KPI

Fig. 2. Hierarchy between YA-DA terms.

IV. PERFORMANCE EVALUATION

In this work, Microsoft Azure DT (ADT) is a platform we
use as a service tool to provide twin graphs of the physical
objects [23]. ADT capabilities are DT Definition Language
(DTDL), an open modeling language, live representation,
input plugin, and output plugin. Using DTDL, we can define

the digital models that represent our physical entities. The
digital models can pinpoint semantic relationships between the
entities. We define sensor elements using DTDL, and it has
four main parts:

• Property defines an entity’s state. The property value is
both writable and storable, meaning its historical value
can be read at any time.

• Telemetry shows measured values obtained through de-
vice sensor readings and is not stored in the ADT. Thus,
it can stream through outsourced time-series applications
for monitoring or time-based analysis.

• Relationship represents different semantic meanings be-
tween interfaces.

• Component describes something that is a part of the
interface and does not need a separate entity in the twin
graph.

The above explanation is not a full DTDL definition of a
sensor entity but contains main parts. As a result, we have
connected the twins into a graph that reflects their interactions.
For data analysis and storage, the ADT platform is able to
stream the data through an external output plugin [24]. After
implementing the twin models with predefined interfaces and
relations among entities, we transmitted data to the brain part
of the proposed system as the output plugin of ADT using the
DT API.

We tested the performance of the software-defined YA-
DA data model. To this end, we used TON-IoT and AQ&U
as two real-world datasets [19] [20]. The ToN-IoT dataset
is comprised of heterogeneous data sources to evaluate the
fidelity and efficiency of different applications for IoT and
IIoT. The AQ&U dataset is created to monitor air quality
in Salt Lake City. The properties of these datasets are as in
table II. We constituted a new dataset of ten thousand samples
by taking particular samples from each dataset.

We reconfigured the sensors of the YA-DA data model
according to the created dataset. Since we used an available
dataset, not real-time data, we tested the proposed approach
in the digital twin and brain areas of the digital twin network
section of the proposed system. We set the DT synchronization
to be between 0 and 1. The value of 1 means full synchro-
nization, and 0 implies out-of-synchronization. We compared
the proposed solution’s performance implementation with and
without the YA-DA data model. The results showed that
all the required sensors to monitor air quality are classified
successfully. As can be seen in table III, the system has better



TABLE III
THE COMPARISON OF DT SYNCHRONIZATION

Number of
Nodes

DT Synchronization (∗)

with
YA-DA

without
YA-DA

4 0.65 0.47
6 0.61 0.42
16 0.74 0.57

(∗)The interval for the value is [0,1], in which closeness to 0
indicates poor and closeness to 1 represents a desirable outcome.

DT synchronization when using the YA-DA data model. Thus,
DT synchronization becomes fine-grained.

Then, we tested the average end-to-end delay between the
digital twin and brain areas of the digital twin network section
of the proposed system. The results are shown in Fig. 3. Since
the YA-DA data model has a tree structure, its average end-to-
end delay is better. Hence, we can provide that the DT network
has lower latency using YA-DA data model.
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After that, we examined the performance of the digital twin
network. Fig. 4 depicts the RTT result of the network. The
results showed that the data payload became around forty
percent better when we used the software-defined YA-DA data
model based on YANG. The reason for this result is that
we pulled data into the system using the YA-DA data model
instead of all raw data. Moreover, the network load is reduced
by getting specific data using YA-DA.

Finally, we scrutinized the air quality data in the monitoring
system of the brain part. We used Grafana to visualize and
analyze our air quality data. Grafana is a web-based, open-
source analytics and interactive visualization program [25].
Fig. 5 demonstrates the graphical representation of the air
quality data. This data includes particulate matter, air gases,
humidity, and temperature values. According to the values,
it can be stated that the air quality in this region is at an
acceptable level.
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V. CONCLUSION

In this paper, we design a YAng-based DAta model (YA-
DA) to improve the performance of IIoT data collection
inspired by the authentic YANG data model. DT synchro-
nization becomes fine-grained thanks to the YA-DA data
structure. Here, we propose a DT-enabled fine-grained IIoT
air quality monitoring system by taking advantage of DT and
IIoT technologies. Thus, we increase the efficiency of the air
quality monitoring system. Our simulation results showed that
our solution successfully reduces RTT and DT latency and
improves DT synchronization thanks to the software-defined
YA-DA data model.
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