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Abstract
The recent success of genome-wide association (GWA) studies has greatly expanded our
understanding of many complex diseases by delivering previously unknown loci and genes. A
large number of GWAS datasets have already been made available, with more being generated. To
explore the underlying moderate and weak signals, we recently developed a network-based dense
module search (DMS) method for identification of disease candidate genes from GWAS datasets,
leveraging on the joint effect of multiple genes. DMS is designed to dynamically search for the
best nodes in a step-wise fashion and, thus, could overcome the limitation of pre-defined gene
sets. Here, we propose an improved version of DMS, the topologically-adjusted DMS, to facilitate
the analysis of complex diseases. Building on the previous version of DMS, we improved the
randomization process by taking into account the topological character, aiming to adjust the bias
potentially caused by high-degree nodes in the whole network. We demonstrated the
topologically-adjusted DMS algorithm in a GWAS dataset for schizophrenia. We found the
improved DMS strategy could effectively identify candidate genes while reducing the burden of
high-degree nodes. In our evaluation, we found more candidate genes identified by the
topologically-adjusted DMS algorithm have been reported in the previous association studies,
suggesting this new algorithm has better performance than the unweighted DMS algorithm.
Finally, our functional analysis of the top module genes revealed that they are enriched in
immune-related pathways.
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1 Introduction
Building on the "common-disease-common-variant (CDCV)" hypothesis, genome-wide
association (GWA) studies have been popular during the past several years to identify
disease associated markers and genes. So far, more than 200 diseases or traits have been
studied by GWAS, and more than 4500 markers have been identified for disease association
[1]. Despite the success of GWA studies, these findings only represent a small proportion of
the genetic factors involved in complex diseases, while a great number of disease-associated
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markers and their interactions have not been discovered yet. There are many explanations of
the possible missingness or lack of power, such as rare variations and epigenetic factors that
are difficult to detect in GWA studies, either because of the GWAS design (i.e., common
variants) or the limitation of computation power in genome-wide SNP interactions. Among
these explanations, one important factor is that most genome-wide significant markers
identified so far are observed to have modest effects on individual odds ratios that are
typically less than 1.2 [2]. To overcome this limitation (i.e., no strong genetic effect of the
markers), gene-set based methods have recently been proposed to investigate the joint effect
of multiple functionally related genes [3–5]. It has been implicated that these methods could
have improved power in uncovering a set of genes significantly enriched with association
signals, and such genes could exist in the same pathway or functional group [4].

We recently developed a network-based algorithm, the dense module search (DMS), to
identify subnetworks significantly enriched with association signals from GWAS dataset(s)
for a specific disease/trait [6]. DMS could overcome the disadvantages of pre-defined
pathways, which are limited to a priori knowledge and only include approximately 30% of
human genes, a problem frequently observed in standard gene-set based analysis. DMS
allows a dynamic search of de novo gene sets consisting of genes interconnected in the
context of a protein-protein interaction (PPI) network. Our previous applications of DMS to
GWAS datasets for breast cancer and pancreatic cancer have demonstrated that DMS could
successfully identify a set of genes in the form of subnetworks, which are significantly
enriched and associated with the diseases. We also showed that DMS could greatly improve
power when we compared the performance with other methods such as Gene Set
Enrichment Analysis (GSEA), which is currently the major algorithm for gene-set based
analysis of GWAS datasets [7].

Here, we proposed topologically-matched normalization strategy in the DMS method to
substantially improve the DMS algorithm. The major aim is to adjust the potential bias when
applying network-based methods. For example, it has been found cancer proteins have more
interactors because of their functional importance [8–9]. Correspondingly, high-degree
proteins would have more chance to be selected in network analysis, especially when
performing step-wise searching and expanding strategies in DMS. Consequently, cancer
genes have often been observed in candidate gene prioritization studies when investigators
studied other diseases such as psychiatric disorders. In this study, we demonstrated that our
topologically-adjusted DMS method could efficiently reduce the bias caused by the degree
and, thus, substantially improve the power to detect true candidate genes in a psychiatric
disorder.

II. Material and Methods
A. The CATIE GWAS Dataset

The Clinical Antipsychotic Trial of Intervention Effectiveness (CATIE) project is a
multiphase randomized controlled trial. It was genotyped by Perlegen Sciences using the
Affymetrix 500K and Perlegen’s custom 164K chip. A detailed description of the samples
can be found in reference [10]. We accessed this dataset (Distribution 7.0) from
http://www.nimhgenetics.org/ through NIMH approval. Only the Causation samples were
used. The pipeline of quality control, including the selection of samples and markers, was
described in references [6, 11–12]. In summary, a total of 738 schizophrenia patients and
733 controls, and 446,225 SNPs were used in this study.

To facilitate the network-based strategy, SNP markers were further mapped to genes based
on their genomic coordinates. Because some SNPs may execute their function through
regulation or other functional effects, we included an extended region of 20kb both upstream
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and downstream of each gene. Finally, gene-wise P values were computed using the SNP
with the smallest P value among all the SNPs mapped to a gene. This approach resulted in a
total of 19,310 genes.

We used a comprehensive human PPI network downloaded from the Protein Interaction
Network Analysis (PINA) platform [13] (March 4, 2010). Six public PPI databases have
been collected in this dataset (MINT, IntAct, DIP, BioGRID, HPRD, and MIPS/MPact).
After overlaying the GWAS data onto this network, we removed the nodes (genes) that were
not genotyped or failed to be mapped to human protein coding genes or the edges indicating
self-interaction. We had 9,227 nodes and 43,869 edges.

B. Weighted DMS
We overlay the GWAS data onto the PPI network by assigning each node a z-score based on
the P value of its encoding gene, i.e., zi = Φ−1 (1 − Pi) for the ith node, where Φ−1 is the
inverse normal cumulative density function and Pi is the corresponding gene-wise P value
from the GWAS dataset.

To adjust the bias caused by nodes with many interactors, we proposed the topologically-
matched randomization method in comparison to the previous regular randomization. We
used the parameter of degree to describe the topological characteristics of the network,
defined as the number of interactors for each node in the overall network. After examining
the degree distribution of the working interactome, we categorized the nodes into four
groups according to their degrees: group A with degree range between 0–22, group B 22–24,
group C 24–26, and group D >26.

The detailed module search strategy can be referred to in our previous work [6]. Briefly, the
strategy has the following steps.

Step 1. Candidate module construction. Each node in the network is used as the seed to
search for a local highest-scored module. During the module expansion, the neighborhood
nodes with ≤ 2 steps away from the seed module are iteratively evaluated, and the node with
the maximum score increase is selected. The module expansion is terminated when no
neighborhood node can increase the module score by Z(m+1) ≥ Zm × (1 + r), where r = 0.1 is
used in this work and can be adjusted appropriately in different DMS applications.

Step 2. Module normalization. To determine whether the module score is higher than
expected by chance, a total of 1,000 topologically-matched random networks are generated.
More specifically, for each module, we first counted the number of nodes in each of the four
degree groups as defined above, and then randomly selected the same number of nodes for
each group from the working interactome, resulting in a topologically-matched random
module. In each random process, module scores are computed for all the candidate modules
generated in step 1. Finally, a normalized score is computed for each module by

, where Zm (π) is the score of the πth randomization, and Zm is the
observed module score.

Step 3. Module selection. We select the modules that are scored within the top 1% quantile
of the module score distribution and merge them to construct a disease-specific subnetwork.
This subnetwork is enriched with association signals from the GWAS dataset used.

We named this improved version of the DMS algorithm “topo-adjusted DMS” for search
disease-specific modules and subnetworks from GWAS dataset(s).
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III. Results
We applied the topo-adjusted DMS algorithm to the CATIE GWAS dataset for
schizophrenia. We obtained a total of 8,545 modules and, based on that, selected the top 86
modules (1% of all modules) according to their score ZN values. By combining these
modules, we first constructed a subnetwork including 179 nodes (genes) in the 86 modules.
Visual examination of this network showed that two genes, PTP4A3 and IKBKE, showed
extremely high degree and betweenness values, another topological character defined as the
number of shortest path going through a node. Each of these two genes introduced many
nodes that are weakly connected to the network by only one edge (PPI). Thus, these two
genes, as well as those connected to the subnetwork only through these two genes, were
manually removed from the subsequent analysis, as they are likely false positive nodes that
escaped the topo-adjusted randomization process. As a result, a total of 143 nodes were
included in the final subnetwork, and we denoted it as the schizophrenia-specific
subnetwork (Figure 1).

To demonstrate the improvement of the weighted DMS method, we applied the previous
unweighted DMS method to the same GWAS dataset. It generated a subnetwork with 86
modules and 173 genes. To evaluate their performance, we downloaded schizophrenia
candidate genes from the SZGene database [14] (as of January 26, 2011). This database
manually collected genes that have been studied for association with schizophrenia through
traditional association studies as well as GWA studies. These genes (we denoted as
“szgenes”) can serve as gold positives. We found a total of 23 szgenes were included in the
weighted DMS results (16.08%), while only 20 szgenes were included in the unweighted
DMS results (11.56%) (Table I). The result indicates that the topo-adjusted DMS could
greatly improve the proportion of known candidate genes for schizophrenia; thus, it has high
sensitivity in searching for candidate genes.

Further examination of the module genes showed that a total of 114 genes (79.72%) had P
values < 0.05. The remaining "non-significant" genes were recruited mainly because they
were located in a low-P-value environment and they interacted with genes with small P
values. For example, the genes NCK1 and MED28 did not show significant association with
schizophrenia individually; however, each of them was observed to interact with the protein
products of other important genes for schizophrenia. NCK1 interacts with four proteins
encoded by szgenes, DTNBP1, FYN, PLCG1, and PRX, and MED28 interacts with two
such proteins encoded by FYN and GRB2. This further demonstrated the capability of DMS
to identify joint effect of multiple genes, despite that they may not be significantly
associated with the disease on their own. More importantly, selection of these genes did not
rely on their pre-defined pathways.

As shown in Figure 1, the resultant subnetwork includes many interesting genes related to
schizophrenia. The nodes labeled in red are those that have been studied in previous
association studies or recent GWA studies. The genes AKT1 [15], DTNBP1 [16], DLG2
[17], GRID1 [18], NTRK3 [19] and YWHAZ [20] have been well-studied in schizophrenia,
most of which have positive associations.

We then examined the pathways that are significantly enriched with the subnetwork genes
by using the Ingenuity Pathway Analysis (IPA) system [21]. For the canonical pathways, the
most significantly enriched ones include TGF-β Signaling, RAR Activation, 14-3-3-
mediated Signaling, Neurotrophin/TRK Signaling, and PPARα/RXRα Activation (Table II),
most of which are related to immune and inflammation system, supporting the immune-
involved hypothesis of schizophrenia.
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IV. Discussion
In this study, we present an improved network-assisted algorithm to identify candidate genes
from GWAS dataset through an optimization towards the maximum joint effects of a set of
genes. Compared to standard gene-set based analysis, the dense module search method
introduces flexibility through a dynamic search of the best node in each step, and, thus, it is
granted the opportunity to identify de novo gene sets (i.e., modules) in the context of the
whole human interactome. The proposed randomization process in this study takes
topological characteristics into account and further improves its sensitivity to search for
weak to moderate genes. Our application of the topo-adjusted DMS to the schizophrenia
CATIE GWAS dataset successfully demonstrated the superiority of our topo-adjusted DMS
method, as the module genes are more likely to have positive association signals from
previous studies.

As shown in Table I, the weighted DMS method greatly increased the coverage rate of
szgenes from 11.56% to 16.08%. At the molecular level, the weighted DMS method
successfully recovered several well-studied genes for schizophrenia and other psychiatric
disorders, including AKT1, DTNBP1, GRID1, and NTRK3. Interestingly, gene GRB2 was
also found in the top list. We have recently identified GRB2 as a candidate gene for
schizophrenia by using a completely different network approach [12, 22] and have
successfully validated several SNPs located in GRB2 to be positively associated with
schizophrenia patients in the Irish Case Control Study of Schizophrenia (ICCSS) sample
[23]. Here, using an independent GWAS dataset, we recovered GRB2 as a strong
schizophrenia candidate gene again. Furthermore, as shown in Figure 1, GRB2 functions as
a "hub" node by interacting with several proteins that are encoded by strong schizophrenia
candidate genes like PLCG1 [24] and FYN [25]. Due to space limitations, we are unable to
discuss more details of these genes, or other promising genes in this schizophrenia-specific
subnetwork. However, the wealth of information included in the subnetwork provided
valuable insights for interpretation of previous identified genes as well as a promising list
for future validation.

In summary, we proposed an effective network-based algorithm to identify candidate genes
from GWAS datasets and demonstrated it in a schizophrenia GWAS dataset. The R package
of the DMS method, dmGWAS, can be found on our website
(http://bioinfo.mc.vanderbilt.edu/dmGWAS.html). The user may utilize it for the analysis of
other GWAS datasets.
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Figure 1.
Module gene based subnetwork for schizophrenia. Nodes in red are szgenes. The node
darkness is proportinal to the z-score.
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TABLE I

Summary of DMS Results

Unweighted DMS Topo-adjusted DMS

# modules 86 86

# module genes 173 143

# szgenes in modules 20 23

Proporntion of szgenes 11.56% 16.08%
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TABLE II

Significantly Enriched Pathways in the Subnetwork

Ingenuity Canonical Pathways PBH
a Ob

TGF-β signaling 1.95×10−8 11

RAR activation 1.95×10−8 14

Molecular mechanisms of cancer 2.88×10−8 18

Prolactin signaling 2.88×10−8 10

Glucocorticoid receptor signaling 2.45×10−7 15

14-3-3-mediated signaling 1.91×10−6 10

Neurotrophin/TRK signaling 3.80×10−6 8

PPARα/RXRα activation 5.37×10−6 11

Pancreatic adenocarcinoma signaling 6.92×10−6 9

Regulation of IL-2 expression in activated and anergic T lymphocytes 7.76×10−6 8

Thrombopoietin signaling 8.13×10−6 7

a
BH: multiple testing correction by Benjamini & Hochberg (1995).

b
Observed number of module genes in the category.
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