Procedural Weapons Generation for Unreal
Tournament 111

Daniele Gravina
Dipartimento di Elettronica, Informazione e Bioingegneria
Politercnico di Milano
Milan, Italy
Email: daniele.gravina@mail.polimi.it

Abstract—Design a set of weapons for a competitive first
person shooter (FPS) is not an easy task: it involves several
challenges, such as balancing, diversity, and novelty. In this
paper, we combine procedural content generation and evolution-
ary computation to solve this complex task. In particular, we
introduce a novel approach to procedurally generate weapons
for Unreal Tournament III, a popular commercial FPS. In our
approach, each weapon is represented as a parameters vector and
evaluated based on game statistics. We tested our approach on
three different application scenarios that represents three typical
design problems: (i) create a balanced set of weapons, (ii) improve
a given weapon with the least possible changes, and (iii) create a
set of weapons with some specific design goals. Finally, we also
performed a preliminary user study to validate our work. Our
results are promising and suggest that the proposed approach
might be successfully used to support the weapon design process.

I. INTRODUCTION

Nowadays, game industry is very competitive and to
succeed it is very important to feature a large amount of
game content with high quality and high degree of variety.
Unfortunately, the design of such content is one of the most
expensive and time consuming activities of the whole de-
velopment process. In fact, the lack of time and resources
to implement the pipeline required to produce high quality
contents is often one of the major factor that set the AAA
productions apart from the middle-sized ones. To make the
problem even more challenging, different game genres require
to produce very different kind of contents with their specific
problems and peculiarities. In particular, for a competitive first
person shooter (FPS), the weapons available in the game play
a key role: with dozens of titles available on the market,
developers always aim at designing a set of weapons that
stands out with respect to the competitors.

In this work, we combine procedural content generation
(PCG) and evolutionary computation to generate weapons for
Unreal Tournament III (UT3), a rather popular competitive
first person shooter. Our aim is to propose a novel approach
to design a set of balanced weapons with a large amount
of variety and suitable for different playing strategies. We
extended UT3 so that a weapon can be represented with a
vector of parameters and it can be tested in game. Accordingly,
we propose several metrics to evaluate the weapons based
on few game statistics that can be easily collected through
a simple simulation. Therefore, we described three possible
scenarios where an evolutionary algorithm can be applied
to evolve weapons, using the proposed metrics as a fitness
function. Finally, to assess the quality of the evolved weapons,

Daniele Loiacono
Dipartimento di Elettronica, Informazione e Bioingegneria
Politercnico di Milano
Milan, Italy
Email: daniele.loiacono@polimi.it

we carried out a preliminary user study with more than 30
users. Overall, our results are promising and we believe that
our approach could be useful to assist developers during the
design of a set of weapons.

The paper is organized as follows. In Section II we provide
an overview of the related work. Then, in Section III we briefly
present UT3 and in Section IV we illustrate our approach.
Section V, Section VI, and Section VII presents the three
application scenarios and discusses the experimental results.
Finally, in Section VIII we report the results of our user study
and in Section IX we draw some conclusions.

II. RELATED WORK

Back in the early days, procedural content generation
(PCG) was originally used in games as Beneath Apple ! and
Elite > to deal with hardware constraints: due to the very
limited memory available, a large amount of game content was
procedurally generated on the fly. Nowadays, PCG is instead
used either to support the generation of specific contents (e.g.,
terrains, trees, building, etc) or to provide the players with an
endless gaming experience.

Recently, PCG attracted a lot of interest also in the game
research community since the introduction of the search-based
procedural content generation (SB-PCG) [1], which combines
the procedural content generation methods with a search-based
algorithms, such as the genetic algorithms, to automatically
generate high-quality game content. So far, SB-PCG proved
to be successful in several game genres such as platform
games [2]-[4], racing games [5]-[8], RPG games [9], strategy
games [10], and others [11], [12].

In this work, we focus on first person shooter (FPS) games,
a very popular genre of game where the player controls a
character from a first person subjective and has to shoot the
opponents. An FPS features two major types of content: the
maps where the fight happens and the weapons that players
can use. In a previous work, Cardamone et al. [13] applied
SB-PCG to evolve maps with an interesting gameplay for
Cube 2: Sauerbraten 3, an open source first person shooter.
Later, Lanzi et al. [14] extended the work of Cardamone et
al. by applying SB-PCG to the problem of evolving balanced
maps for FPS when players have different skill levels or are
using different weapons. Concerning the weapons, McDuffee

Thttp://en.wikipedia.org/wiki/Beneath_Apple_Manor
Zhttp://en.wikipedia.org/wiki/Elite_(video_game)
3http://sauerbraten.org

and Pantaleev [15] proposed to apply the SB-PCG to generate
weapons in FPS. In particular, they developed Team Blockhead
Wars, a rather simple multiplayer FPS that features fully cus-
tomizable weapons through a set of parameters (e.g., damage,
rate of fire, ammunition, etc.); thus, a genetic algorithm was
applied to evolve new weapons based on the statistics collected
from human players: the more a weapon is used by players
(both in terms of times and kills performed) the highest would
be its fitness.

The approach proposed in this paper is inspired to the work
of McDuffee and Pantaleev [15] with three major differences:
(1) instead of developing our own prototype of FPS, we
extend commercial FPS to enable the procedural generation
of weapons; (ii) we propose several metrics to evaluate the
evolved weapons, based on game statistics collected through
simulations that involve only computer-controlled characters,
i.e., our approach does not require human players to evolve
weapons; (iii) we test our approach in three different applica-
tion scenarios.

III. UNREAL TOURNAMENT III

Unreal Tournament III (UT3) is the last title of the popular
series of first person shooters, Unreal, developed by Epic
Games*. UT3 is a competitive multiplayer games but it also
provides a sophisticated artificial intelligence to allow playing
against computer controlled characters, called bots. The game
also features several types of games, including deathmatch,
where each player plays against all the others and capture the
flag, where two teams fight each other to steal the flag of
the opponents. UT3 was developed with the Unreal Engine’,
a very popular game engine that was used for developing
several commercial games in recent years. The Unreal Engine
offers several features, including the physics, the rendering, the
cameras, etc., and it also allows to modify almost any element
of the game logic through a dedicated scripting language called
Unreal Script. In addition, UT3 is developed with a client-
server architecture that allows to run server-side simulation
of matches involving bots without the need of rendering the
actual game.

IV. PROCEDURAL WEAPON GENERATION

In this section we provide the three key elements of our
approach. First, we illustrate how we represent the weapons
to procedurally generate them. Then, we describe how the
generated weapons are tested in UT3 on a simulation basis.
Finally, we propose several metrics that can be used to evaluate
the generated weapons.

A. Representation

Unreal Tournament III features several weapons that differ
for their range, the damage they cause, the amount of am-
munition, and the physics of their shots. In addition, most
of the aspects that affect the behaviors of the weapons in
Unreal Tournament III can be modified through one or more
parameters in the game engine. Accordingly, we identified 10
key parameters to represent effectively a weapon in UT3 (see
Table 1 for a detailed description of the parameters along

“http://epicgames.com
Shttps://www.unrealengine.com

with their range). As a result, we are able to represent a
high variety of weapons — including almost all the kind of
weapons typically available in FPSs — with a rather compact
representation consisting of just a 10 real-valued parameters
vector.

B. Simulation

To test the generated weapons, we followed a rather
straightforward simulation-based approach. Using Unreal
Script, we developed a custom UT3 server based on the Death-
match game mode. Our custom server receives as input (i) the
two weapons to test®, each one defined by a parameters vector
(according to Table I), (ii) a score limit, and (iii) a time limit.
Thus, a match between two identical bots (with the highest
skill level) is created; two UT3 weapons are procedurally
generated using the parameters received as input and each one
of them is assigned to one of the two bots; then, the match
between the two bots starts and ends as soon as either the sum
of the scores of the two bots reaches the score limit or the
time limit is exceeded. At the end, the server return a large
set of game statistics for each bot (hence for each weapon),
which include the kills performed, the deaths, the longest kill
streak (i.e., the longest sequence of consecutive kills between
two deaths), and some statistics about the shooting dynamics
(e.g., accuracy, average hit distance, average hit time, etc.).

It is important to stress that, as the simulation does not
require any rendering, it can be performed at accelerated
speed. In particular, the actual simulation speed is, in principle,
limited by the power of the machine the server is running on.
However, in practice, the simulation speed might affect the
behavior of the bots as it might change the frequency with
which the Al routines are called. Accordingly, we performed
an experimental analysis to identify the highest simulation
speed that still lead to reliable results and we decided to set
the simulation speed to 8x with respect to normal speed, i.e.,
simulation time tics 8 time faster than real time.

Finally, it is worthwhile to note that the artificial intelli-
gence in Unreal Tournament III is able to dynamically adapt
to custom weapons; in fact, when a new weapon is available,
the artificial intelligence performs an analysis of its parameters
to devise how it should be used. First of all, the weapon
parameters, such as the speed, the life span, and the gravity, are
used to adjust the aim of the bot and to compute the weapon
range, i.e., the optimal distance from the opponent to use the
weapon. In addition, based on the values of parameters some
specific behaviors are associated to the weapon: if the rate of
fire of the weapon is above a given threshold (i.e., 2 shots per
second), the weapon is associated to the fast repeater behavior,
i.e., the weapon can be used for long sequences of shots; if the
computed weapon range is above a given threshold (i.e., 2000
UU), a sniping behavior is associated to the weapon, i.e., the
weapon can be used as a sniper rifle.

C. Evaluation

When it comes at designing a set of weapons, the most
important goal is to make them fun to play. Unfortunately,

®In this work we focus on the generation of pairs of weapons, however the
simulation-based approach described here could be easily extend to a larger
number of weapons to test.

TABLE 1.

THE WEAPON’S PARAMETERS.

Name Range Description
Rate of Fire 0,4 Shooting frequency of the weapon: number of bullets shot per second.
Spread 0,3 This parameter affects the random deviation of the bullets trajectory: the higher the spread the less accurate would be the shooting.
Shot Cost 1,9 Number of bullets shot at once by the weapon.
Life Span [0, 100] Amount of time the bullets remain in game when shot.
Speed [0, 1000] Speed of the bullets when shot.
Damage [0, 100] The amount of damage that each bullet deals when it hits an opponent; the highest damage, 100, also corresponds to the highest player’s

health value in UT3 (excluding temporary effect of power-ups).

Damage Radius [0, 100] Radius of the bullets shot by the weapon (in UT3, bullets are logically represented as spheres for computing damages and collisions).
Gravity [—250, 250] Gravity force applied to bullets shot by the weapon: the larger the value of this parameter, the stronger will be the gravity force that affects
each bullet shot by the weapon; negative values means that gravity force will be upside-down, i.e., when shot bullets will go upward.
Explosive [0, 300] When a bullet hits a target, either an opponent or any object in the game, it generates an explosion; this parameter defines how big is the
radius of this explosion; all the players that falls within the radius of such explosion would receive a splash damage, i.e., a fraction of the
weapon’s damage depending on the distance from the center of the explosion.
Ammo [0,999] Maximum amount of ammunition for the weapon that a player can carry around.

players’ fun might depend on several factors that are rather
difficult to evaluate quantitatively, e.g., elements related to the
aesthetics, humor, style, theme, and narrative of the game.
Nevertheless, there are also several measurable gameplay fea-
tures that are important to design a good set of weapons.
Accordingly, in this section we propose and describe few
metrics that can be used to evaluate a pair of procedurally
generated weapons, based on the game statistics collected
through a simulation.

Balance. To evaluate how balanced a pair of weapons is, we
simply considered the distribution of the kills performed by the
bots during the simulation. Accordingly, we measure balance
as the entropy [16] of the kills distribution:

fbalance =

ki ki
2; = logz 2. (1)
where k; is the number of kills performed by the i-th bot and
K is the overall number of kills performed by the two bots
during the simulation. According to the definition above, the
smallest value of fyqance is 0 — all the kills are performed by
one bot — and the largest one is 1 — the two bots performed
the same number of kills.

Effectiveness. This metric aims at evaluating whether the
evolved weapons can effectively kill the opponent and it is

computed as,

K

— 2
K*7 ()

where K is the number of kills achieved by the two bots
during the simulation while K™ is the highest number of kills
that can be reached before the simulation ends; accordingly,
feffectiveness 15 1 when the bots perform K* kills and linearly
decreases along with the number of kills performed by the bots
during the simulation.

feffecti'ueness =

Safety. As weapons in UT3 might cause damages also through
the explosion of projectiles, it is possible for a player to kill
himself by mistake. Therefore, this metric measures how safe
the generated weapons are (i.e., how likely they can cause the
self-deaths of the players) as follows:

fsafety = 0~9D_K7 (3)

where D is the overall number of deaths during the simulation
and K is the overall number of kills performed of the bots.
As a result, fsqrery is 1 when no self deaths happen during

the simulation (i.e., D is equal to K) and then exponentially
decreases as the number of self deaths increases.

Gameplay Goals. It is also possible to define several metrics
that are based on specific game statistics collected during the
simulation. As an example, in our work we considered three
different design objectives:

e the average hit distance, ﬁi,dish that is the average
distance from the opponent computed from all the hits
performed by i-th bot;

e he average hit time, hit; ;ime, that is the average time
between a shot and the corresponding hit, computed
from all the hits performed by i-th bot;

o the longest killstreak, k; prax, that is longest se-
quence of kills performed by the i-th both between
two deaths.

V. EVOLVING BALANCED WEAPONS

In this first application scenario, our aim is to show that
SB-PCG can generate pairs of weapons that are balanced, fun
to play, and with a good degree of variety. Indeed, balance is
one of the most important design feature for weapons in FPS:
ideally, each weapon (if used properly) should give the player
the same chance to defeat the opponent. Concerning the fun,
we cannot directly measure it, but we want to make sure at
least that generated weapons are effective and safe.

Experimental design. We applied a single objective genetic
algorithm to evolve a pair of weapons. In this problem, each
individual consists of a vector of 20 parameters that encode
a pair of weapons (Table I). We performed 10 runs with
the following parameters settings: the number of generation
was set to 50 and the size of population was 100; to select
individuals we applied a tournament selection, with tournament
size of 3; finally, we used the simulated binary crossover, with
probability 0.6, and the simulated binary mutation, with prob-
ability 0.05. Individuals have been evaluated with a simulation
on the DM-Biohazard map, a popular and pretty small map,
involving two identical bots with the highest skill level; for the
simulations, the score limit was set to 20 and time limit was
set to 1200 seconds of simulated time.

To solve this problem, we designed the fitness function as
follows:

F= fbalance + feffectiveness + fsafetya (4)

,,..,..o..«.oo-ov.o--o..o!o..o‘-a--.¢
.

2.0} ’ -
¥ b
4 ’ —
E1sl ¥ o
- } 4 1
|
o **ﬁ*iﬁ't'ﬁﬁﬁ't‘tftﬁ'i TrrrTrrrTI I
|
0 5|I:ij t
|
000 10 20 30 an 50
GENERATIONS
Fig. 1. Average fitness of the pairs of weapons evolved: blue line is the

average fitness of the population for each generation; red line (balance),
green line (effectiveness), and black line (safety) are the average value of
the three components of the fitness function (see Equation 4) computed for
each generation.

where the range of F' is between 0 and 3. Please notice that
we did not included in F' any term to encourage the diversity
between the weapons in each pair evolved, as we expect such
diversity to be an emergent result of our approach.

All the runs have been performed with DEAP [17], a
python evolutionary library.

Results. Figure 1 shows the average fitness of the population
during the generation (blue line in Fig. 1) as well as the
averages of all the three components of the fitness function F,
fvatance (red line in 1), feyfectiveness (green line in 1), and
fsagety (black line in 1). In the early generations the average
fitness of the population falls in the middle of the range, but
it quickly increases after few generations and reaches almost
the maximum after 30 generations. It is also interesting to see
that the three components of the fitness function behaves in
a very similar way, suggesting that none of the corresponding
design problems is easier to solve than the others.

Analysis of evolved weapons. In order to get a better insight
about the solutions discovered, we performed a clustering
of all the final populations of the 10 runs performed. To
this purpose, we used the Density-Based Spatial Clustering
of Application with Noise (DBSCAN) [18], a well known
clustering algorithm based on the density of points in the
clustering space. Accordingly, we run the implementation of
DBSCAN available in the Python scikit-learn library [19] with
the following parameters setting: ¢ = 0.2 and minPts = 5,
i.e., the lowest number of points required to identify a cluster
is 5. The clustering algorithm discovered 29 different clusters,
each one representing a different way to the design a pair of
balanced and effective weapons. Figure 2 and Figure 3 illus-
trate two examples of the clusters identified with DBSCAN.
The first example of cluster (Figure 2) includes six pairs of
weapons. The fitness distribution of these six pairs of weapons
(Figure 2b) suggests that they are all very well balanced with
a fitness very close to the maximum value; nevertheless, when
we look at the average values of the parameters (Figure 2a), the
two weapons evolved in each pair are quite different among
them. In particular, the first weapon (red line with triangles
in Figure 2a) is a mid-range rifle: high Speed and decent
Life Span allows to shoot the opponent from a medium/long

Dmg Rad Gravity
3 —
Damage Explosive
25
2
Spead & RoF %
Yis
=
[
4
Lite Span Spread
o » 05
Shot Cost Ammo v}
(a) (b)

Fig. 2. An example of cluster discovered with DBSCAN applied to the pairs
of weapons evolved in the experiment described in Section V: (a) is a radar
plot that shows the average value of the weapons parameters in the cluster
(red line depicts the parameters of the first weapon of the pair, while blue line
depicts the parameters of the second one); (b) shows the distribution of the
fitness function of the pair of weapons in the cluster.

distance; at the same time, low Spread and good Rate of
Fire make the weapon quite effective. In contrast, the second
weapon (blue line with boxes in Figure 2a) is a medium-low
range weapon, as it has a moderate value of Speed and a very
high value of Gravity; however, it is very powerful because it
shots several bullets at once (high Shot Cost), it is very accurate
(low Spread), and quite deadly (good Damage). Therefore, the
two weapons require rather different playing strategies but they
both have strengths and weaknesses, resulting in a quite good
balanced match.

The second example of cluster (Figure 3) features two
weapons completely different from the ones in the previous
example. The first weapon (red line with triangles in Figure 3a)
is a sort of sniper rifle with low Shot Cost and Spread but high
Damage, Speed, and Life Span. The second weapon (blue line
with boxes in Figure 3a) is a weapon that cannot be used from
a long distance (medium Speed and Life Span); however, on
medium-low range it might be an extremely powerful weapon,
thanks to the low Spread, the very high value of Shot Cost,
and moderate value of Damage. As in the previous example,
the two weapons are very different but balanced as suggests
the fitness distribution in Figure 3b. Overall, it is interesting to
stress how the evolutionary design of the weapons was able to
identify couple of weapons that are, at the same time, balanced
and very different among them.

VI. TUNING WEAPONS

One of the most popular weapons of UT3 is the Flak
Cannon, a close-combat weapon that fires several bullets at
once. A well-known design problem of the Flak Cannon is
that it is generally outperformed by the Rocket Launcher —
the most popular weapon in UT3 — with few exceptions. As
a second application scenario, we apply SB-PCG to generate
weapons well balanced against the Rocket Launcher by making
the least possible changes to the original Flak Cannon. Indeed,
this is a very typical weapon design problem and we believe
that SB-PCG can be a promising technique to deal with it.

Experimental design. To solve this problem, we designed it as
a multi-objective problem, where we have to evolve a weapon
that is (i) effective, safe, and balanced against the Rocket
Launcher, and (ii) as much similar as possible to the Flak

Dmg Rad Gravity
a ———— |
Damage Explosive
~, 25
2
Speed RoF %
L5
=
w
1
Life Span Spread
P s 05
Shot Cost Ammo v}
(a) (b)

Fig. 3. An example of cluster discovered with DBSCAN applied to the pairs
of weapons evolved in the experiment described in Section V: (a) is a radar
plot that shows the average value of the weapons parameters in the cluster
(red line depicts the parameters of the first weapon of the pair, while blue line
depicts the parameters of the second one); (b) shows the distribution of the
fitness function of the pair of weapons in the cluster.

Cannon. Accordingly, we used the NSGA-II [20], a well known
multi-objective genetic algorithm, to perform 10 runs with the
following parameters settings: the number of generation was
set to 50 and the size of population was 50; each individual is
a 10 parameters vector representing a single weapon; to select
individuals we applied a tournament selection, with tournament
size of 2; finally, we used the simulated binary crossover,
with probability 0.9, and the simulated binary mutation, with
probability 0.1. As in the previous experiment, we evaluated
the individuals based on a simulated match in the DM-
Biohazard map between two identical bots with the highest
skill level; the score limit was set to 20 and time limit was set
to 1200 seconds of simulated time. In such simulated match,
one bot is using the Rocket Launcher and the other bot is using
the evolved weapon to evaluate. The objectives of the evolved
weapons are computed as:

Fl = fbalance + feffectiveness + fsafety, (53)

F, = (5b)

where z; and z are respectively the parameters of the weapon
to evaluate and of the Flak Cannon (both x; and z are
normalized, so that each parameter has the same weight).

Results. Figure 4 shows the final populations of the 10 runs
performed; each weapon that is in the final population of a
run is represented as a blue point in the space of the fitness
objectives; the weapons that are in the pareto-front are repre-
sented with red points. The results show that evolution was able
to generate several weapons that provides a very good trade-
off between the two objectives. It is also worthwhile to note
that the pareto-front has a very flat slope: the first objective
reaches the maximum value with just a small decrease of the
second objective. Accordingly, the results suggest that, at least
in this case, it is possible to adjust the balancing of the Flak
Cannon against the Rocket Launcher with just few changes to
the parameters of the Flak Cannon.

Analysis of evolved weapons. As in the previous experiment,
we clustered the evolved weapons in the final populations

0.0

. o wtag e (el £

.
ssms s = ¢ s

-1.0}

0.0 05 10 15 20 25 T

R

Fig. 4. Objective values of the weapons in the final populations of all the runs
performed in the experiment described in Section VI. Red points identifies the
weapons on the pareto-front.

(Figure 4) of the 10 runs (consisting overall of 500 weapons)
to have a better insight about the evolved solutions. We applied
the DBSCAN algorithm with € = 0.05” and minPts = 5. As
a result, the clustering process identified 8§ different clusters in
the population. The largest cluster consisted of 374 individuals
and included all the weapons that are very similar to the Flak
Cannon (average value of F5 is 0.05); on the other hand, they
are not extremely balanced against Rocket Launcher (average
value of F is 2.69). Figure 5 shows a more interesting cluster
of 6 weapons that despite being rather similar to the the Flak
Cannon (see Figure 5a) are better balanced against Rocket
Launcher as shown in Figure 5b. In particular, looking at
the weapons parameters (Figure 5a) we can see that evolved
weapons have a larger Rate of Fire and a slightly larger
Ammo, but all the other parameters are basically the same of
original Flak Cannon; nevertheless the new parameters allow
for a better balancing (as shown by the distribution of Fj in
Figure 5b).

VII. MULTI-OBJECTIVE DESIGN

In this last scenario, we apply SB-PCG to evolve weapons
with some specific design objectives, such as encouraging long
range combat or fast-paced action. To test our approach, we
performed several experiments with different combinations of
three design objectives: long range, kill streaks, and slow hit
time. However, due to the lack of space, in this paper we
present a single experiment that focuses on evolving a pair of
weapons, so that using the first weapon would result in long
distance kills, while using the second one would result in long
killing streaks; in addition, the pair of evolved weapons should
be well balanced, effective and safe to use.

Experimental design. We applied the NSGA-1I [20] to evolve
a pair of weapons using the following objectives:

Fl = fbalance + feffectiveness + fsafetyv (63)
Fy = hity aist, (6b)
F3 = ks max, (6¢)

7We had to reduce the value of & from 0.2 to 0.05, because the similarity
objective leads to several individuals very close in the parameters space.

Dmg Rad Gravity
3 e
Damage Explosive
25
2
Speed RoF
w15
4
Life Span Spread
P P 05
Shot Cost Ammo 0
(a) (b)
Fig. 5.

25
2
Le 15
;
05
. _
(©

An example of cluster discovered with DBSCAN applied to the weapons evolved in the experiment described in Section VI: (a) is a radar plot that

shows the average value of the weapons parameters in the cluster (red line depicts the original parameters of the Flak Cannon, while blue line depicts the
parameters of the evolved one); (b) and (c) shows the distribution of the two objectives of the weapons in the cluster.

where F is the same objective used in previous experiments,
F; is the average hit distance of the first weapon (see Sec-
tion IV-C), and Fj is the longest killing streak achieved using
the second weapon (see Section IV-C).

The experiment consisted of 10 runs with the following
parameters settings: the number of generation was set to 50
and the size of population was 100; each individual is a 20
parameters vector representing a pair of weapons; to select
individuals we applied a tournament selection, with tournament
size of 2; finally, we used the simulated binary crossover,
with probability 0.9, and the simulated binary mutation, with
probability 0.05. As in the previous experiments, we evaluated
the individuals based on a simulated match in the DM-
Biohazard map between two identical bots with the highest
skill level; the score limit was set to 20 and time limit was set
to 1200 seconds of simulated time.

Results. Figure 6 shows the objective values for all the pairs of
weapons in the final population of the 10 runs performed. To
investigate the trade-off between the three design objectives,
the final population is represented in three different two-
dimensional spaces, one for each possible pair of the three
objectives; each pair of weapons is represented either as a
blue point or as red point if it belongs to the pareto-front. In
particular, Figure 6a shows clear trade-off between objective
F, i.e., balancing, effectiveness and safety of the weapons, and
objective F3, i.e., the average hit distance of the first weapon:
the longer is the distance from which the first weapon can
be effectively used, the more difficult is to have a balanced
pair of weapons; this is not surprising as it is very difficult to
design a well balanced long-range weapon both in terms of
pace and effectiveness. Figure 6b shows a similar result when
it comes at considering the trade-off between the objective F}
and objective F3, i.e., the longest killing streak of the second
weapon; in fact, although the pareto-front is less steep than
the previous one, it appears that a longer killing streak leads
to a worse balancing between the two weapons; again, this is
not surprising as it is rather obvious that a long killing streak
would necessary results in a clear advantage for a weapon
— thus, in a worse balancing. Finally, Figure 6¢ shows that
we have a trade-off also between the two design objectives
F, and F3: when evolving a pair of weapons, increasing the
average hit distance of the first one leads to decreasing the

longest killing streak achieved by the second one. In addition,
results also suggests that, overall, designing a long-range
weapon, i.e., maximizing Fbo, is perhaps the most difficult
optimization problem tackled by the evolutionary algorithm;
in fact, Figure 6 shows that while evolution found several
solutions with high values of objectives F; and F3, there are
only few solutions that have a high value of objective F5.

Analysis of evolved weapons. As in the previous experiments,
we clustered the 1000 pairs of weapons in the final populations
of the 10 runs performed; the DBSCAN algorithm (with
parameters € = 0.2 and minPts = 5) identified 37 clusters.
Figure 7 shows an example of the clusters identified, consisting
of 8 pairs of weapons with the following average objective
values, [, = 2.53, F5, = 1216.8, and F3 = 6.2 (see
the distribution of the objective values in Figure 7b—d). In
particular Figure 7a shows the average parameters value of
the pair of weapons included in the cluster; the first weapon
(red line with triangle) has larger values in Speed and Life
Span parameters, resulting more suited than the second weapon
when used from a long distance. In addition, it has a good Rate
of Fire, a very small Spread and very high Damage; however,
it also has a limited value of Ammo, forcing the player to find
additional ammunition rather frequently. The second weapon,
in contrast, appears less powerful than the first one in several
respects, except for the very large Damage Radius and a better
value of Ammo. Accordingly, we could expect the first weapon
to behave much better in long range fights but, at the same
time, the second weapon to be rather dangerous when used
from short distances.

VIII. USER STUDY

Finally, we performed a preliminary user study to assess
the capabilities of our approach to evolve a couple of balanced
and enjoyable weapons. The study was carried out during an
Open Day at our university and involved 35 distinct users (18-
22 years old student, mostly male). Each user was asked to
play a match against a bot with a score limit of 10 points and
time limit of 10 minutes. During the match, the player can
use either a red or a blue weapons 3; human player starts with

8To make the weapons easy to distinguish for the human players, we used
blue and red textures to actually color the weapons in game.

Gravity

25
2
.
RoF
w15
4
Spread
P 05
Shot Cost Ammo 0
(a) (b)

20

2000

15
1500

L™ 1000 y w” 10

i
500 5
0 0
(©) (d)

Fig. 7. An example of cluster discovered with DBSCAN applied to the pairs of weapons evolved in the experiment described in Section VII: (a) is a radar plot
that shows the average value of the weapons parameters in the cluster (red line depicts the parameters of the first weapon of the pair, while blue line depicts
the parameters of the second one); (b)—(d) shows the distribution of the three objectives of the pairs of the weapons included in the cluster.

the blue weapon, while the bot starts with the red one; during
the match, the player can switch the weapon anytime; as soon
as the player switches the weapon, the bot does the same, so
that the player and the bot are never using the same weapon.
The red and blue weapons were selected by alternating among
two pairs of weapons from the best ones evolved for the first
scenario presented in this paper (see Section V). At the end
of the match, we collected some information about the users
(e.g., age, gender, gaming experience, etc.) and asked them the
following two questions for both the red and the blue weapons:

Q1. Rate your experience in terms of fun when using the
blue [red] weapon (using a {Low, Medium, High}
scale).

Q2. Rate how powerful is the blue [red] weapon with
respect to the other one (using a {Under-Powered,
Balanced, Over-Powered} scale).

Figure 8 shows the answers collected from the users. These
results suggest that, in general, the users enjoyed playing
the evolved weapons; in fact, overall only the 8.6% of the
collected ratings were Low, while 51.4% were Medium and
40% were High. Concerning the balance, about half of the
users evaluated the weapons balanced (51%), while the others
found one weapon more or less powerful than the other one.
We investigated better this issue and discovered that the red
weapon in the second pair was perceived not as balanced as
the other ones. In particular, the comments left by the users
suggested that, when using this weapon, it was too difficult to
hit the opponent. In fact, this weapon features a large Gravity,
making it quite difficult for human player to find a proper
trajectory to hit the opponents. Of course, this issue could
not be discovered in our simulations as computing a proper
trajectory is not a problem for the bots.

IX. CONCLUSION

In this paper, we applied search-based procedural content
generation (SB-PCG) to evolve weapons for Unreal Tourna-
ment III (UT3), a popular commercial first person shooter.
We represented each weapon as a vector of parameters and
extended UT3, so that all the generated weapons can be
actually used and tested in game. We described several metrics
to evaluate the generated weapons and we also implemented a

simulation-based methods to compute them. Then, we identi-
fied three interesting applications to test our approach: (i) we
applied SB-PCG to evolve a pair of effective and balanced
weapons; (ii) we applied SB-PCG to improve the balancing
of an existing weapon; (iii) we applied SB-PCG to evolve a
pair of weapons with different design objectives. Our results
suggest that SB-PCG can be effectively applied to solve
these design problems and might be a promising technique
to assist developers with the weapons design process. Finally,
we performed a test with more than 30 users to assess the
quality of the weapons generated. The feedback received from
the users show that SB-PCG can actually generate weapons
that are interesting, fun to play and rather balanced. However,
the simulation-based approach used to evaluate the evolved
weapons might require some tweaks to take into account
some issues that are specific to human players, such as the
complexity of using a weapon.

Future works include improving the simulation-based eval-
uation of the weapons, testing the approach on different first
person shooters, and performing additional studies with human
players.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of EvoApplica-
tions, vol. 6024. Springer LNCS, 2010.

[2] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Optimization of
platform game levels for player experience,” in Proceedings of the
Fifth Artificial Intelligence and Interactive Digital Entertainment Con-
ference, AIIDE 2009, October 14-16, 2009, Stanford, California, USA,
C. Darken and G. M. Youngblood, Eds. The AAAI Press, 2009.

[3] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Second Artificial Intelligence and In-
teractive Digital Entertainment Conference, June 20-23, 2006, Marina
del Rey, California, J. E. Laird and J. Schaeffer, Eds. The AAAI Press,
2006, pp. 109-111.

[4] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” in Proceedings
of the Sixth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE 2010, October 11-13, 2010, Stanford,
California, USA, G. M. Youngblood and V. Bulitko, Eds. The AAAI
Press, 2010.

[5] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic personalised

content creation for racing games,” in Proc. IEEE Symposium on
Computational Intelligence and Games CIG 2007, 2007, pp. 252-259.

Fig.

3.0 -
-
- -
" Ee e Ee Getmt @ Besmes .
25 fresee B s on Slemalag o, .
. . . . -
= s sesmmsmde o @
. -
.
2.0 - “C - -
. L .
. 0
- . . .
i ¥ \
.
. .
10
.
0.5
0.0
500 1000 1500 2000 2500
¥
(a)
30
s ATy, v
. 1 e & - -
Cuertee e & . i
. se s LR [T EE A e
25 tedy g sslen 0 . . . « 1 e
. » . . .
L .. . & & & & 4 € % = ¥ 8w
. . . .
. . .
204 . .
R . . .
.e
_— .
= 1.5
} .
1o}
.
o5
0.0: - e -
o 5 10 15 20
5
2500,
| L]
-
2000/ . =
!
| .
1500'; 5 Y
.
] = % ' . . . »
% [.o;' : =‘ ‘e > & 4 | :
I e, . o: o8 » . . 3
1000 @ ..’:Il’..! H ' . $. H
R L iy 3 g 2N -4
'f"ii:z”' ek gk
] bt | L « s 8 = "
| nre .
500 . |llt..’ it. y 2 ; 2 ! 3
| et Ve 44 . A 1]
. b .
e .
.
| .
ol
5 10 15 20

6. Objective values of the pair of weapons in the final populations of

all the runs performed in the experiment described in Section VII: (a) shows
the first objective (y-axis) and the second objective (x-axis); (b) shows the

first

objective (y-axis) and the third objective (x-axis); (c) shows the second

objective (y-axis) and the third objective (x-axis). Red points identifies the
weapons on the pareto-front.

[6]

[7]

[8]

[91

[10]

D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track gen-
eration for high-end racing games using evolutionary computation,”
Computational Intelligence and Al in Games, IEEE Transactions on,
vol. 3, no. 3, pp. 245 -259, sept. 2011.

L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th annual conference on Genetic and evolutionary
computation, ser. GECCO "11. New York, NY, USA: ACM, 2011, pp.
395-402.

L. Cardamone, P. L. Lanzi, and D. Loiacono, “Trackgen: An interactive
track generator for TORCS and speed-dreams,” Appl. Soft Comput.,
vol. 28, pp. 550-558, 2015.

J. Dormans and S. Bakkes, “Generating missions and spaces for adapt-
able play experiences,” Computational Intelligence and Al in Games,
IEEE Transactions on, vol. 3, no. 3, pp. 216-228, 2011.

J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbick, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,” in

Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG), 2010, pp. 265-272.

Fig. 8.

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

30
3
% 0
2 15 i
m l
5
a

a0
£ !
£l
g a
il
% 0
15
10
', -
L]
Low Muedum High
Fun
(a)
a0

Over

Answers provided by the users to Q1 (a) and to Q2 (b).

Under Equal

Balance

(b)

E. J. Hastings, R. K. Guha, , and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4, no. 1, pp. 245-263,
2009.

S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Combining search-based procedural content generation and social
gaming in the petalz video game,” in Proceedings of the Eighth AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, AIIDE-12, Stanford, California, October 8-12, 2012, M. Riedl
and G. Sukthankar, Eds. The AAAI Press, 2012.

L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi, “Evolv-
ing interesting maps for a first person shooter,” in Proceedings of the
2011 international conference on Applications of evolutionary compu-
tation - Volume Part I, ser. EvoApplications’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 63-72.

P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for match
balancing in first person shooters,” in 2014 IEEE Conference on Com-
putational Intelligence and Games, CIG 2014, Dortmund, Germany,
August 26-29, 2014. 1EEE, 2014, pp. 1-8.

E. McDuffee and A. Pantaleev, “Team blockhead wars: Generating fps
weapons in a multiplayer environment,” in FDG PCG workshop, 2013.

C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, The, vol. 27, no. 3, pp. 379-423, July 1948.

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012.

M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.” AAAI
Press, 1996, pp. 226-231.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist multi-
objective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolution-

ary Computation, vol. 6, pp. 182-197, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

