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Abstract—User interfaces that produce an immersive and
intuitive in-game experience depend on a strong coupling between
user input and the motion of game objects. Such user interfaces
require a high sensitivity to user movement that has the po-
tential to reveal characteristics of user cognitive processes that
occur during gameplay. The current project investigates whether
cognitive processing during deception affects in-game motion. We
present here two paradigms that allow deception to be expressed
over repeated trials and in a naturalistic setting. The first, an
interactive exhibit at Science Gallery Dublin™, tracked motion
while users deceptively responded to autobiographical statements.
The second, a two-player bluffing game, tracked motion during
unsanctioned, motivated deception.

Our findings indicate that in-game motion is influenced by
the cognitive processes underlying deception. In-game motion
provides an important source of data on human psychological
processes that can stimulate theoretical progress within psychol-
ogy and contribute to the development of more credible artificial
agents.

I. INTRODUCTION

A. Movement in Computer Games

A user interface that ’just works’ is a prerequisite for an
enjoyable game. When user inputs guide the motion of an in-
game object, such as a sprite, then that object should move
as we expect to. More technically, for in-game motion to feel
intuitive, a strong coupling between a user’s motor output and
in-game motion must be established and maintained. Indeed,
in Calleja’s [1] model of digital game involvement, accom-
modating these expectations is a central feature: “Planned
motion is made manifest by the controlled agent(s) creating
a potential for action defined by the movement affordances
designed into the virtual environment or world” (p. 85). When
the relationship between user movement and in-game motion
is undermined or uncertain (e.g., through laggy connections),
it can generate strong negative reactions from the user. With
this in mind, crowdsourced player telemetry (the gathering
of in-game motion and other behavioral data from thousands

of users as they play the games) is now routinely used for
marketing and pre/post-release product improvement [2].

Coupling between user input and the motion of game objects
depends on interfaces that are highly sensitive to motor input.
Psychological research has highlighted that cognitive process-
ing influences motor output in a relatively continuous fashion.
Consequently, in-game motion may provide a sensitive index
of a player’s unfolding cognitive processes. In this paper,
we introduce two novel experimental paradigms that take
advantage of in-game motion for capturing and evaluating
sanctioned and unsanctioned deception. We begin by contex-
tualizing this work in the latest psychological research on
the intricate relationship between cognition and action and
current psychological understandings of deception. We then
report analysis of the data collected at scale from participants
“in the wild,” and end with a discussion on how these simple
experimental paradigms can be used to make further in-roads
in understanding the psychological aspects of deception and
game design in general.

B. Laboratory Analyses of Movement during Cognition

Based on insights from dynamical systems and motor con-
trol theorists, cognitive processing is taken to be inextricably
intertwined with the continuous movements of the body [3],
[4]. Even in simple laboratory tasks, periods of instability and
flow in processing can be mapped onto unique signatures of
movement. Moreover, response behaviors are also expressions
of emergent order that are constrained and guided by task
conditions that continuously evolve over varied time scales [5],
[6]. Given this relationship between mind, body, and environ-
ment, one way to exploit the inherent co-variation is with the
use of game-like, motion-rich cognitive tasks. For example,
in the “visual world paradigm,” the motion of the hand is
tracked during the selection of visually presented “targets”
amidst visually co-present “distractors” on a computer screen.
By surreptitiously recording the position of the hand during



the movement (via the position of a cursor on the computer
screen), the researchers gain access to the hand trajectories,
which can reveal how information is being managed in real-
time.

To provide a tangible example, McKinstry et al. [7] had
participants evaluate the truth of simple propositions by nav-
igating a computer mouse to true or false response options
in the uppermost corners of a screen. Propositions that had a
high level of uncertainty of being true, such as “Is murder
sometimes justifiable?”, were answered with slower hand
movements and with greater moment-to-moment fluctuations
than propositions with a high level of certainty (e.g., “Should
you brush your teeth everyday?”). These unstable hand move-
ments suggest that greater cognitive effort is involved in evalu-
ating ambiguously true information. Moreover, the continuous
movements of the hand reveal an immediate and persistent
influence of a “positive confirmation” bias throughout the
response (see also [8]). This confirmation bias was most
salient while answering “no” to propositions that were clearly
false, such as “Is the mother younger than the daughter?”.
For these propositions, there was a tendency for the hand to
gravitate relatively slowly toward a “yes” response (positive
confirmation) during a “no” response movement. This pattern
of movement suggests that both target false response and a
competitor confirmation bias were simultaneously activated,
with the activation from the target response eventually pre-
vailing.

C. Deception: import and cognitive basis
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From “white lies” to more nefarious intent, lying occurs
at a surprisingly high rate in everyday interactions [9], [10].
In most cases, deception is minimally consequential, with the
most severe risk being a loss of social standing. Nevertheless,
in other cases, as with insider threats in corporate settings,
or malingering in health evaluations, the consequences can
be dire. It is no surprise then that a great deal of effort has
gone into developing deception detection techniques that are
accurate, robust, and easily deployable. One major direction
in this research has been to take advantage of the assumed
increase in arousal and stress associated with deception, as
evidenced by the polygraph, to more modern attempts at voice
analysis [11], [12]. However, arousal and stress can easily
occur when individuals are telling the truth; moreover, highly
motivated deceivers might be particularly skilled at masking
deceptive responses [13]. For this reason, there has been
a recent turn towards underlying mechanisms of deception
that might prove more difficult to overcome, specifically, the
increased cognitive demands imposed by deception that are
not present with the truth [14], [15].

One reason deception is held to be more challenging is due
to the so-called cognitive executive function processes that are
generally implicated in the control and coordination of mental
activity. These processes include skills like ignoring distractor
stimuli in the environment while attending to a primary goal
[16], [17], and the efficient allocation of attentional resources
that permit rapid transitions between tasks [18], [19]. Indeed,

deception requires the ability to ignore a distractor — the truth
— from being expressed, while simultaneously consulting the
truth to select and deliver a convincing lie [20], [21]. Many
researchers interested in building deception detection tools
have taken note that one of the consequences of these increased
cognitive demands is that it results in increased time to make
a response [22], [23]. Based on a recent meta-analysis of
114 studies that examined the time taken to lie in controlled
computerized tasks, the relationship appears to be broadly
consistent [24]. Nevertheless, for many researchers outside the
arena of deception, response time is considered a coarse and
indirect index of underlying cognitive processes. This view is
uniquely addressed within a research domain known as “action
dynamics”.

D. Deception in movement

Most cognitive theories of deception assume the underlying
processes occur as a series of discrete and minimally interac-
tive ordered components, in which one component gives way
to the next in a single chain of processing [25]. An alternative
to this view, supported by the action dynamics perspective, is
that the underlying activations of true and false information
occur as partially overlapping and distributed mental states
that compete with each other over time. This notion of “over
time” is critical as it is these moments of processing that are
often obscured by the ballistic movements used to capture
response times (e.g., the time taken to make a key press),
which effectively collapses intermediary cognitive processes to
a single discrete behavior [26], [27]. In contrast, the promise of
the action dynamics approach is that the competition between
false responding and the truth will be revealed in the unfolding
“micro-behaviors” within response execution, and importantly,
this new information will improve our abilities to detect
deception.

Early support for a dynamical perspective has been shown
in the work of Duran et al. [28] who used a version of the
aforementioned visual world paradigm. In their study, partici-
pants had to choose between between “yes” and “no” options
on a screen in response to statements about experiences they
may or may not have had. These statements varied in terms of
their likelihood of being common experiences for most people.
Critically, participants were randomly prompted to tell the
truth on half the statements and to provide false answers on the
other half. Based on analysis of the response movements, this
study has found clear signatures for graded activation biased
toward true and false responses depending on the intended
answer. When providing false answers, there was an early and
persistent activation elicited by the truth that was particularly
pronounced when the target answer was “yes.” Similar findings
have also been demonstrated in similar motion capture setups,
such as those examining how people falsely reject having
knowledge about critical aspects of a scenario that would
expose them as having had cheated [29] or possessing a false
identity [30].



E. Interactive games as means to investigate deception

To date, analyses of movement during deception has oc-
curred in tightly controlled but unrealistic laboratory settings
or in real-world settings that require time-consuming and
subjective behavioral ratings. Both laboratory and field studies
also tend to rely on overly discrete behaviors that may not
be the strongest predictors of deception, although the action
dynamics approach in laboratory studies does allow the mea-
surement of relatively continuous motion that might better map
onto the cognitive complexities of lying. To find a compromise
between laboratory and field studies, interactive games might
be ideal as they can gather continuous movement data in a
naturalistic setting. In addition, when one considers the amount
of time that users play, e.g., online poker, deception games
that are engaging have the potential to collect vast amounts of
player movement telemetry.

In what follows, we describe two experimental paradigms
designed to exploit player movement telemetry to investigate
deception. The first paradigm, Lie2Me, was an interactive
touchscreen exhibit at Science Gallery Dublin™. Patrons at
the gallery were presented with autobiographical questions and
were instructed to lie when answering half the questions. The
second paradigm, Fool Me Once!, was an online two-player
bluffing card game, in which players won points by deceiving
their opponent or spotting their opponent’s deception.

II. PARADIGM 1 — LIE2ME

A. Method — Lie2Me

1) Setting and Recruitment: Participants took part in the
Lie2Me exhibit at the Science Gallery Dublin™, Trinity
College Dublin, in the first month of the FAKE exhibi-
tion (08/03/2018 to 08/04/2018). All data were collected
in accordance with procedures approved by the Research
Ethics Committee at Science Gallery, and informed consent
was obtained from all participants. The FAKE exhibition
(https://dublin.sciencegallery.com/fake/) addressed issues of
fakery and deception across a variety of interactive educational
exhibits. Interested patrons were provided information on all
the experiments and were asked to sign a consent form by a
member of Science Gallery staff prior to participation. Patrons
who registered were allocated a participation identification
number (PID) and asked to provide limited demographic
information. Patrons were continuously monitored by Science
Gallery staff in case the behavioral experiments caused any
offense or discomfort. No adverse reactions to Lie2Me were
reported.

During the first month of the exhibit, 324 patrons played
Lie2Me providing their PIDs. Demographic data have not
yet been released for those who participated in Lie2Me, but
patrons of the Science Gallery typically range in age from
12 to 65, with the greatest concentration between 18 and 30;
the gender distribution of visitors is in line with Irish society
at large (see [31] for representative demographics of Science
Gallery attendees).

Fig. 1. Lie2Me exhibit at Science Gallery Dublin™

2) Hardware: Lie2Me was set up as a touchscreen-only
exhibit (see Figure 1). The touchscreen was set in a tabletop
structure such that the touchscreen seemed part of the top of
the structure. A pink panel was presented to the left of the
touchscreen to house sensors for measurement of galvanic skin
response (GSR), but this feature was not implemented during
the first month of the exhibition. The touchscreen was ASUS
VT207N 19.5 inch monitor, with a resolution of 1600 x 900
pixels and refresh rate of 60Hz. Participants responded while
sitting at a stool next to the exhibit.

3) Software: Lie2Me was written using HTMLS and
Javascript for the front-end, with data submitted via Ajax to
a remote MySQL database for secure storage and analysis.
Finger location during responses to trials was recorded every
time the X, y position of the cursor changed. Recording
intervals indicated a cursor sampling rate of approximately
60Hz. Although Lie2Me is a one-player game without any
game design reasons for network connectivity, one of our
considerations was that it would be deployed as a public in-
stallation in the Science Gallery in Dublin while the technical
research team are in Galway. Our technology choices meant
that remote updates of the system was very straightforward
and did not require intervention from Science Gallery staff.

4) Procedure: To begin Lie2Me, participants approached
the exhibit and entered their PID using a touchscreen keypad.
Interaction with the game was solely via touchscreen. Follow-
ing a short instructional video, participants completed 32 trials
in which they were asked to tell the truth or lie when asked a
biographical question (see Figure 2), by dragging and dropping
a small red ball on the screen to either the word “Yes” or “No”
at the top of the screen. Finally, the participants completed a
questionnaire containing the same 32 questions to identify any
failures to lie or tell the truth during the game.

In each trial, the word “Truth” in blue or “Lie” in red
appeared first at the top of the screen. Next, the words of
a statement appeared at a rate of one word every 500ms (e.g.,
“Have (500ms) you (500ms) met...”). The final word did not



appear until the participant moved the response ball out of
the starting area at the bottom of the screen. The statements
were generated based on the questionnaire previously used in
similar studies [28]. The statements varied in the probability
of responding “yes” truthfully from low (e.g., “Have you ever
met Messi?”) to high (e.g., “Have you ever eaten pizza?” ).
Half of the statements referred to observations (e.g., “Have
you seen a movie?”’) and half referred to actions (e.g., “Have
you built a robot?”””’). The instruction to tell the truth or lie was
randomly generated with the constraint that each participant
was prompted to lie and tell the truth exactly half the time.
The locations of “Yes” and “No” at the top of the screen
were randomly assigned for each participant. At the end of
the game, participants were shown their response trajectories
for truths and lies so that they could see how deception is
expressed in their behavior. Minimal debriefing was provided
afterward on screen. Further debriefing materials were made
available via email to participants.

5) Exclusion Criteria: Prior to analysis, we applied a
number of exclusion criteria designed to exclude participants
who did not pay due attention to the experimental task. From
a total of 324 participants, trials that satisfied the following
criteria were excluded: trials with a reaction time greater
than 5s, trials with pauses longer than 1.5s and trials with
fewer than 30 sampled coordinates. Participants with fewer
than 24 trials remaining after these exclusions were removed
altogether. Overall, 257 participants were retained with at least
24 trials each.

B. Results - Lie2Me

1) Trajectory Measures: Visual inspection of the response
trajectories revealed that lies tend to be more deflected than
truths (Figure 3). In order to statistically analyze the effects of
lying and truth-telling on trajectories, we extracted three well-
established measures (Figure 4) from the response trajectories
using the R package mousetrap [32]. Response time was
the time elapsed from the point that the participant moved
the response ball out of the starting area (“exit point”) until
entering a response area (either “Yes” or “No”). Deflection
towards the unchosen option was measured using maximum
absolute deviation (MAD), the greatest perpendicular distance
from a straight line connecting the exit point to the final point
in the trajectory. Vacillation was measured using x-flips. X-
flips refer to changes in the horizontal direction of a trajectory
(e.g., from moving left to moving right). A flip threshold
of 2 pixels was employed to exclude irrelevant jitter in the
trajectory.

In line with the previous studies [28], when participants
responded truthfully, they responded faster, with less deflection
and vacillation than when they lied (Figure 5). However,
this effect was strongly moderated by the answers they were
giving. When participants responded “Yes” to a statement, it
was very easy to distinguish truths from lies. True responses
to “Yes” induced the fastest, most direct and least complex
trajectories. In contrast, false responses to “Yes” were the

Fig. 2. Lie2Me Procedure

slowest, least direct and more complex responses. For “No”
responses, lies and truths looked similar.

2) Average Trajectories: To provide a visualization of the
how participants moved during deception, we generated aver-
age trajectories. To do this, the x- and y-components of each
trajectory were interpolated into 101 time steps (see [34], [32]
for details). Next, the trajectories of “Yes” decisions reaching
to the left-hand response area and “No” decisions to the right-
hand response area were reflected across the vertical axis at
the origin. As a result, all “Yes” trajectories ended in the top
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Fig. 4. Lie2Me trajectory measures

right-hand corner while all “No” responses ended in the top
left-hand corner.

The average trajectories reinforce the findings obtained from
the trajectory measures (Figure 6). Deceptive “Yes” responses
are easily distinguishable from true “Yes” responses, but
deceptive and true “No” responses look similar.

III. PARADIGM 2 - FOOL ME ONCE!

Lie2Me was quite similar to a laboratory psychology
paradigm. A strength of this approach is that the data can
be easily treated using typical psychological techniques. A
weakness of the approach is that the ecological validity of
the paradigm as an assessment of real-life deception remains
quite low. When individuals lie, they typically choose to do
so themselves, they are not instructed to lie as they were in
Lie2Me. The second paradigm we outline, Fool Me Once!,
is much closer to a real-life situation in that it took the
form of a simple online player-versus-player (PvP) card game.
Bluffing is an integral part of PvP games in general and arises
naturally. In Fool Me Once!, we made bluffing a core mechanic
of the game and tracked in-game movement during bluffing
to establish whether there were typical movement features
observed.
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Fig. 5. Effects of Deception and Answer on Lie2Me Trajectory Measures.
Plots developed using ggplor2 [33]

A. Method - Fool Me Once!

1) Setting: Our intention is to eventually deploy Fool Me
Once! online to be played wherever users happen to be. For the
initial testing stages, we recruited two sets of pilot participants
to play the game in a computer lab to extract preliminary data.

2) Game Design: Fool Me Once! is a stripped-down bluff-
ing card game based on the “Higher or Lower” or “Play Your
Cards Right” game. In the original “Higher or Lower” game,
players bet on whether the next card to be revealed will be
higher or lower than a known card. In Fool Me Once!, two
players play against one another, taking alternate turns as
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Fool Me Once - Starting Position

“Bluffer” View

“Caller” View

Fig. 7. Starting Position in a Fool Me Once! trial

Bluffer Moves

Bluffer “Truth” Bluffer “Bluff”

Fig. 8. Bluffer moves in a Fool Me Once! trial

“bluffer” (alternatively, “player”’) and “caller”.

At the start of each turn, the bluffer and caller see one card
at the top of screen, which is at the center and face up, and a
second card, at the bottom of the screen, which is face down
(Figure 7).

Next, the bluffer moves. The bluffer selects the card at the

Caller Sees Bluffer’s move

Caller Moves

Caller Believes Caller Calls Bluff

Click in start to/begin the game

Fig. 10. Screenshot from Fool Me Once!

bottom of the screen and flips it face up in his or her view
of the screen while the card remains face down for the caller.
The bluffer then drags and drops the the visible face card to
the right or left of the top center card to declare that his or
her card is higher/lower than the center card. The caller on
their screen observes in real time how the card is moved by
the bluffer, but the card is still shown face down. The bluffer
then bets a certain amount on their play (Figure 8).

The caller then calls whether they think the bluffer placed
the bluffer card truthfully or bluffed (supposedly taking into
account the observed bluffer’s card movement trajectory). The
caller places their face-down card to the right or left of the
center card to declare the bluffer’s move a truth or a bluff.
(Figure 9)

3) Software: HTMLS with Javascript was used for the
front-end of Fool Me Once!, with realtime -client-server-
client communications using websockets and a custom-written
node.js server. User profiles, leaderboards, and game statistics
were stored on the server in a MongoDB database. Figure 10
provides a screenshot of the start of the game from the bluffer’s
perspective.
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B. Results - Fool Me Once!

Pilot participants were recruited to play Fool Me Once! in a
computer lab to extract preliminary data. Examples of bluffer
trajectories are provided in Figure 11. We need to be careful
not to over-interpret these data, but there are indications that,
similarly to Lie2Me, bluff trajectories are more deflected and
more complex than truth trajectories. There also seems to be
a bias towards picking “Higher” as an option, but it should be
noted that we have not controlled for the value of the center
card when selecting these trajectories.

IV. DISCUSSION

We have described two simple deception-focused games
that track and record players’ movements. Both paradigms
highlight the potential of in-game movements as a source
of information on the psychological processes of deception.
Our first paradigm, Lie2Me, provided a wealth of data in a
simple design similar to a laboratory experiment. We included
approximately 300 participants in our analyses, but these
data were collected in the first month of the exhibition and
we anticipate obtaining 1000 participants or more. Obtaining
such numbers of participants is far beyond what is possible
in a laboratory experiment and allows a variety of analytic
solutions (e.g., machine learning methods) that would not
be possible to implement with lower numbers. Our early
analyses of Lie2Me replicated well-established findings in the
psychological literature in that movement during deception
was slower, more deflected and more complex, but this finding
was mostly restricted to affirmations (i.e., “yes” responses).

The second paradigm, Fool Me Once!, is an online two-
player bluffing card game, and we are currently refining ele-
ments of the design and recruiting players. If we are successful
in attracting and retaining players, the design of Fool Me
Once! has considerable potential to further our understanding
of deception. Most importantly, deception in Fool Me Once!
arises spontaneously and naturally, so it potentially provides
much greater insight into real-world deception. However, the
design of Fool Me Once! also allows us to learn much about

how and when humans detect deception. Based on our early
analyses, it is likely that movement during bluffing is different
from movement during truths. If so, it remains to be seen
whether successful deception detectors are sensitive to such
movement cues. With sufficient data, it would be possible
to estimate the degree to which successful detectors exploit
movement information of their opponents.

A focus on player movement may garner immediate benefits
for game design. Crowdsourced player telemetry is an oft-
overlooked source of data with which to train believable
Artificial Intelligence (Al)-controlled agents, despite the fact
that creating believable agents has been a longstanding goal
of games Al [35], [36]. Limited previous work describes
measurement of player behavior patterns and both quantitative
and qualitative measures of player experience and engagement
with various parts of the game (e.g., [36], [37], [38], [39]). The
insights into the expression of deception in movement that we
can glean from player movement will facilitate work towards
computer-controlled adversaries who behave realistically when
being deceptive, both in sensing deception from other players
and generating their own deceptive moves.

An important avenue for future work will be to apply non-
linear machine learning models to analyze the patterns of
deception in players’ movements. Previous research suggests
that in the simple games similar to the ones presented here, the
data provided by recorded in-game movement can potentially
enable accurate prediction of response truthfulness [30]. In
the current preliminary analysis we focused on linear analysis
of few simple measures characterizing overall response times,
vacillation and movement deflection. Future investigations of
players’ movements in simple games similar to the ones
presented here will explore the predictive value of more
fine-grained measures based, e.g., on temporal and spatial
properties of movement velocity and acceleration, as well as
dynamical-systems-theoretic and information-theoretic model-
based measures [40], [41].

Overall, our work suggests that in-game movement provides
an important source of data on active human psychological
processes. We believe that the intersection between game
design and cognitive science is an under-appreciated area of
opportunity. Games enrich our lives with fun and entertain-
ment and many have seen the potential in gamifying health
and financial tasks. However, to date, there has been little
consideration of the deep understanding of human psychology
that can be extracted from in-game behavior, except to improve
in-game experience. Crowdsourced player telemetry has the
potential to provide rich longitudinal data on cognition and
decision making in a variety of emotional contexts. Greater
understanding of human behavior may help us improve mental
health and games may even provide a vector for the admin-
istration of milder forms of psychotherapeutic intervention.
Improving our understanding of human behavior will also
enable the development of more credible artificial agents. Such
agents will make games more entertaining, but they also have
a wide variety of uses in the society of the future.
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