
1

Derivative Descendants of Cyclic Codes and

Derivative Decoding
Qin Huang∗, Senior Member, IEEE, Bin Zhang

Abstract

This paper defines cyclic and minimal derivative descendants (DDs) of an extended cyclic code from the derivative

of the Mattson-Solomon polynomials, respectively. First, it demonstrates that the cyclic DDs are the same extended

cyclic code. It allows us to perform soft-decision decoding for extended cyclic codes based on their cyclic DDs.

Then, it proves that the minimal DDs are equivalent codes. It also allows us to perform soft-decision decoding based

on the minimal DDs with permutations. Simulation results show that our proposed derivative decoding can be close

to the maximum likelihood decoding for certain extended cyclic codes, including some extended BCH codes.

Index Terms

cyclic codes, Mattson-Solomon polynomial, soft-decision, derivative decoding

I. INTRODUCTION

Cyclic codes, first studied in 1957 [1], form a large class of error-control codes which include many well-known

codes, e.g., Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon codes, finite geometry codes, punctured

Reed-Muller (RM) codes etc. [2]–[5]. Due to the cyclic structure, their encoding and hard-decision decoding can

be implemented efficiently. Moreover, their inherent algebraic structure and soft-decision decoding [6]–[15] have

always attracted a lot of attention.

This paper starts from the derivative of Mattson-Solomon (MS) polynomials [2], [16]. We define two types of

derivative descendants (DDs) of an extended cyclic code C, cyclic DDs and minimal DDs, respectively. The first

type is defined as the smallest extended cyclic codes containing the derivatives of all the codewords in C. The

second type is defined as the smallest subspaces consisting of the derivatives of all codewords in C.

First, we demonstrate that the cyclic DDs of an extended binary cyclic code in different directions result in the

same extended cyclic code. It can be specified by analyzing the exponent set of MS polynomials. Based on their

cyclic DDs, we propose a soft-decision derivative decoding algorithm for extended binary cyclic codes. It consists

of three steps: calculating log-likelihood ratios (LLRs) of cyclic DDs, decoding cyclic DDs and voting for decision.

Simulation results show that the performance of the proposed derivative decoding is close to that of the maximum

Part of this article was presented at GlobeCom 2022. This work was supported by the National Natural Science Foundation of China under

Grant 62071026. (Qin Huang and Bin Zhang contributed equally to this work.) (Corresponding author: Qin Huang.)

December 12, 2022 DRAFT

ar
X

iv
:2

20
9.

09
05

1v
2

 [
cs

.I
T

]
 9

 D
ec

 2
02

2

2

likelihood decoding (MLD) for cyclic codes, e.g., (64, 45) and (64, 24) extended BCH (eBCH) codes. Besides we

conversely introduce cyclic derivative ascendant (DA) of an extended cyclic code C as well as their decoding.

Then, we prove that the minimal DDs of an extended binary cyclic code in different directions are equivalent.

Moreover, it reveals that the cyclic shift of a codeword in a minimal DD is a codeword in another minimal DD. As

a result, the derivative decoding can be carried out with only one decoder for the minimal DD in one direction and

cyclic shifting. Due to the small dimension of minimal DDs, it is attractive to perform derivative decoding based

on ordered statistics decoding (OSD) [17]. Simulation results show that the derivative decoding based on the OSD

with order-1 can outperform the higher order OSD.

The rest of the paper is organized as follows. Section II gives a brief review of cyclic codes and MS polynomials. In

Section III, we define the cyclic DDs and cyclic DAs of extended cyclic codes. Section IV presents the derivative

decoding algorithm. In Section V, we define the minimal DDs and present the derivative decoding based on

decodings of minimal DDs. Section VI concludes this paper.

II. CYCLIC CODES AND THEIR DECOMPOSITION

A. Cyclic codes and Mattson-Solomon polynomials

A linear code C of length n is cyclic if a cyclic shift of any codeword is also a codeword, i.e. whenever

a = [ai, i ∈ [n]] is in C then so is [ai+1, i ∈ [n]]. Here, [n] , {0, 1, 2, ..., n− 1} and subscripts are reduced modulo

n.

Let m be a positive integer. A binary cyclic code C of length n = 2m − 1 and dimension 0 < k ≤ n is an ideal

in the ring F2[x]/(xn − 1), which is generated by a generator polynomial g(x) with degree n− k such that g(x)

divides xn − 1.

Let α denote a primitive element of F2m . For a codeword a = [a0, a1, ..., an−1] corresponding to a code

polynomial a(x) =
∑n−1
i=0 aix

i, the associated Mattson-Solomon polynomial is defined over F2m as follows

A(z) ,
n−1∑
j=0

Ajz
j ,

where

Aj = a(α−j) =

n−1∑
i=0

aiα
−ij .

The codeword a can be recovered from A(z) by

a = [ai, i ∈ [n]] = [A(αi), i ∈ [n]].

The coefficient Aj is fixed to 0 if and only if α−j is a zero of g(x). Moreover, the MS polynomial of the cyclic

shift of a is A(αz).

We define the exponent set of all the MS polynomials associated with C as follows

SC , {j ∈ [n] : g(α−j) 6= 0}. (1)

December 12, 2022 DRAFT

3

For brevity, we call it the exponent set of C. Please note that its size is the same as the dimension k. We can

express C as

C = {[A(αi), i ∈ [n]] : A(z) =
∑
j∈SC

Ajz
j},

where Aj ∈ F2m . The conjugacy constraint [4, Ch. 6], i.e. A2j = A2
j is required to keep [A(αi), i ∈ [n]] binary.

The cyclic code C can be extended by adding an overall parity-check bit to each codeword. The overall parity-

check bit of a codeword a is the evaluation of the corresponding MS polynomial at 0, i.e., A(0) [2, Ch. 8].

Therefore, the extended cyclic code of C can be also identified by SC . We denote 0 in F2m by α∞ and define

I , {∞} ∪ [n]. The extended cyclic code C with exponent set SC can be expressed as

C = {[A(αi), i ∈ I] : A(z) =
∑
j∈SC

Ajz
j}.

Please note that α∞α = α∞. Thus we make the agreement ∞+ 1 =∞ mod n. Then C is an extended cyclic code

if whenever a = [ai, i ∈ I] is in C then its cyclic shift [ai+1, i ∈ I] is also in C. In the following, we mainly focus

on extended cyclic codes, and may use a and A(z) to denote the codeword interchangeably.

B. Decomposing cyclic codes as a direct sum of minimal cyclic codes

For an integer s ∈ [n], the cyclotomic coset modulo n containing s is Cs , {s, 2s, 22s, ..., 2ms−1s}, where ms is

the smallest positive integer such that 2mss = s mod n. The smallest entry of Cs is called the coset representative.

For a subset S of [n], we denote the smallest and the largest element of S by min(S) and max(S), respectively.

We denote the union of all the cyclotomic cosets which have nonempty intersections with S as cc(S) ,
⋃
s∈S Cs.

And we denote the set consisting of all the coset representatives in cc(S) as cr(S) ,
⋃
s∈S{min(Cs)}.

The extended minimal cyclic code associated with the cyclotomic coset Cs is

Ms = {[A(αi), i ∈ I] : A(z) = Tms(Asz
s)

for all As ∈ F2ms },

where Tms
(z) is the trace function

Tms
(z) ,

∑
j∈[ms]

z2
j

,

and F2ms is a subfield of F2m . It is clear that the exponent set of Ms is Cs.

An extended cyclic code with exponent set SC can be expressed as a direct sum of the extended minimal cyclic

codes, i.e.,
C =

⊕
s∈cr(SC)

Ms

= {[A(αi), i ∈ I] : A(z) =
∑

s∈cr(SC)

Tms
(Asz

s)

for all As ∈ F2ms },

where
⊕

is the direct sum operator. We call the set cr(SC) as the representative set of SC . We end this section

with the following example.

December 12, 2022 DRAFT

4

Example 1. Let α denote a primitve element in F24 . Consider the (16, 7) extended cyclic code C associated with

the generator polynomial g(x) = 1+x4 +x6 +x7 +x8. The zeros of g(x) are α1, α2, α4, α8, α3, α6, α12, α9. From

(1), the exponent set of C is SC = {0, 1, 2, 4, 8, 5, 10}. Then C can be identified by the set

{[A(αi), i ∈ I] : A(z) =
∑
j∈SC

Ajz
j},

where Aj ∈ F24 and satisfies A2j = A2
j . The representative set of SC is {0, 1, 5}. Note that m0 = 1, m1 = 4,

m5 = 2. Then C can be expressed as

C = {[A(αi), i ∈ I] : A0 + T4(A1z) + T2(A5z
5)},

where A0 ∈ F2, A1 ∈ F24 , A5 ∈ F22 .

III. CYCLIC DERIVATIVE DESCENDANTS AND ASCENDANTS

This section introduces cyclic DDs and cyclic DAs of extended cyclic codes. Their dimensions and distances are

also investigated.

A. Cyclic derivative descendants

Let β be a power of α. Consider a codeword a and its MS polynomial A(z). The derivative of A(z) in the

direction β is defined as

∆βA(z) , A(z + β)−A(z). (2)

With the above definition, we define the cyclic DDs of extended cyclic codes.

Definition 1. For an extended cyclic code C, its cyclic derivative descendant in the direction β denoted by D(C, β)

is the extended cyclic code with the smallest dimension which contains

{[∆βA(αi), i ∈ I] : A(z) ∈ C}.

In the following, we may use ∆βA(z) to denote the vector [∆βA(αi), i ∈ I] if the context is clear. For simplicity,

we may call the vector the derivative of a.

In fact, the cyclic DDs in all the directions are the same. To prove this, we start with the extended minimal cyclic

codes. For an integer s ∈ [n], we denote its binary expansion by s = [s0, s1, ..., sm−1] such that s =
∑m−1
j=0 sj2

j .

We define the support set of the binary expansion of s as Ws , {j ∈ [m] : sj 6= 0}. And we say the binary

expansion of s′ is properly covered by that of s if Ws′ $ Ws. Let P (s) denote the set consisting of all the

nonnegetive intergers whose binary expansion is properly covered by that of s, i.e.

P (s) , {
∑
j∈V

2j : V $Ws}. (3)

The exponent set of the cyclic DDs of an extended minimal cyclic code is given by the following lemma.

Lemma 1. Consider the extended minimal cyclic codeMs. The exponent set of D(Ms, β) for any β is cc
(
P (s)

)
.

December 12, 2022 DRAFT

5

Fig. 1. The cyclic DD of the (16, 7) extended cyclic code is a (16, 5) extended cyclic code.

Proof. For any A(z) ∈Ms, its derivative in direction β is

∆βA(z) = Tms

(
As(z + β)s

)
− Tms

(Asz
s)

= Tms

(
As

(
(z + β)s − zs

))
.

Note that
(z + β)s − zs =

∏
j∈Ws

(z2
j

+ β2j)−
∏
j∈Ws

z2
j

=
∑
V$Ws

(z
∑

j∈V 2jβ
∑

j∈Ws/V 2j)

=
∑

k∈P (s)

zkβs−k.

Then
∆βA(z) = Tms(As

∑
k∈P (s)

zkβs−k).

From the above equation, we see that the exponents of z must be a subset of cc
(
P (s)

)
. Note that the coefficients

of ∆βA(z) must satisfy the conjugacy constraint, because ∆βA(αi) = A(αi+β)−A(αi), and A(αi) and A(αi+β)

are in F2 for all i ∈ I . Therefore we can write ∆βA(z) in the form

∆βA(z) =
∑

s′∈cr
(
P (s)

)Tms′ (A
′
s′z

s′),

where

A′s′ =
∑

i∈[ms],k∈P (s),

k2i[mod n]=s′

β(s−k)2iA2i

s .

Treat A′s′ as a function of As, i.e. A′s′(As). Note that the degree of A′s′(As) is at most 2ms−1 which implies

A′s′(As) has at most 2ms−1 roots. Therefore, A′s′ is not always zero. As a result, the representative set of the

exponent set of D(C, β) is exactly cr
(
P (s)

)
while the exponent set is cc

(
P (s)

)
.

December 12, 2022 DRAFT

6

The above lemma shows that the cyclic DDs of an extended minimal cyclic code in different directions are the

same. Using the fact that the extended cyclic code C is a direct sum of extended minimal cyclic codes, we obtain

the following theorem immediately.

Theorem 1. For an extended cyclic code C with exponent set SC , its cyclic DDs in different directions are the same

code denoted by D(C), whose exponent set SD is
⋃
s∈cr(SC) cc

(
P (s)

)
and the corresponding representative set

is
⋃
s∈cr(SC) cr

(
P (s)

)
.

Example 2. Continuation of Example 1. The representative set of the exponent set of the (16, 7) extended cyclic

code C is {0, 1, 5}. According to (3), P (0) = ∅, P (1) = {0}, P (5) = {0, 1, 4}. From Theorem 1, we conclude that

the cyclic DD of C denoted by D(C) is the (16, 5) extended cyclic code with the exponent set SD = {0, 1, 2, 4, 8},

i.e.,

D(C) = {[A(αi), i ∈ I] : A(z) = A0 + T4(A1z)}.

It shows that D(C) is the (16, 5) Hadamard code. For code codeword a = [A(αi), i ∈ I] ∈ C, all its derivatives,

[∆α0A(αi), i ∈ I]

[∆α1A(αi), i ∈ I]

...

[∆α14A(αi), i ∈ I],

are codewords in D(C) as illustrated in Fig. 1.

For any nontrivial extended binary cyclic code C, i.e. SC 6= {0}, we give the following propositions to characaterize

the dimension and distance of their cyclic DDs.

For any binary vector v, we denote its Hamming weight by wt(v). For a subset S of [n], we define deg(S) ,

max(
⋃
s∈S{wt(s)}). Let d denote the minimum Hamming distance of C. And let kD and dD denote the dimension

and the minimum Hamming distance of D(C), respectively.

Proposition 1. kD ≤
∑deg(SC)−1
i=0

(
m
i

)
.

Proof. The dimension of D(C) satisfies

kD = |SD| ≤
deg(SD)∑
i=0

(
m

i

)
.

From Theorem 1,

deg(SD) = deg

(⋃
s∈cr(SC)

cc
(
P (s)

))
.

Note that the binary expansion of 2s modulo n is a cyclic shift of s. Thus, deg(Cs) = wt(s) and deg

(
cc
(
P (s)

))
=

deg
(
P (s)

)
. Then,

deg(SD) = deg
(⋃
s∈cr(SC)

P (s)
)
.

December 12, 2022 DRAFT

7

Note that
⋃
s∈cr(SC) P (s) ⊆

⋃
s∈SC P (s), then

deg(SD) ≤ deg
(⋃
s∈SC

P (s)
)
.

For s = 0, we have Ws = ∅ and P (s) = ∅. Then deg
(
P (s)

)
= 0. For any positive s ∈ SC , from (3), we have

deg
(
P (s)

)
= wt(s)− 1. Then deg

(⋃
s∈SC P (s)

)
= deg(SC)− 1. As a result,

kD ≤
deg(SD)∑
i=0

(
m

i

)
≤

deg(SC)−1∑
i=0

(
m

i

)
.

Proposition 2. dD ≤ 2d.

Proof. Consider the codeword A(z) ∈ C with wt
(
A(z)

)
= d. The Hamming weight of its derivative ∆βA(z)

satisifies
wt
(

∆βA(z)
)

=wt
(
A(z + β)−A(z)

)
≤wt

(
A(z + β)

)
+ wt

(
A(z)

)
=2d.

As a result, dD ≤ 2d.

B. Cyclic derivative ascendant

Conversely to the cyclic DDs, we define cyclic DAs of an extended cyclic code as follows.

Definition 2. For an extended cyclic code C, we define its cyclic derivative ascendant denoted by A(C) as the

extended cyclic code with the largest dimension such that D
(
A(C)

)
⊆ C.

We give a proposition to characterize the exponent set of the cyclic DA of C.

Proposition 3. Let SA denote the exponent set of A(C). A nonnegative integer s smaller than n is in SA if and

only if

cc
(
P (s)

)
⊆ SC .

Proof. Because the conjugacy constraint is required, s ∈ SA if and only if Cs ⊆ SA which is equivalent to

Ms ⊆ A(C).

If Ms ⊆ A(C), from (2) and Definition 2, we have D(Ms) ⊆ D
(
A(C)

)
⊆ C. From Lemma 1, the exponent set

of D(Ms) is cc
(
P (s)

)
. Then cc

(
P (s)

)
⊆ SC .

If cc
(
P (s)

)
⊆ SC , then D(Ms) ⊆ C. From Definition 2, A(C) is the extended cyclic code with the largest

dimension such that D
(
A(C)

)
⊆ C. As a result, Ms ⊆ A(C).

Now we investigate the dimension and distance of A(C). Let kA and dA denote the dimension and minimum

Hamming distance of A(C), respectively. We give the following propositions. The proofs are given in the Appendix.

December 12, 2022 DRAFT

8

Fig. 2. Derivative decoding for extended cyclic codes.

Proposition 4. kA ≤
∑deg(SC)+1
i=0

(
m
i

)
.

Proposition 5. dA ≥ d/2.

IV. DERIVATIVE DECODING FOR EXTENDED BINARY CYCLIC CODES

In this section, we propose a derivative decoding based on the decodings of cyclic DDs. It can efficiently decode

the cyclic codes whose cyclic DDs have efficient soft-decision decoding algorithms. In particular, we propose to

perform the derivative decoding on those codes whose cyclic DDs are extended Euclidean Geometry (EG) codes

[11] [3, Chap. 8] which can be efficiently decoded by the sum-product algorithm (SPA) [18], [19]. In addition, we

discuss the cyclic DDs and DAs of RM codes, and their decodings.

A. Algorithm description

Let y = [yi, i ∈ I] denote the received vector of transmitting a codeword a = [A(αi), i ∈ I] of the extended

binary cyclic code C over a binary-input memoryless symmetric (BMS) channel. Let W (y|x) denote the probability

that y is output by the channel when x is input to the channel. The LLR vector of the channel output y is

L = [Li : i ∈ I], where Li is given by

Li = ln(
W (yi|0)

W (yi|1)
). (4)

The algorithm takes L as an input and runs in an iterative manner. Let B denote a collection of directions, i.e.

a subset of F∗2m , where F∗2m consists of all the nonzero elements in F2m . As shown in Fig. 2, each iteration has

three steps: 1) calculate LLR vectors of cyclic DDs for all β ∈ B; 2) decode all the cyclic DDs; 3) vote for the

estimated codeword from the decoded descendant codewords.

1) The LLR vector associated with the cyclic DD in the direction β is defined as

Lβ , [Lβi , i ∈ I], (5)

where Lβi is the LLR value associated with ∆βA(αi) = A(αi + β)−A(αi). We calculate Lβi as

Lβi = 2 tanh−1
(

tanh(
Li
2

) tanh(
Lj
2

)
)
, (6)

December 12, 2022 DRAFT

9

Algorithm 1 Derivative Decoding Based on Cyclic Derivative Descendants
Input: The LLR vector L; the maximum iteration number Nmax; a collection of directions B; the parity check

matrix H

Output: The decoded codeword: â

1: for t = 1, 2, . . . , Nmax do

2: for β ∈ B do

3: Lβ ← derivativeLLR(L, β)

4: âβ ← decoderDD(Lβ)

5: L̃β ← getVote(L, âβ , β)

6: end for

7: L← 1
|B|
∑
β∈F∗

2m
L̃β . Here,

∑
denotes the component-wise summation

8: âi ← 1[Li < 0] for all i ∈ I

9: if HaT = 0 then

10: Break

11: end if

12: end for

13: return â

where j satisfies αj = αi + β. We denote the procedure of calculating Lβ with the input L and β by Lβ =

derivativeLLR(L, β).

2) According to Theorem 1, we can use the same decoder, denoted by decoderDD, to decode all the cyclic

DDs. The decoding result of Lβ is given by âβ = decoderDD(Lβ).

3) The final step is to use a soft-voting scheme to obtain a new LLR vector L̂. From (6), the “soft vote” from

the estimate âβi to Li is L̃βi , (1− 2âβi)Lj . For the direction β, the “soft vote” from âβ to L is given by

L̃β = getVote(L, âβ , β) , [(1− 2âβi)Lj , i ∈ I].

Here we have used the natural embedding of F2 in R for the interpretation of âβi in the above equation. Update L

as the average of all the “soft votes” from different directions

L =
1

|B|
∑

β∈F∗
2m

L̃β .

Here,
∑

denotes the component-wise summation.

Once we update L, we take â = [âi, i ∈ I] where âi = 1[Li < 0]. If â is a codeword in C, i.e. HâT = 0

where H is the partiry-check matrix of C and âT denotes the transpose of â, we end the iteration and output â.

Otherwise, proceed into the next iteration unless obtaining a codeword or reaching a maximal iteration number

Nmax. The pseudo code of the above procedure is shown in Algorithm 1.

Remark 1. The proposed decoding works for cyclic codes of length of 2m − 1 as well. Set L∞=0. Then we can

decode them as their extended cyclic codes.

December 12, 2022 DRAFT

10

Remark 2. In Algorithm 1, the functions derivativeLLR, decoderDD and getVote can be implemented

separately for each direction. As a result, the proposed algorithm can be implemented in parallel.

B. Computational complexity

We analyze the computational complexity of the proposed algorithm per iteration according to Algorithm 1.

Denote the code length by n. It takes 4n floating point operations to perform derivativeLLR. In each iteration,

the decoder performs derivativeLLR and decoderDD |B| times. At the end of each iteration, it needs |B|n

floating point operations for calculating the average of all the “soft votes”. Denote the number of floating point

operation of decoderDD by Ω. We get the following proposition.

Proposition 6. The derivative decoding consumes 5|B|n+ |B|Ω floating point operations per iteration.

C. Derivative decoding for eBCH codes based on SPA

Consider the (64, 24) eBCH code and the (64, 45) eBCH code. The corresponding generator polynomials in

hexadecimal form are 0xF69AC20921 and 0x782CF, respectively. From (1), the corresponding representative sets are

S1 = {0, 1, 3, 5, 9, 21} with deg(S1) = 3 and S2 = {0, 1, 3, 5, 7, 9, 11, 13, 21, 27} with deg(S2) = 4. According

to Theorem 1, the representative sets associated with their cyclic DDs are {0, 1, 5} and {0, 1, 3, 5, 9, 11, 13}. The

corresponding codes are the (64, 13) extended EG code and a (64, 34) extended cyclic code. Please note that the

(64, 34) extended cyclic code is a subcode of the (64, 37) extended EG code.

Consider additive white Gaussian noise (AWGN) channels. We decode the two eBCH codes by our proposed

derivative decoding algorithm. The decoder for their cyclic DDs is the SPA decoder. The parity-check matrix used

for decoding the (64, 13) extended EG code is a 336×64 matrix with row weight 4 and column weight 21, and the

one used for decoding the (64, 34) extended cyclic code is a 72× 64 matrix with row weight 8 and column weight

17. We set the maximum iteration numbers for SPA and DD as NSPA,max = 20 and NDD,max = 3, respectively. We

perform derivative decoding in all the 63 directions and denote the procedure by DD(63)-SPA. In addition, we

perform derivative decoding in 16 directions at random and denote the procedure by DD(16)-SPA. We compare

with the performance of decoding BCH codes using the Berlekamp-Massey (BM) algorithm [5] [20].

The simulation results are shown in Fig. 3 and the performance of the MLD is also provided. We see that at

the block error ratio (BLER) of 10−4, DD(63)-SPA for the (64, 24) eBCH code and the (64, 45) eBCH code

outperforms BM for the corresponding BCH codes about 2.9 dB and 1.9 dB, respectively. Moreover, the gaps

between the MLD and DD(63)-SPA are 0.5 dB and 0.3 dB in, respectively. In addition, for decoding the (64, 45)

eBCH code, DD(16)-SPA only performs about 0.2 dB away from DD(63)-SPA at the BLER of 10−4.

Besides, we compare with the performance of decoding 5G CA-polar codes [21] [22] with the same length and

dimension. The decoder used for the CA-polar codes is the Successive Cancellation List (SCL) decoder [23] with

list size 32. And the CRC length is set to 6. At the BLER of 10−5, DD(63)-SPA for the (64, 24) eBCH code and

the (64, 45) eBCH code outperforms SCL for the CA-polar codes with the same length and dimension about 0.4

dB and 0.2 dB, respectively.

December 12, 2022 DRAFT

11

(a) (64, 24) eBCH (b) (64, 45) eBCH

Fig. 3. Performance of decoding eBCH codes using DD-SPA, decoding BCH codes using BM algorithm and decoding CA-polar codes using

SCL decoder. The list size of the SCL decoder is 32 and the CRC length is 6.

We discuss the computational complexity of decoding the (64, 45) eBCH code using DD(63)-SPA. Denote the

floating point operation cost of the SPA in one iteration by ΩSPA. From Proposition 6, the number of the floating

point operations is 320 ∗ 63 + 63NSPAΩSPA per iteration where ΩSPA is the average iteration number of the SPA.

At the Eb/N0 of 5.0 dB, the average iteration number of the SPA is 1.16 and the average iteration number of

DD(63)-SPA is 1.00. As a result, the cost of DD(63)-SPA is around 20160 + 73ΩSPA floating point operations.

Besides, the average iteration number of the SPA in DD(16)-SPA and the average iteration number of DD(16)-SPA

is also 1.16 and 1.00, respectively. Then the cost of DD(16)-SPA is around 5120+19ΩSPA floating point operations.

D. Cyclic DDs of RM codes and their decoding

Consider the RM code of length 2m and order r denoted by RM(r,m). The zero set of the generator polynomial

associated with RM(r,m) is {αj : 0 < wt(j) < m−r} [4, Chap. 6]. According to (1), the exponent set of RM(r,m)

is {j : 0 ≤ wt(j) ≤ r}. According to Theorem 1, we conclude that the cyclic DD of RM(r,m) is RM(r − 1,m).

Note that the dimension and minimum Hamming distance of RM(r,m) are
∑r
i=0

(
m
i

)
and 2m−r, respectively. The

equalities in Proposition 1 and Proposition 2 hold for RM codes and their cyclic DDs. Similarly, according to

Proposition 3, we conclude that the cyclic DA of RM(r,m) is RM(r + 1,m). The equalities in Proposition 4 and

Proposition 5 hold for the RM codes and their cyclic DAs.

As a result, we can decode RM(r,m) codes using derivative decoding based on the decodings of RM(r− 1,m)

codes. Let T denote a subset of F2m such that (β + T) ∪ T = F2m . From (2), we have [∆βA(αi), αi ∈ T] =

[∆βA(αi), αi ∈ β + T]. Considering the |u|u + v|-construction and the automorphism groups of RM codes [2,

Chap. 13], we conclude that [∆βA(αi), αi ∈ T] is a codeword of RM(r − 1,m − 1). The proof is given in the

Appendix. From (6), we have [Lβi , α
i ∈ T] = [Lβi , α

i ∈ β + T], where [Lβi , α
i ∈ T] is the LLR vector associated

For a subset T of F2m , β + T denote the set {β + αi : αi ∈ T}.

December 12, 2022 DRAFT

12

with [∆βA(αi), αi ∈ T]. In other words, our derivative decoding derived from the MS polynomials can carry on

based on the decodings of RM(r − 1,m− 1) codes as the state-of-the-art projection decodings [14], [15] derived

from the m-variate polynomials, and obtain the same performance.

E. Decoding cyclic derivative ascendants of EG codes

If an extended cyclic code can be efficiently soft-decision decoded, then its cyclic DA can be soft-decision

decoded by the derivative decoding algorithm. Consider the (256, 175) extended EG code with minimum Hamming

distance 18 which can be efficiently decoded by the SPA decoder. The corresponding generator polynomial is

0x11377F7700FA55335BA55. The representative set of its exponent set is S = {0, 1, 3, 5, 7, 9, 11, 13, 17, 19, 21,

23, 25, 27, 29, 37, 39, 43, 51, 53, 55, 59, 85, 87, 119} with deg(S) = 6. According to Proposition 3, we can construct

its cyclic DA. It is an extended cyclic code of length 256 and dimension 191 ≤
∑7
i=0

(
8
i

)
with distance d ≥ 18/2 =

9, according to Proposition 4 and Proposition 5. In fact, this code, denoted by DA(256, 191) has minimum Hamming

distance at least 16 according to the BCH bound [4]. The corresponding generator polynomial of DA(256, 191) is

0x19ACCC1AE68A0CEFF.

In Fig. 4, we provide the simulation result of decoding DA(256, 191) using derivative decoding based on SPA

with all the directions in F∗2m , denoted by DD(255)-SPA. The parity-check matrix used for decoding the (256, 175)

extended EG code is a 272 × 256 matrix with row weight 16 and column weight 17. The maximum iteration

numbers for derivative decoding and SPA are set to NDD,max = 4 and NSPA,max = 20, respectively. The performance

of the MLD is also provided. We see that at the BLER of 10−4, the gap between the MLD and DD-SPA is about

0.9 dB.

Fig. 4. Performance of decoding DA(256, 191) using DD(255)-SPA.

December 12, 2022 DRAFT

13

V. MINIMAL DERIVATIVE DESCENDANTS AND DERIVATIVE DECODING

This section investigates the minimal subspace which contains all the derivatives of an extended cyclic code

in one direction. We prove that all these subspaces, denoted as the minimal DDs, are equivalent. Similarly, we

can decode an extended cyclic code based on the decodings of its minimal DDs. Simulation results show that the

derivative decoding based on the OSD with order-1 can outperform the OSD with higher order. In the following,

we denote the OSD with order-l by OSD(l).

A. Minimal derivative descendants of extended cyclic codes

Definition 3. Consider an extended cyclic code C and the direction β. We denote the minimal subspace which

contains the derivatives of all the codewords of C in β as the minimal derivative descendant in β

Dβ(C) = {[∆βA(αi), i ∈ I] : A(z) ∈ C}.

Two codes are said to be equivalent [2, Chap. 1] if there is a permutation of the coordinates together with

permutations of the coordinate values for each of the coordinates, that map the codewords of one code into those

of the other. The following theorem proves that the minimal DDs in different directions are equivalent.

For an integer b, we make the agreement ∞ + b = ∞ mod n. For a codeword a = [ai, i ∈ I] ∈ C, we define

the b-cyclic shift of a as a(b) , [ai+b, i ∈ I].

Theorem 2. The minimial DDs of an extended cyclic code C in different directions are equivalent.

Proof. Let β1 and β2 be powers of α, i.e. β1 = αb1 and β2 = αb2 . For any codeword ∆β1
A(z) ∈ Dβ1

(C), there

is ∆β2A(β−12 β1z) ∈ Dβ2(C) such that

∆β2A(β−12 β1z) = A
(
β−12 β1(z + β2)

)
−A(β−12 β1z)

= A(αb1−b2z + β1)−A(αb1−b2z),

(7)

is the (b1 − b2)-cyclic shift of ∆β1
A(z). Please note that this is true for any pair of β1 and β2. As a result, the

minimal DDs of C in all the directions are equivalent.

The above theorem shows that the cyclic shift of a codeword in one minimal DD is a codeword in another

minimal DD. We obtain the following corollary immediatly from (7) by setting b1 = b and b2 = 0.

Corollary 1. For any codeword A(z) ∈ C, the b-cyclic shift of ∆αbA(z) is equal to ∆1A(αbz).

According to Definitions 1 and 3, the minimal DDs are the subcodes of the corresponding cyclic DDs. In the

next proposition, we show that the cyclic DD of an extended cyclic code C is the summation of all the minimal

DDs of C.

Proposition 7. For an extended cyclic code C, the summation of all its minimal DDs is its cyclic DD, i.e.,

D(C) =
∑

β∈F∗
2m

Dβ(C). (8)

December 12, 2022 DRAFT

14

Proof. We are going to prove that
∑
β∈F∗

2m
Dβ(C) is the smallest extended cyclic code containing all the minimal

DDs of C. Obviously, it is the smallest subspace of Fn2 containing all the minimal DDs of C. We only need to prove

that
∑
β∈F∗

2m
Dβ(C) is an extended cyclic code.

For any codeword ∆βA(z) = A(z + β)−A(z) in
∑
β∈F∗

2m
Dβ(C), its cyclic shift

A(αz + β)−A(αz) = A
(
α(z + α−1β)

)
−A(αz)

= ∆α−1βA(αz),

(9)

is also a codeword in
∑
β∈F∗

2m
Dβ(C). As a result,

∑
β∈F∗

2m
Dβ(C) is an extended cyclic code.

In general, it is hard to determine the minimal Hamming distance of an arbitrary linear code. With Proposition 7,

we can tell that the minimal Hamming distance of a minimal DD of C is lower bounded by the minimal Hamming

distance of the cyclic DD of C, which can be lower bounded by the BCH bound [24], [25].

Example 3. Continuation of Example 2. The generator matrix G of the (16, 7) extended cyclic code is

1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0

1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0

1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0

1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0

1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1


.

The columns are indexed by 0, α0, α1, ..., α14. Calculate the derivatives of the rows of G in α0 and obtain the

following matrix 

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1

1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 1


.

The minimal DD D1(C) of C is spanned by the rows of the above matrix. We can perform Gauss elimination on

the above matrix and obtain the generator matrix of D1(C),
1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 .
It shows that D1(C) is a (16, 3) code. From Proposition 7 and Example 2, D1(C) is a subcode of the (16, 5)

Hadamard code whose minimal Hamming distance is 8. Thus, its minimal Hamming distance is at least 8. In fact,

its minimal Hamming distance is exactly 8.

December 12, 2022 DRAFT

15

Consider the codeword a = [1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0] in C and its cyclic shift a(1) = [1 1 0 0 0 1 0 1 1

1 0 0 0 0 0 0]. The derivative of a in α is [0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1]. The derivative of a in α0 is [0 0 1 1

0 1 0 1 1 1 1 0 0 0 1 0] which is a cyclic shift of the derivative of a in α.

B. Decoding based on decodings of minimal DDs

According to Theorem 2 and Corollary 1, we can perform derivative decoding on C based on the decodings of

D1(C) with cyclic shiftings.

Consider transmitting a codeword a = [A(αi), i ∈ I] over a BMS channel, and the recieved vector is y. Let L

denote the corresponding LLR vector. For the direction β, we denote the vector [∆βA(αi), i ∈ I] by aβ . From

Corollary 1, the b-cyclic shift of aβ , denoted by aβ,(b), is equal to the derivative of a(b) in α0. We denote the

b-cyclic shift of L as L(b). Then we calculate the LLR vector associated with aβ,(b) as

Lβ,(b) , [L
β,(b)
i , i ∈ I], (10)

where

L
β,(b)
i = 2 tanh−1

(
tanh(

L
(b)
i

2
) tanh(

L
(b)
j

2
)
)
, (11)

where j satisifies αj = αi + 1. Now we can treat Lβ,(b) as a LLR vector associated with an codeword in

D1(C). Denote a soft-decision decoder for D1(C) by decoderDD. The estimate of aβ,(b) is given by âβ,(b) =

decoderDD(Lβ,(b)). According to (11), the “soft vote” for L(b)
i from the direction β is L̃β,(b)i = (1−2â

β,(b)
i)L

(b)
j .

And the “soft vote” for L(b) from the direction β is given by

L̃β,(b) = getVote(L(b),aβ,(b), α0).

Cyclicly shift it b places to the right and obtain the “soft vote” for L from the direction β, i.e. L̃β . The remaining

steps mimic to Algorithm 1 in Section IV. We provide the pseudo code in Algorithm 2.

Remark 3. The advantage of calculating Lβ,(b) rather than Lβ is that we can treat Lβ,(b) as the LLR vector

associated with the direction α0 for all β ∈ F2m . It allows us to keep using derivative, decoderDD and

getVote for the direction α0.

Remark 4. For any A(z) ∈ C, there is ∆1A(αi) = ∆1A(αi + 1). Denote a subset of F2m by T such that

T ∪ (1 + T) = F2m . For any codeword ∆1A(z) ∈ D1(C), there is [∆1A(αi), αi ∈ T] = [∆1A(αi), αi ∈ 1 + T].

Besides, from (11), there is [L
β,(b)
i , αi ∈ 1 + T] = [L

β,(b)
i , αi ∈ 1 + T]. It can be used to simplify the decoding for

minimal DDs in Algorithm 2.

December 12, 2022 DRAFT

16

Algorithm 2 Derivative Decoding Based on Minimal Derivative Descendants
Input: The LLR vector L; the maximum iteration number Nmax; a collection of directions B; the parity check

matrix H

Output: The decoded codeword: â

1: for t = 1, 2, . . . , Nmax do

2: for b = 1, 2, . . . , n do

3: L(b) ← L(b−1) . Take L as L(0)

4: if αb ∈ B then

5: Lβ,(b) ← derivativeLLR(L(b), 1)

6: âβ,(b) ← decoderDD(Lβ,(b))

7: L̃β,(b) ← getVote(âβ,(b),Lb, 1)

8: L̃β ← L̃β,(b) . Cyclicly shift L̃β,(b) b places to the right

9: end if

10: end for

11: L← 1
|B|
∑
β∈B L̃β . Here,

∑
denotes the component-wise summation

12: âi ← 1[Li < 0] for all i ∈ I

13: if HaT = 0 then

14: Break

15: end if

16: end for

17: return â

C. Derivative decoding based on OSD

We propose to perform derivative decoding based on OSD. Suppose A1(z), A2(z), ..., AkD (z) forms a basis of

D1(C). We can perform OSD based on the generator matrix given by this basis,

GD =


A1(α∞) A1(α0) ... A1(αn−1)

A2(α∞) A2(α0) ... A2(αn−1)

...

AkD (α∞) AkD (α0) ... AkD (αn−1)


, [gα∞ gα0 ... gαn−1].

In fact, from Remark 4, we can implement the OSD decoder with the matrix [gαi , αi ∈ T] and only take [L
β,(b)
i , αi ∈

T] as the input when decoding Lβ,(b) in Algorithm 2. We denote the derivative decoding based on OSD with by

DD-OSD. In particular, we focus on the derivative decoding based on OSD(1) and denote it by DD-OSD(1).

Consider the (128, 36), (256, 37), and (256, 79) eBCH codes. We investigate their cyclic DDs and minimal DDs,

December 12, 2022 DRAFT

17

TABLE I

CODE PARAMETERS OF EXTENDED BCH CODES AND THEIR DESCENDANTS

nC kC dC,BCH kD dD,BCH kD1

128 36 32 22 48 14

256 37 92 25 96 16

256 79 56 45 64 31

(a) (128, 36) eBCH (b) (256, 37) eBCH (c) (256, 79) eBCH

Fig. 5. Performance of decoding eBCH codes using DD-OSD(1) and OSD(3).

and list the code paramters in Table I. In the top line of Table I, nC and kC denote the code length and the code

dimension of the eBCH codes, respectively; kD and kD1
denote the code dimension of the cyclic DDs and minimal

DDs, respectively; dC,BCH and dD,BCH denote the BCH bounded distance of these eBCH codes and their cyclic

DDs, respectively.

In general, DD-OSD(1) outperforms OSD(3) for decoding extended cyclic codes with moderate codelength at

high SNR regions. For derivative decoding the (nC , kC) eBCH code in Table I, we take B as a collection of all the

nonzero elements in the corresponding splitting field and denote the procedure by DD(|B|)-OSD(1). From Remark

4, we can decode its minimal DD as a (nC/2, kD1
/2) code with minimal Hamming distance dD,BCH/2. In addition,

we perform derivative decoding in |B| = 32 directions at random, and denote the procedure by DD(32)-OSD(1).

The maximum iteration number NDD,max is 4 in all the cases. We compare with the OSD(3) and provide the

simulation results over AWGN channels in Fig. 5.

Following the complexity analysis in [17], we investigate the number of floating point operations of OSD of

DD-OSD(1). It consumes nDlog2(nD)+kD1
(nD−kD1

) floating point operations to decode the (nD, kD1
) minimal

DD using the OSD(1). From Proposition 6, it consumes |B|5n + |B|(nDlog2
(
nD) + kD1

(nD − kD1
)
)

floating

point operations to perform DD(|B|)-OSD(1) on the (n, k) eBCH code per iteration.

Consider decoding the (256, 79) eBCH code at the Eb/N0 of 4.0 dB. The average iteration number of DD(255)-

OSD(1) is 1.02 and that of DD(32)-OSD(1) is 1.03. As a result, the average cost of DD(255)-OSD(1) is 1.02 ∗

255 ∗ 1280 + 1.02 ∗ (255 ∗ 8 + 255 ∗ 176 ∗ 79) = 3, 951, 439 floating point operations and that of DD(32)-OSD(1)

is 1.03 ∗ 32 ∗ 1280 + 1.03 ∗ (32 ∗ 8 + 32 ∗ 176 ∗ 79) = 500, 728 floating point operations. For comparision, the cost

December 12, 2022 DRAFT

18

of OSD(3) is (
(
79
3

)
+
(
79
2

)
+
(
79
1

)
) ∗ 176 + 256 ∗ 8 = 14, 476, 112 floating point operations.

VI. CONCLUSION

This paper introduces cyclic DDs and minimal DDs for extended cyclic codes and investigates their properties.

These properties allow us to decode extended cyclic codes with soft-decision. Besides, it works for cyclic codes of

length of 2m − 1 as well according to Remark 1. Simulation results verify that they perform very well for some

eBCH codes over AWGN channels.

APPENDIX A

PROOF OF PROPOSITION 4

The dimension of A(C) satisfies

kD = |SA| ≤
deg(SA)∑
i=0

(
m

i

)
.

From Proposition 3, for any s ∈ SA, P (s) ⊆ SC . From (3), deg
(
P (s)

)
= wt(s)− 1. Then

wt(s) = deg
(
P (s)

)
+ 1 ≤ deg(SC) + 1.

This leads deg(SA) ≤ deg(SC) + 1. As a result,

kA ≤
deg(SA)∑
i=0

(
m

i

)
≤

deg(SC)+1∑
i=0

(
m

i

)
.

APPENDIX B

PROOF OF PROPOSITION 5

Let D
(
A(C)

)
denote the cyclic DD of A(C) with minimum Hamming distance dD(A). From Proposition 2, we

have dD(A) ≤ 2dA. From Definition 2, we have D
(
A(C)

)
⊆ C which indicates dD(A) ≥ d. As a result, dA ≥ d/2.

APPENDIX C

PROOF OF EQUIVALENCE FOR RM CODES

To begin, we recap the equivalence between representing RM codes by m-variate polynomials and represent-

ing RM codes by MS polynomials. The exponent set of RM(r,m) is S = {s : 0 ≤ wt(s) ≤ r}. For any

A(z) ∈RM(r,m), we can write it as

A(z) =
∑
s∈S

Asz
s.

Note that we can write z as z =
∑m−1
i=0 ziα

i where zi ∈ F2 and we can write s as s =
∑m−1
j=0 sj2

j where

sj ∈ {0, 1}. Then

A(z) =
∑
s∈S

As(

m−1∑
i=0

ziα
i)

∑m−1
j=0 sj2

j

=
∑
s∈S

As

m−1∏
j=0

(

m−1∑
i=0

ziα
i2j)sj .

December 12, 2022 DRAFT

19

Please note that for any s ∈ S, 0 ≤ wt(s) ≤ r. Thus

A(z) =
∑

Vj[m],|V |≤r

uV
∏
i∈V

zi,

where uV is a summation of Asαi2
j

over a collection of s, i, j. For |V | = 0, A(0) = u∅, so u∅ ∈ F2. For |V | = 1,

A(αi) = u∅+u{i}. Therefore, u{i} ∈ F2 for all i ∈ [m]. Note that for any V j [m], A(
∑
i∈V α

i) =
∑
V ′jV uV ′ =∑

V ′$V uV ′ + uV . One can easily prove that uV ∈ F2 for all V ∈ [m] and |V | ≤ r by induction. As a result,

we can treat A(z) as a m-variate Boolean polynomial A(z0, z1, ..., zm−1) with degree no larger than r. Moreover,

[A(αi), i ∈ I] is equal to [A(z0, z1, ..., zm−1), [z0, z1, .., zm−1] ∈ Fm2]. Note that the dimension of RM(r,m) is∑r
i=0

(
m
i

)
. We conclude that RM(r,m) consists of the evaluation vectors of all the m-variate Boolean polynomials

with degree no larger than r over Fm2 .

First consider the derivative of A(z) in the direction α0,

∆1A(z) = A(z + 1)−A(z)

= A
(m−1∑
i=1

ziα
i + (z0 + 1)

)
−A(

m−1∑
i=0

ziα
i)

=
∑

V j[m],|V |≤r,

0∈V

uV (z0 + 1)
∏

i∈V/{0}

zi+

∑
V j[m],|V |≤r,

0/∈V

uV
∏
i∈V

zi −
∑

Vj[m],|V |≤r

uV
∏
i∈V

zi

=
∑

V j[m],|V |≤r,

0∈V

uV
∏

i∈V/{0}

zi.

(12)

It is a (m−1)-variate Boolean polynomial with degree no larger than r−1 and we denote it by A′(z1, z2, ..., zm−1).

Denote T1 = {
∑m−1
j=1 zjα

j : zj ∈ F2 for j = 1, 2, ...,m− 1} such that T1 ∪ (1 + T1) = F2m . The vector

[∆1A(αi), αi ∈ T] =

[A′(z1, z2, ..., zm−1), [z1, z2, ..., zm−1] ∈ (F2)m−1]
(13)

is a codeword in RM(r − 1,m− 1).

Now consider the derivative of A(z) in the direction β = αb. Take T = {βαi : αi ∈ T1}. We have β + T =

{βαi : αi ∈ 1 + T1} and T ∪ (β + T) = F2m . According to Corrollary 1, the b-cyclic shift of ∆βA(z) is equal to

∆1A(βz). It indicates the evaluation of ∆βA(z) at βαi is equal to the evaluation of ∆1A(βz) at αi. As a result,

[∆βA(αi), αi ∈ T] = [∆1A(βαi), αi ∈ T1}]

is also a codeword in RM(r − 1,m− 1).

REFERENCES

[1] E. Prange, Cyclic error-correcting codes in two symbols. Air force Cambridge research center, 1957.

[2] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. Elsevier, 1977, vol. 16.

[3] S. Lin and D. J. Costello, Error control coding. Prentice hall New York, 2001, vol. 2, no. 4.

[4] R. E. Blahut, Algebraic codes for data transmission. Cambridge university press, 2003.

December 12, 2022 DRAFT

20

[5] E. R. Berlekamp, Algebraic coding theory (revised edition). World Scientific, 2015.

[6] A. Vardy and Y. Be’ery, “Maximum-likelihood soft decision decoding of BCH codes,” IEEE Trans. on Inf. Theory, vol. 40, no. 2, pp.

546–554, 1994.

[7] N. Kamiya, “On algebraic soft-decision decoding algorithms for BCH codes,” IEEE Trans. on Inf. Theory, vol. 47, no. 1, pp. 45–58, 2001.

[8] M. Bossert, R. Schulz, and S. Bitzer, “On hard and soft decision decoding of BCH codes,” IEEE Transactions on Information Theory,

2022.

[9] X. W. T. L. Tapp, A. A. Luna and S. B. Wicker, “Extended Hamming and BCH soft decision decoders for mobile data applications,”

IEEE trans. on commun., vol. 47, no. 3, pp. 333–337, 1999.

[10] S. Lin, K. Abdel-Ghaffar, J. Li, and K. Liu, “A Scheme for Collective Encoding and Iterative Soft-Decision Decoding of Cyclic Codes

of Prime Lengths: Applications to Reed-Solomon, BCH, and Quadratic Residue Codes,” IEEE Trans. on Inf. Theory, vol. 66, no. 9, pp.

5358–5378, 2020.

[11] Y. Kou, S. Lin, and M. P. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and new results,” IEEE

Trans. Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.

[12] V. M. Sidel’nikov and A. Pershakov, “Decoding of Reed-Muller codes with a large number of errors,” Probl. Peredachi Inf., vol. 28, no. 3,

pp. 80–94, 1992.

[13] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller codes: recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.

1260–1266, Mar. 2006.

[14] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp.

4948–4965, Aug. 2020.

[15] M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed-Muller codes using redundant code constraints,” in Proc. IEEE Int. Symp. Inf.

Theory. IEEE, June 2020, pp. 42–47.

[16] H. Mattson and G. Solomon, “A new treatment of Bose-Chaudhuri codes,” Journal of the Society for Industrial and Applied Mathematics,

vol. 9, no. 4, pp. 654–669, 1961.

[17] M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41,

no. 5, pp. 1379–1396, 1995.

[18] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,

pp. 498–519, Feb. 2001.

[19] R. Lucas, M. P. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step majority logic deductible codes based on belief propagation,”

IEEE Trans. Commun., vol. 48, no. 6, pp. 931–937, June 2000.

[20] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[21] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,”

vol. 55, no. 7, pp. 3051–3073, 6 2009.

[22] “3GPP TS 38.212, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and

Channel Coding (Release 16) V16.4.0 Technical Specification (TS),” Dec. 2020.

[23] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, Mar. 2015.

[24] R. C. Bose and D. K. Ray-Chaudhuri, “Further results on error correcting binary group codes,” Information and Control, vol. 3, no. 3,

pp. 279–290, 1960.

[25] ——, “On a class of error correcting binary group codes,” Information and control, vol. 3, no. 1, pp. 68–79, 1960.

December 12, 2022 DRAFT

	I Introduction
	II Cyclic Codes and Their Decomposition
	II-A Cyclic codes and Mattson-Solomon polynomials
	II-B Decomposing cyclic codes as a direct sum of minimal cyclic codes

	III Cyclic Derivative Descendants and Ascendants
	III-A Cyclic derivative descendants
	III-B Cyclic derivative ascendant

	IV Derivative Decoding For Extended Binary Cyclic Codes
	IV-A Algorithm description
	IV-B Computational complexity
	IV-C Derivative decoding for eBCH codes based on SPA
	IV-D Cyclic DDs of RM codes and their decoding
	IV-E Decoding cyclic derivative ascendants of EG codes

	V Minimal Derivative Descendants and Derivative Decoding
	V-A Minimal derivative descendants of extended cyclic codes
	V-B Decoding based on decodings of minimal DDs
	V-C Derivative decoding based on OSD

	VI Conclusion
	Appendix A: Proof of Proposition 4
	Appendix B: Proof of Proposition 5
	Appendix C: Proof of Equivalence for RM Codes
	References

