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Abstract—An important challenge in cancer systems biology is 

to uncover the complex network of interactions between genes 

(tumor suppressor genes and oncogenes) implicated in cancer. 

Next generation sequencing provides unparalleled ability to 

probe the expression levels of the entire set of cancer genes and 

their transcript isoforms. However, there are onerous statistical 

and computational issues in interpreting high-dimensional 

sequencing data and inferring the underlying genetic network. In 

this study, we analyzed RNA-Seq data from lymphoblastoid cell 

lines derived from a population of 69 human individuals and 

implemented a probabilistic framework to construct biologically-

relevant genetic networks. In particular, we employed a 

graphical lasso analysis, motivated by considerations of the 

maximum entropy formalism, to estimate the sparse inverse 

covariance matrix of RNA-Seq data. Reverse engineering the 

network of genetic isoforms revealed a layer of genetic regulatory 

complexity not exhibited by traditional microarrays. Gene 

ontology, pathway enrichment and protein-protein path length 

analysis were all carried out to validate the biological context of 

the predicted network of interacting cancer gene isoforms. 

Keywords— RNA-Seq; graphical lasso; maximum entropy; 

cancer 

I.  INTRODUCTION  

High-throughput sequencing has become an important 

alternative to microarray assays, with RNA-Seq gaining in 

recent popularity. RNA-Seq is more sensitive and has a larger 

dynamic range [1] than traditional microarrays. Moreover, 

RNA-Seq has low background noise, which enables it to 

provide more information to detect allele-specific expression 

and identify novel promoters, isoforms, novel exons and splice 

sites [2]. As such, the development of RNA-Seq has become 

an important tool to delineate the full complexity of 

transcription across the genome. 

Tumor suppressor genes (TSGs) and oncogenes form a 

coordinated network of genes that respond to a wide variety of 

genotoxic stresses in normal cells and tumors. These stress 

responses are orchestrated via controlled levels of gene 

transcription, and it remains a fundamental challenge in cancer 

systems biology to uncover the entire network of 

transcriptional regulation. We propose to utilize RNA-Seq data 

to infer the cancer transcriptional network, and in doing so we 

address several machine learning challenges that are incurred 

when dealing with sparse noisy high-dimensional data. 

A variety of statistical approaches have been applied to 

reconstruct transcriptome networks, such as information-

theoretic methods [3] and relevance networks methods [4]. 

However, these reverse-engineering methods all focus on 

quantifying the statistical correlations, as opposed to the direct 

interactions, between each pair of genes in order to build a 

genetic network. Inspired by concepts in statistical physics, 

gene interactions were inferred by a different study through 

the application of the maximum entropy method using 

microarray expression training data [5]. This approach 

illustrated that, under general assumptions, the elements of the 

inverse covariance matrix provide an appropriate measure of 

pairwise gene interaction, in contradistinction to correlation-

based methods that focus on just the covariance matrix itself. 

We propose to utilize and build upon this formalism with 

respect to the analysis of recent RNA-Seq data in the hopes of 

uncovering a principled understanding of the underlying 

cancer transcriptome network.  

In genomic studies, the number of genes is typically much 

larger than the number of samples, resulting in an 

undersampled and noninvertible covariance matrix. To prevent 

overfitting we can provide an estimate of the sparse inverse 

covariance matrix using the graphical lasso framework [6]. 

The graphical lasso algorithm uses L1 regularization to control 

the number of zeros in the inverse covariance matrix in order 

to learn the structure in an undirected Gaussian graphical 

model.  

In this study, RNA-Seq data of 474 cancer-related genes 

(known TSGs and oncogenes) and their corresponding 

isoforms were obtained from 69 human cell line samples. The 

processed sequencing dataset was then analyzed to infer and 

understand the network of pairwise interactions amongst all 

the genes. By working with RNA-Seq data, as opposed to 

microarray expression values, we were also able to reverse 

engineer the network of interactions between differing gene 

isoforms, revealing an extra layer of genetic regulatory 

complexity. To provide biological validation of the resulting 



 

 

predicted networks we carried out Gene Ontology (GO), 

pathway enrichment and protein-protein path length analyses.  

II. MATERIALS AND METHODS 

A. Data Set Pre-Processing and Correction 

RNA-Seq data were obtained from a recent study whereby 

lymphoblastoid cell lines derived from a sample of 69 Yoruban 

(African Hapmap population) individuals were sequenced on 

the Illumina GAII platform (details described in [2]). 

Approximately 1.2 billion short reads were generated and 

mapped to the hg18 reference genome using TopHat (v1.3.3) 

[7]. The mapping results were then further analyzed using 

Cufflinks (v1.1.0) [8] with default parameters. The expression 

level of each gene was defined using the FPKM (fragment per 

kilobase of exon per million fragments mapped) values as 

reported by Cufflinks.  

Gene/isoform expression level is a noisy phenotype and a 

wide range of external factors, such as batch effects, can 

confound its measurement. We employed the recent Bayesian 

PEER framework [9] to uncover the global effects of known 

and hidden factors on gene/isoform expression level. After 

estimating the confounding covariates in RNA-Seq expression 

data, which we found to be surprisingly significant, we then 

corrected the gene/isoform expression levels to obtain 

modified point estimates of expression. 

In this study, we initially focused on a catalogue of 474 

known tumor suppressor genes (TSGs) [10-12] and oncogenes 

[11, 13, 14]. Genes/isoforms with expression equal to zero 

across all samples were removed, leaving 417 cancer genes, 

and 1014 isoforms. 

B. Entropy Maximization 

What is the most general probabilistic network model that 

captures the pairwise dependencies between genes/isoforms? 

The maximum entropy framework provides a principled 

answer to this question. Let the vector �� = ��1,⋯���	denote 

the expression levels of the P genes/isoforms. Let 
���� denote 

the probability distribution function, and N the total number of 

samples. The most general and unstructured probability 

distribution that captures the pairwise correlations is the one 

that maximizes the entropy	
 = −∑ 
����ln
����
�→  [5], subject 

to the normalization and expectation constraints:	∑ 
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     The maximization over the entropy functional is carried out 
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���� ∝ %&' , where ( = 1

2
∑ )����)���  and  )� = �� +

∑ ���&1��� . � specifies the pairwise interaction terms and, in 

the continuum limit, the correlation function is then simply 

calculated to be the inverse of the elements of � ,  ���&1 =

〈)�)�〉 = 〈����〉 − 〈��〉〈��〉 = +�� . Thus the inverse covariance 

matrix provides a principled measure of pairwise interaction 

between genes. In the language of statistical physics, the 

inverse covariance matrix represents the energy coupling 

constants between the variables	��  and	�� . 
C. Graphical Lasso  

As discussed in the Introduction, the covariance matrix is 

undersampled and thus is noninvertible. The graphical lasso 

technique obviates this issue, sparsifying the inverse 

covariance matrix �  and preventing over-fitting. This 

approach assumes that the FPKM observations of RNA-Seq 

data follow a multivariate Gaussian distribution. Formally, the 

inverse covariance matrix � is estimated by maximizing the 

penalized log-likelihood [6], 

log det� − tr�3�� − 4‖�‖6 

where we have defined � = +&1  and 	3 is the empirical 

covariance matrix of the data. 4	 is a nonnegative tuning 

parameter. ‖�‖6  is the L1 norm, the sum of the absolute 

values of the elements of �. When 4 is sufficiently large, the 

estimate �7  will be sparse due to the lasso-type penalty on the 

elements of � . In this study, we performed graphical lasso 

analysis for a range of tuning parameters, and here we report 

the results for 4 = 0.01 , representing a suitable tradeoff 

between sparsity and running time of the calculations. 

Separate analyses were performed on both i.) genes 

(represented by the most common gene isoforms) and ii.) the 

entire set of isoforms across all genes. Gene/isoform pairs with 

the most significant interaction coupling constants (top 86 

pairs among studied gene pairs, top 43 pairs among studied 

isoform pairs) were selected to represent the underlying cancer 

transcriptome network.  

D. Gene Ontology (GO) and Pathway Enrichment Analysis   

Fisher’s exact test was performed to determine which GO 

terms are significantly overrepresented in the set of the 

strongest interacting gene pairs in relation to the GO 

background of the total 417 cancer genes. In our study, 

overrepresented GO categories in biological process with p-

values less than 0.05 were considered significantly enriched.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) is an 

online database integrating genomic, chemical, and systemic 

function information [15]. Fisher’s exact test with a threshold 

of 0.05 was performed to determine whether the top 

interacting genes are significantly enriched in bimolecular 

pathways as compared to the background of the total 417 

cancer genes.  

E. Protein-Protein Interactions 

To examine if the gene pairs we identified were more 

functionally relevant than background cancer genes, we 

examined the protein-protein interactions for the gene pairs 

using a protein-protein interaction database, Human Protein 

Reference Database (HPRD) [16]. The functional relevance of 

a gene pair can be evaluated by examining the shortest path 

length between the two genes in the protein-protein interaction 

network [17]. It is reasonable to expect that gene pairs with 



 

 

higher interaction energy are expected to have shorter paths 

between them in the protein-protein interaction network. To 

make comparisons with correlations based methods we also 

calculated the shortest protein-protein distance between highly 

correlated gene pairs. The null distribution of network 

distances was calculated from random sets of cancer genes.  

 

III. RESULTS 

A.  RNA-Seq Analysis and Graphical Lasso  

The most significant interaction terms were then used to 

construct genetic networks and visualized using Cytoscape 

version 2.8 [18]. Figure 1 represents the gene network with the 

20 strongest interaction terms and Figure 2 shows the isoform 

network with the strongest 15 isoform pairs. Interestingly, the 

isoform network did not closely match the gene network, 

indicating that most common isoforms do not represent the 

most informative elements of the transcriptional network 

amongst cancer-related genes. 

B. Gene Ontology and Pathway Enrichment 

Several GO categories were considered as significantly 

enriched among the interacting genes with Fisher’s exact p-

value less than 0.05, compared to the background GO of the 

entire set of cancer genes. In total, 21 categories were 

recognized and the 7 most significant among them are shown 

in Table 1. 

Pathway enrichment analysis based on the KEGG pathway 

database was carried out in this study. Significantly enriched 

pathways with Fisher’s exact p-value less than 0.05 are listed 

in Table 2. 

C. Path Length Analysis  

76 out of the 86 unique gene pairs with high interaction 

couplings selected from the sparse inverse covariance matrix 

were found to be present in the protein interaction database, 

HPRD. We carried out a Monte Carlo permutation analysis, 

comprising of 10,000 sets of 76 random gene pairs from the 

417 cancer genes and computed their mean shortest path 

lengths. The null distribution for mean shortest path lengths 

was computed using a histogram of these values (see Figure 

3). We found that the mean shortest path length (3.14) was 

significantly shorter for the top pairs (p = 0.03) than the mean 

of the null distribution. To compare this result with networks 

inferred from traditional correlation-based approaches the 

same procedure was applied to gene pairs selected from the 

covariance matrix. The null distribution for mean shortest path 

lengths is shown in Figure 4. Nevertheless, the mean shortest 

path length (3.23) was not significantly shorter for the top 

pairs (p = 0.17) than the mean of the null distribution. This 

result was consistent with the prediction that the strongest 

interacting gene pairs selected using our methodology are 

more likely to be functionally related with each other 

compared to the same number of top gene pairs selected from 

elements of the covariance matrix. 

Figure 1. Inferred network of the strongest 20 pairwise cancer gene 
interactions. Each gene was represented by its most common isoform.  

 
Figure 2. Inferred network of the strongest 15 pairwise cancer gene isoform 

interactions.  

 
TABLE 1. GENE ONTOLOGY ENRICHMENT RESULTS 

Term Genes 
-log10(P-

Value) 

GO:0050890 cognition 
NRAS, HRAS, JUN, FOSL1, MYC, 

PTEN, AXIN1 
2.62 

GO:0007611 learning or 

memory 
NRAS, HRAS, JUN, FOSL1, PTEN 2.17 

GO:0022402 cell cycle 

process 

CDC6, LZTS2, STK11, BRCA2, 

SMAD3, AURKA, PTTG1, 

HMGA2, CCND1, CDKN2D, GFI1, 

MYC, PINX1 

1.96 

GO:0009628 response to 

abiotic stimulus 

NRAS, HRAS, CCND1, JUN, 

CDKN2D, BCL3, BRCA2, GFI1, 

FOSL1, MYC 

1.92 

GO:0045596 negative 

regulation of cell 

differentiation 

CCND1, LMO2, NME1-NME2, 

RHOA, TCL1A, SMAD3, GFI1 
1.89 

GO:0050877neurologica

l system process 

NRAS, HRAS, JUN, FOSL1, MYC, 

PTEN, AXIN1 
1.89 

GO:0016055 Wnt 

receptor signaling 

pathway 

CCND1, LZTS2, FRAT2, WNT11, 

AXIN1 
1.82 

TABLE 2. KEGG PATHWAY ENRICHMENT RESULTS 

Term Genes 
-log10(P-

Value) 

hsa04310:Wnt 

signaling pathway 

CCND1, JUN, RHOA, SMAD3, 

FRAT2, WNT11, FOSL1, MYC, 

RBX1, AXIN1 

3.70 

hsa04530:Tight 

junction 
NRAS, HRAS, RHOA, YES1, PTEN 1.74 

hsa05213:Endometrial 

cancer 

NRAS, HRAS, CCND1, MYC, PTEN, 

AXIN1, PIK3R2 
1.60 

hsa04350:TGF-beta 

signaling pathway 
RBL2, RHOA, SMAD3, MYC, RBX1 1.57 



 

 

 

 
Figure 3. Null Monte Carlo distribution of shortest path lengths between gene 

pairs. The vertical line indicates the mean value of shortest path lengths (3.14) 

for the top interacting pairs selected from the sparse inverse covariance 
matrix. p-value 0.03. 

 
Figure 4. Null Monte Carlo distribution of shortest path lengths between gene 

pairs. The vertical line indicates the mean value of shortest path lengths (3.23) 

for the top interacting pairs selected from the covariance matrix. p-value 0.17. 

IV. DISCUSSION 

Our study provides a comprehensive insight into the cancer 

gene/isoform transcriptome network in lymphoblastoid cell 

lines using RNA-Seq data, a powerful next generation DNA 

sequencing platform. RNA-Seq is an emerging effective 

method for transcriptome analysis and provides significantly 

higher levels of transcript accuracy than traditional microarray 

technology.  

From the GO analysis results, we found many interacting 

genes related to cell cycle processes, indicating that the 

regulation of cell division requires strong cooperation between 

cancer-related genes. Pathway enrichment results yielded 

significant pathways including the Wnt signaling and the 

TGF-beta signaling pathway, indicating that these pathways 

need to be more tightly regulated than other cancer pathways. 

The results for the mean protein-protein path length between 

the predicted interacting genes lend further weight to the 

biological relevance of the gene pairs. Together, all these 

results demonstrate that the sparse inverse covariance method, 

as motivated by the maximum entropy formalism, provides a 

powerful framework to uncover biologically relevant network 

models of RNA-Seq cancer data, based on pairwise 

interactions. Our future work will apply the statistical 

framework described in this paper to the whole genome, and 

extend the analysis to higher-order interactions among genes. 
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