
 A Comparison Between Tilt-input and Facial
Tracking as Input Methods for Mobile Games

Justin Cuaresma
Dept. of Electrical Engineering and Computer Science

York University
Toronto, Canada

justincuaresma@gmail.com

I. Scott MacKenzie
Dept. of Electrical Engineering and Computer Science

York University
Toronto, Canada

mack@cse.yorku.ca

Abstract—A user study was performed to compare two non-

touch input methods for mobile gaming: tilt-input and facial
tracking. User performance was measured on a mobile game
called StarJelly installed on a Google Nexus 7 HD tablet. The tilt-
input method yielded significantly better performance. The mean
game-score attained using tilt-input was 665.8. This was 7××
higher than the mean of 95.1 for facial tracking. Additionally,
participants were more precise with tilt-input with a mean star
count of 19.7, compared to a mean of 1.9 using facial tracking.
Although tilt-input was superior, participants praised facial
tracking as challenging and innovative.

Keywords—Android; Mobile Games; Facial Tracking; Tilt-
input; Accelerometer; Sensors; Qualcomm Snapdragon

I. INTRODUCTION
With the rampant rise in smartphone usage, the gaming

industry has adjusted to address to the convenience and appeal
of the mobile context. The genesis of mobile gaming dates to
the late 1990s when Nokia included a re-vamped version of the
arcade game Snake on their mobile phones. It was a standard
pre-loaded feature.1 Present-day mobile games are, of course,
far superior in terms of graphics and the sophistication of
gameplay. Importantly, today’s mobile games are available
from download sites, such as the App Store on Apple’s iOS or
the Play Store on Google’s Android OS.

Although game developers put considerable effort in
advancing the state of the art in graphics and themes for
gameplay, less interest is directed at the UI (user interface) of
mobile games. The controls for mobile games on smartphones
are limited as they heavily rely on touch-input. Most such
games employ a soft touchpad for navigational input with some
games relying on taps or touch gestures. A common UI
scenario is thumb input using a soft d-pad on the left and soft
buttons on the right, the latter to control in-game secondary
actions. An example is Sega’s Sonic the Hedgehog 2. See
Fig. 1. Another method of recent interest is tilt-input using a
mobile device’s built-in accelerometer [5]. Some games, such
as Imangi Studios’ Temple Run, an infinite-runner game,
effectively use tilt-input while also relying on touch-based
input.

1 http://en.wikipedia.org/wiki/Snake_(video_game)

Fig. 1. Sega’s Sonic the Hedgehog 2 illustrates a typical mobile UI, with soft
touch zones as input controls.

One drawback of touch input for mobile games is the lack
of tactile feedback and proprioception. While it is relatively
easy to implement soft versions of the buttons on traditional
handheld game consoles, doing so on a flat touch-sensing
surface is problematic. The lack of a tactile sense can be
mitigated (somewhat) using either auditory feedback or the
device’s vibrotactile actuator to create a “response” when a
player presses, pushes, or slides on a soft control. However,
interacting with a soft control lacks proprioception – the sense
of relative position of body parts (e.g., fingers, limbs)
combined with a sense of strength and effort in movement. Of
course, physical controls inherently have location and shape
and “push back” when the user actuates them. These
properties bear valuable information to the player. So, there
are significant challenges in implementing soft controls on
touchscreens. However, the wide variety of sensors on modern
mobile devices has opened new avenues to interaction, such as
the aforementioned tilt-input using the device’s accelerometer.
Another sensor of potential interest for gaming is the device’s
built-in camera.

Tracking of a user’s body or a body part is available in
many applications today, both in mobile and non-mobile
contexts. The most obvious non-mobile example is
Microsoft’s Kinect, which uses a camera and depth sensor to
locate and respond to the user’s position and movement in
front of a console. Position and movement information allow
the player to control the in-game environment using a natural

70

mapping from the player’s movements to the movement of
scene objects, such as an avatar [2]. Face tracking is also of
interest, for example, to detect the number of faces in a scene.
In a gaming context, facial tracking has been predominantly
used to sense and augment a user’s face, providing an
experience known as augmented reality (AR). For example, a
2010 Iron Man 2 promotional website released a web app
demo that used a webcam to place an Iron Man helmet on the
user. The demo translates and rotates the 3D helmet object
based on the user’s head movements.

In mobile gaming, the notion of facial tracking is fairly
new. There are a few mobile apps which use the front-facing
camera on mobile devices; however, games using facial
tracking are scarce. One example is Umoove’s Flying
Experience for iOS, introduced in February 2014. The game
uses the device’s front-facing camera to track the user’s head
movements. Head movements are used to navigate a 3D
environment.

In the next section, we review previous work in mobile
gaming related to tilt-input or tracking a user’s body or body
parts. This is followed with a description of our methodology
to empirically compare tilt-input and facial tracking as input
methods for mobile gaming. The results are then presented and
discussed with conclusions drawn.

A. Related Work
Wang et al. [10] performed a study seeking to enrich the

experience of motion-detection games by employing a face
tracking system with an Xbox gamepad. To test forms of hybrid
control schemes, they tested conventional control with and
without facial tracking added. Employing facial tracking added
a new axis of in-game control. Participants performed better
when facial tracking was added to the conventional physical
control scheme. Additionally, the experiment observed that
players felt more involved in the games they were playing and
stimulated a higher emotional response when facial tracking
was implemented versus without it. In contrast, our
experiment compares tilt and facial tracking as individual input
methods and separate control schemes.

Sko and Gardner [9] conducted a similar study that used
head tracking in a first-person game environment using a
webcam. The experiment employed natural head movements
which mapped to four different gameplay controls: zooming,
spinning, peering, and iron sighting. The experiment also
implemented two ambient (or perceptual) techniques: head-
coupled perspective (HCP), which mimics the parallax effect
of a scene viewed from a window, and handy-cam, which
replicates the shaky effect of a handheld camera. These
ambient techniques have no effect in gameplay controls as they
only enhance visual feedback. Sko and Gardner observed a
general positive feedback with participants most receptive to
peering. It was also noted that the participants experienced
neck fatigue and pain when performing iron sighting, which
required the user to tilt his/her head to the right. In addition, the
HCP technique was ineffective due to the latency of the
system.

Similarly, Francone and Nigay [4] performed a study on
mobile devices using facial tracking to mimic user perception.

By using the front-facing camera, a pseudo sense of depth and
perception was rendered. The technique was found acceptable,
with participants claiming the interaction was natural,
attractive, and innovative. However, Francone and Nigay also
noted that the camera’s field of view was limited and therefore
could not always capture the face of the user. Additionally, the
small screen clipped regions of the rendered image and
therefore compromised the perception of depth.

Zhu et al. [11] conducted an experiment comparing head
tracking and gaze tracking as an input controller for a 3D
soccer game. Similar to related work, the research observed
that head tracking provided a more immersive experience and
kept the participants engaged. It was also shown that head
tracking was inferior to gaze tracking because head motion
required more physical movement.

Alternatively, Chehimi and Coulton conducted an
experiment dealing with a motion-controlled 3D mobile game
[3]. In the experiment, they compared a mobile device’s
accelerometer and physical keypad as input to navigate around
a 3D environment. Participants found the accelerometer control
scheme encouraging and easier to use than the phone’s
physical keypad. The accelerometer-based input method was
also observed to have an easier learning curve versus the phone
keypad. The experiment showed that the tilt-based controls
provided a more intuitive experience for both gamers and non-
gamers.

Cairns et al. [2] compared touch and tilt in a study using a
mobile racing game, Beach Buggy Blitz. Tilting produced
higher levels of immersion and a better performance versus
touch. These results were attributed to the natural mapping of
tilt to a physical steering wheel. The steering metaphor
provided players an easy introduction to the game’s mechanics.

 Browne and Anand [1] evaluated commonly used input
methods for mobile games. Participants’ preferences from most
to least preferred were accelerometer (tilt-input), simulated
buttons, and finally, touch gestures. Similar to Chehimi and
Coulton’s study, the participants found the accelerometer input
method intuitive and engaging. The evaluation also showed
that the reason participants gave a poorer rating to simulated
buttons and touch gestures was the lack of tactile feedback. In
the case of the simulated buttons, the fingers of the participants
occluded the button. This resulted in a confusing sequence of
actions.

B. Overview
Our user study compared two input methods: tilt-input and

facial tracking. The study compared both input methods and
observed player behaviour including learnability and efficiency
with respect to speed and accuracy. The main goal was to
assess the relatively new use of facial tracking as an input
method for mobile gaming. Tilt-input, as a more common
input method, was used as a point of comparison.

The study used the facial tracking and recognition API of
the Qualcomm Snapdragon processor used in mobile game
environments [7]. Participants were tested using an endless
runner-styled game called StarJelly. The game utilizes the
accelerometer sensor (tilt-input) and the front-facing camera of

71

Fig. 2. Google Nexus 7 HD (released Fall
2013).

Fig. 3. Qualcomm Facial Tracking Demo
App showing head-tracking capabilities.

Fig. 4. StarJelly gameplay and user interface.

a Nexus 7 HD tablet (facial tracking). Each participant was
given five lives per input method. The objective of the game
was to survive as long as possible and to collect as many stars
as possible. Together, these measures provided a total score
per life iteration. See the Software subsection below.

II. METHOD

A. Participants

The experiment included 12 voluntary participants
recruited from the local university campus. Ten participants
were male, two female. Ages ranged from 19 to 23 years. All
participants were smartphone or tablet owners with casual
experience in mobile gaming. The participants were given no
incentives or compensation.

B. Hardware and Software
The hardware was a Google Nexus 7 HD tablet running

Android 4.4 KitKat. See Fig. 2. The device has a 7.02 inch
display with resolution of 1920 × 1200 pixels and a density of
323 pixels/inch.

The software was developed in Java using the Android
SDK, with special focus on the Qualcomm Snapdragon Facial
Recognition API. See Fig. 3. The API is only available for
devices with a built-in Qualcomm Snapdragon processor [7].

We developed a custom game called StarJelly. StarJelly is an
endless-runner game set in an underwater environment. The
game implements two game modes to accommodate the two
input methods under investigation: tilt-input and facial
tracking. The player navigates a Jellyfish avatar horizontally
while blowfishes and stars advance vertically down the screen.
See Fig. 4. The velocity of the blowfishes ranged from 413 to
1180 pixels per second downwards. On the other hand, the
velocity of the stars ranged from 236 to 472 pixels per second
downwards.

The goal was to avoid the blowfishes (to stay alive) and to
collect stars (to collect star-points). Stars were collected via

contact by moving the Jellyfish horizontally. More blowfishes
were added as gameplay progressed; thus, the game difficulty
increased, making a collision inevitable.

Each participant was given a total of ten lives: five for tilt-
based gameplay and five for facial tracking gameplay. The
player lost a life upon colliding with a blowfish. The score per
life iteration was based on how long the participant survived
without a blowfish collision as well as the number of stars
collected.

Fig. 5. a) Setup activity. b) Results activity.

The application began with a setup activity which prompted
for the user’s initials and parameters including a group code
(for counterbalancing), input method, participant number, and
session number. See Fig. 5a. When completed, the application
transitioned into the game activity. The game mode depended
on the input method specified in the setup activity. Each round,
or “life”, ended when the user collided with a blowfish. This
triggered a ready state with a cool-down period followed by the
next round. After five rounds, the application started an activity
which presented results to the participant. The results included
the score, stars collected, and survival time per round. The last

72

row in the results activity indicated the total score of the
participant. See Fig. 5b.

In the tilt-based gameplay, the movement of the player was
based on the angle of device tilt. Tilting was sensed about the
y-axis of the device (aka roll) and mapped to the position of the
Jellyfish. The mapping was 7 pixels per degree of tilt in the
direction of tilt relative to the neutral position. On the other
hand, facial tracking gameplay used the device’s front-facing
camera to calculate the x-coordinates of the left and right eye.
These were averaged to yield an overall facial coordinate for
movement control. The screen width of the game was 1200 px,
with the home position in the middle. The player rotated
his/her head left and right to move the Jellyfish left and right.
The mapping was 13.3 pixels per degree of head rotation in the
direction of rotation. Thus, the Jellyfish was positioned at the
left edge of the screen with 45° left head rotation and at the
right edge with 45° right head rotation.

The two game modes were similar in structure, with two
minor differences. The first difference was in the cool down
period when the player loses a life. In the tilt-input mode, the
cool-down period was 3 seconds. This was ample time for the
participants to prepare for the next round (life). In the facial
tracking condition, the cool-down period was 10 seconds. This
was necessary so participants could get a feel for the mapping
of their face and could self-calibrate by moving the Jellyfish
avatar around if necessary.

The other difference was a slight UI addition in the facial
tracking condition. A green and red dot was rendered
underneath the Jellyfish. See Fig. 6. The dot provided visual
feedback on the player’s face-to-game mapping. A missing dot
indicated that the camera was not picking up the left or right
eye coordinates of the participant. In addition, the dot allowed
participants to easily navigate the avatar by providing a
primary focal point. The game also utilized sound effects and
upbeat background music.

Fig. 6. The game in the ready state. For the facial tracking condition, a facial
tracking dot is seen below the Jellyfish avatar.

C. Procedure
Participants were tested in a well-lit environment to provide

adequate lighting for the front-facing camera. They were seated
in front of a table and were instructed to keep their hands and
forearms rested on the table during the facial tracking game
mode. See Fig. 7. Participants were also given the option of
lifting their arms off the table during the tilt game mode.
Before starting the game, participants were briefly introduced
to the objectives of the experiment and the goal of comparing
tilt-input and facial tracking as input methods for mobile
gaming. Participant were then asked to enter their initials in the
setup activity as consent for participation in the experiment.

Fig. 7. Participant performing experiment.

Each game mode was briefly demonstrated. No practice
trials were given. Each participant took about 10 minutes to
complete the experiment. After the ten trials were completed,
participants were given a questionnaire to solicit qualitative
feedback. Items included participant experience, input method
preference, and an open-end request for comments on the input
methods.

D. Design
The experiment was a 2 × 5 within-subjects design. There

were two independent variables: input method (tilt-input, facial
tracking) and life (1, 2, 3, 4, 5). The dependent variables were
survival time, stars collected, and score. Survival time was
based on how long the participant survived each round. The
score was an aggregate measure equal to the sum of 10× the
survival time and 10× the number of stars collected.

Participants were divided into two groups to counterbalance
the order of input methods, and thereby offset learning effects.

The total number of testing rounds was 120 (12 participants
× 2 input methods × 5 lives).

III. RESULTS
The effect of group (order of testing) was not statistically

significant for survival time (F1,10 = 1.312, ns), stars collected
(F1,10 = 0.847, ns), and score (F1,10 = 1.234, ns). Thus, we
conclude that counterbalancing had the desired effect of
offsetting learning effects due to the order of testing.

73

A. Survival Time
The grand mean for survival time for all 120 rounds was

27.2 seconds. The mean survival time travelled for tilt-input
was 47.1 seconds. In contrast, the mean survival time for the
facial tracking input method was 7.3 seconds. The mean
survival time with tilt-input was therefore 6.5× longer than the
survival time with facial tracking. Not surprisingly, the
difference between the two input methods was statistically
significant (F1,10 = 65.74, p < .0001).

The overall mean survival time by life shows that the facial
tracking input method was inferior for navigating the Jellyfish
avatar across the screen to avoid blowfish obstacles. The life
iteration breakdown in Fig. 8 shows learning effects in both
input methods.

Fig. 8. Survival time per life iteration.

The longest survival time for the tilt-input method
happened on the fourth life with a time of 49.9 s. On the other
hand, the facial tracking input method reached a peak of 10.3 s,
also on the fourth life. The highest recorded survival times
were 84.1 s for the tilt input method and 34.9 s for facial
tracking. As illustrated in Fig. 8, participants did learn and
improve with each iteration. The survival time with the tilt-
input method increased by 14% from the first iteration to the
fourth iteration. In contrast, the survival time with facial
tracking increased by 102% from the first iteration to the fourth
iteration, indicating greater learning with the facial tracking
input method. However, it was also illustrated that the mean
survival time regressed back to an average of 56 s on the fifth
iteration and is correlated with head fatigue, as discussed
below. Due to the variability in the measured responses, the
effect of life on input method for survival time was not
statistically significant (F1,4 = 0.143, ns).

B. Stars Collected
The grand mean for stars collected for all 120 lives was

10.9 stars. The overall mean for stars collected with tilt-input
was 19.5 stars. The mean with facial tracking was 2.3 stars.
Thus, tilt-input averaged 9.5× more stars collected than with
facial tracking. The difference was statistically significant
(F1,10 = 57.56, p < .0001).

It was observed that tilt-input gave participants more
precision and, therefore, allowed them to move around faster

which resulted in more stars collected. It was also noted that
participants were more interested in staying alive versus
collecting more stars with the facial tracking game mode. The
effect of life on input method for stars collected was not
statistically significant, however (F1,4 = 0.299, ns). The
breakdown is illustrated in Fig. 9.

Fig. 9. Breakdown of stars collected per life based on input method. Error
bars indicate ±1 SD.

C. Score
Score is an aggregate measure of survival time and the

number of stars collected:

 Score = (10 × survival time) + (10 × stars)

Based on the preceding results, it is evident that the scores
attained with the tilt-input method would be much higher.
Fig. 10 shows the substantial difference in the scores based on
the two input methods.

Fig. 10. Total score per life iteration.

The overall mean score for all 120 iterations was 376.9.
The mean score for tilt-input was 665.8 while the mean score
for facial tracking was 95.1. Hence, the mean score with tilt-
input was 7× more than the mean score with facial tracking.
The highest score achieved in the facial tracking mode was 479
while the lowest score was 12. In addition, the highest score

74

was 1101 with tilt-input while the lowest was 19. The
difference in the scores between the facial tracking and tilt-
input was statistically significant (F1,10 = 66.49, p < .0001).

The improvement in score with practice with tilt-input was
35% from the first life iteration to the fourth and 11% from the
first to the last iteration. In contrast, the score improved by
96% with facial tracking from the first life iteration to the
fourth. Due to variability in the measured responses, the effect
of life iteration on score was not statistically significant (F1,4 =
0.168, ns). As mentioned previously with mean survival time,
the increase depicts a learning effect with performance which
could be amplified given more trials and rest periods.

Overall, it is clear that the facial tracking input method was
inferior to the tilt input method. Several factors were involved
in the large differences between the two input methods,
including experience and hardware limitations. Hardware
limitations are a known issue with tracking-based applications
as noted by Sherstyuk and Treskunov in their head tracking
evaluation [8]. The main issue is system lag, which is caused
by the substantial CPU processing required to convert camera
images to face-feature coordinates. For games, lag is a deal-
breaker since game-inputs must be highly responsive.

With respect to lag, there was a large difference in latency
between the two input methods. The average latency for each
accelerometer motion event captured during the tilt game mode
is 20 ms. In contrast, facial tracking events were captured every
125 ms and therefore yield a latency that is 6× greater than
with tilt input. In addition, the facial tracking mode was
susceptible to unexpected drops. That is, due to lighting
conditions, swift head motions, or rotation of the head beyond
a threshold, the facial tracker sometimes fails to detect a face in
the camera’s field of view. When the tracking is lost, the player
avatar remains in the last known location until another tracking
event is captured. These constraints were also observed in
previous studies on facial or head tracking [6, 9, 10, 11]. Not
surprisingly, these factors had adverse effects on performance.

As well, all the participants had at least some experience
with mobile games using tilt-input. With this in mind, the
participants were already skilled in tilt-based gaming.
Conversely, the participants did not have experience with facial
tracking input for mobile games.

D. Participant Feedback
Based on the questionnaire portion of the experiment, there

was mixed feedback from the participants regarding the input
method of preference. Surprisingly, half the participants
preferred the facial tracking input method. One participant
concisely described why he preferred facial tracking over tilt:

 It’s a lot more engaging because there isn't any other
game with facial tracking. Tilting and swiping is a lot
more common when it comes to mobile games and
learning to control another bodily function such as
head movement while playing a game is just another
step further in game development. While the input
method is a lot more challenging, it brings a different
satisfaction once you finish playing.

 Another participant explained why he preferred tilt over
facial tracking:

The tilt control scheme is smooth and responsive. It
was easier to control. I found it much easier to get out
of tight situations. This can be good when you’re
playing games that require fast timing.

Participants also provided additional feedback based on
both input methods. Many participants highlighted the fact that
facial tracking, while difficult, provided an innovative way to
play mobile games. Most of the participants believed that it just
takes practice with facial tracking to obtain optimal results.
Some participants highlighted that the latency of the camera
was a key issue with the facial tracking input. This notion was
also evident in previous work by Sko and Garder which
addressed the inaccuracy and high-latency of head tracking [9].
Due to the limitation of the hardware, the facial processing was
not up to speed with the frame rate of the game and this
hindered participant performance. Some participants, however,
used this disadvantage by timing their next movements. Many
participants noted that the tilt input method was common in
numerous games today and only provided a mediocre
engagement level. In addition, the participant feedback shows
that facial tracking was much harder in comparison to the tilt.
One participant expressed his concern over the difficulty gap
stating that the tilt input method was so easy that the game
eventually got too repetitive.

Additionaly, four participants experienced slight head
fatigue. Fatigue has been a common issue associated with
tilting and rotation the head [9, 11]. This factor may have led to
the decline in score, as previously noted. That is, after the 4th
life iteration, the score and survival time was just as low as
with the first iteration.

IV. CONCLUSION
 Tilt-input and facial tracking were compared as input
methods for mobile gaming. The experiment utilized a newly
developed mobile app called StarJelly, an endless runner-
styled game in which players avoid obstacles and collect stars.
The mean scores were 665.8 for tilt-based input 95.1 for facial
tracking. The difference was substantial: 7× higher for tilt-
input. However, this is not a surprise as many of the
participants had prior experience with tilt-based games.

Participants were also observed to collect more stars when
playing the game using tilt-input. On the other hand,
participants mainly focused on avoiding obstacles when
playing the game using the facial tracking as input. Although
the tilt-input method triumphed over facial tracking, many
participants still preferred the facial tracking input and saw it as
an innovative and exciting way to play mobile games.

Facial tracking is a natural interaction mode allowing
players to interact using their face and a front-facing camera.
However, the high processing requirements for head tracking
provided adverse effects on the interaction. Two main factors
affected the performance of the user during facial tracking:
lack of experience and the latency of the camera. While facial
tracking provides a new way to play mobile games, given the

75

hardware limitations [8], it is not adequate in a high-speed
gaming environment at the present time.

V. FUTURE WORK
 Our research is open to future work. One obvious extension
is to test participants over longer and more intensive gaming
sessions where learning can be tracked for more than five lives
or rounds. In addition, better hardware could be used to address
the latency issues associated with facial tracking. Future work
could also implement facial tracking in slower-paced
environments focusing on an immersive experience rather than
performance. As observed in this study and previous work [6,
9], head tracking hurts performance in fast paced videogames
due to issues of latency, inaccuracy, and fatigue.

REFERENCES

[1] K. Browne and C. Anand, "An empirical evaluation of user interfaces
for a mobile video game," Entertainment Computing, 3(1),1-10, 2012.

[2] P. Cairns, J. Li, W. Wang, A. I. Nordin, “The influence of controllers on
immersion in mobile games,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems – CHI ’14, New York: ACM,
2014, pp. 371-380.

[3] F. Chehimi and P. Coulton, "Motion controlled mobile 3D multiplayer
gaming," in Proceedings of the 2008 International Conference on
Advances in Computer Entertainment Technology – ACE ’08, New
York: ACM, pp. 267-270.

[4] J. Francone and L. Nigay, "Using the user's point of view for interaction
on mobile devices," in Proceedings of the 23rd French Speaking
Conference on Human-Computer Interaction – IHM ‘11, New York:
ACM, 2011, pp. 1-8.

[5] M. Joselli and E. Clua, "gRmobile: A framework for touch and
accelerometer gesture recognition for mobile games," in Proceedings of
the 2009 VIII Brazilian Symposium on Games and Digital Entertainment
– SBGAMES ’09, New York: IEEE, 2009, pp. 141-150.

[6] A. Kulshreshth and J. LaViola, “Evaluating performance benefits of
head tracking in modern video games,” in Proceedings of the 1st
Symposium on Spatial User Interaction – SUI ’13, New York: ACM,
2013, pp. 53-60.

[7] Qualcomm. Snapdragon SDK for Android,
https://developer.qualcomm.com/mobile-development/add-advanced-
features/snapdragon-sdk-android, 2014.

[8] A. Sherstyuk and A. Treskunov, "Head tracking for 3D games:
technology evaluation using CryENGINE2 and faceAPI," in
Proceedings of 2013 IEEE Virtual Reality – VR ’13, New York: IEEE,
2013, pp. 67-68.

[9] T. Sko and H. Gardner, “Head tracking in first-person games: interaction
using a web-camera,” in Proceedings of the 12th International
Conference on Human-Computer Interaction – INTERACT ’09, Berlin:
Springer, 2009, pp. 342-355.

[10] S. Wang, X. Xiong, Y. Xu, C. Wang, W. Zhang, X. Dai, et al., "Face-
tracking as an augmented input in video games: enhancing presence,
role-playing and control," in Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems – CHI ‘06, New
York: ACM, 2006, pp. 1097-1106.

[11] D. Zhu, T. Gedeon, K. Taylor, “Head or gaze? Controlling remote
camera for hands-busy tasks in teleoperation: a comparison,” in
Proceedings of the 22nd Conference of the Computer-Human Interaction
Special Interest Group of Australia – OZCHI ’10, New York: ACM,
2010, pp. 300-303.

76

