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Abstract—Timely and accurate land use mapping is a long-

standing problem, which is critical for effective land and space 

planning and management. Due to complex and mixed use, it is 

challenging for accurate land use mapping from widely-used 

remote sensing images (RSI) directly, especially for high-density 

cities. To address this issue, in this paper, we propose a coarse-

to-fine machine learning-based approach for parcel-level urban 

land use mapping, integrating multisource geospatial data, 

including RSI, points-of-interest (POI), and areas-of-interest 

(AOI) data. Specifically, we first divide the city into built-up and 

non-built-up regions based on parcels generated from road 

networks. Then, we adopt different classification strategies for 

parcels in different regions, and finally combine the classified 

results into an integrated land use map. The results show that 

the proposed approach can significantly outperform baseline 

method that mixes built-up and non-built-up regions, with 

accuracy increase of 25% and 30% for level-1 and level-2 

classification, respectively. In addition, we examine the rarely 

explored AOI data, which can further boost the level-1 and 

level-2 classification accuracy by 13% and 14%. These results 

demonstrate the effectiveness of the proposed approach and also 

indicate the usefulness of AOIs for land use mapping, which are 

valuable for further studies. 

Keywords—land use mapping; coarse-to-fine grained 

classification; machine learning; multi-source data fusion; 

remote sensing image (RSI); points-of-interest (POI); areas-of-

interest (AOI) 

I. INTRODUCTION  

Timely and accurate monitoring and analysis of the 
spatiotemporal characteristics of major urban functional areas 
is of great significance for the coordinated development of 
land and space, especially in the current context of rapid 
urbanization across the world. The traditional method of 
producing large-scale land use maps has a heavy workload 
and long renewal cycle, which is difficult to meet the needs of 
practical applications [1, 2]. Remote sensing images (RSI) can 
capture rich spectral and texture physical features to facilitate 
efficient land use mapping [3-5], but they lack socio-
economic features, which limits the land use mapping 
accuracy since land uses are closely related to socio-economic 
attributes. Advances in information and communication 
technologies (ICT) have greatly facilitated easy access to 
various urban big data, and thus provide the potential to fuse 
data from multiple sources for more effective urban land use 
mapping [6-8]. Among the emerging urban big data, point-of-
interest (POI) and area-of-interest (AOI) data include rich 
spatial and attribute information of geographical entities that 
can reflect the socio-economic functional characteristics of 
urban built-up region, and can well complement the 
classification results of RSIs [9, 10]. 

However, RSIs, POIs, and AOIs have significantly 
different spatial coverage, distributions, and  scales, which 
makes it difficult to fuse them effectively for land use 
mapping. To address this issue, in this paper, we propose a 
coarse-to-fine two-stage approach for urban land use mapping 
based on Random Forests (RF) models [11], integrating 
multisource geospatial data (including both RSIs, POIs and 
AOIs). The approach can realize rapid identification of large-
scale urban functional areas, so as to provide reference for the 
coordinated development of land and space. 

The major contributions of the paper are as follows. (1) 
We propose a two-stage approach for parcel-level urban land 
use classification, which can effectively exploit the 
characteristics of RSIs, POIs, and AOIs, and identify land use 
types in a progressive way from coarse- to fine-grained. (2) 
We further investigate into the use of AOIs, which have rarely 
been utilized, and demonstrate their usefulness in significantly 
improving the land use classification results. 

The rest of the paper is organized as follows. Section 2 
describes the study area and data. Section 3 elaborates the 
proposed coarse-to-fine approach and the evaluation method 
for parcel-level land use mapping. Section 4 reports and 
analyzes the results of experiments on Guangzhou, and further 
demonstrates the superiority of the proposed approach and 
also shows the effectiveness of AOIs. Finally, Section 5 
concludes the paper with summary and discussion. 

II. STUDY AREA AND DATASET 

A. Study Area 

Guangzhou, the capital of Guangdong Province, is located 
between 112 ° 57 'E to 114 ° 3'E and 22 ° 26 'N to 23 ° 56' N. 
The north east parts of the city are mountainous, whereas the 
remaining areas are plains, which is an integral part of the 
Pearl River Delta (Fig. 1). According to 2020 government 
data, Guangzhou has a total area of 7434.4 km2 and a built-up 
region of 1350.95 km2, with a complex and diverse urban 
structure, which poses great challenge for land use mapping. 

B. Data Collection 

Road network and water surface vector data are from 
OpenStreetMap (OSM) (https://www.openstreetmap.org). 
According to the grade and size, the roads are divided into 
three levels. The first level includes motorway and trunk, the 
second level includes national and regional roads, and the 
third level is mainly local roads. 

Sentinel-2 satellite images are obtained from Google Earth 
Engine(https://developers.google.com/earth-engine/datasets). 
In order to reduce the seasonal impact of vegetation and crops, 
the images in 2021 are divided by season. Through 
comparison, the cloud amount in spring is the least. Therefore,  

This work was supported in part by the National Natural Science 

Foundation of China under Grant 42101472 and the Hong Kong 

Polytechnic University Start-Up under Grant BD41. 



 

Fig. 1. Map of the study area of Guangzhou. 

the images in spring (January to March) are selected for 
composition to remove cloud, and finally a cloudfree image of 
Guangzhou is obtained. 

POI and AOI data are crawled from Baidu map, including 
attribute information such as name, category and geographic 
coordinates. The original data category is complex and there 
is data redundancy. Considering the large majority of POIs 
and AOIs are distributed in the build-up region, they are 
reclassified into 4 level-1 and 9 level-2 categories of the build-
up region, and the data that are not related to land uses are 
removed. Finally, 367,732 POIs and 19,848 AOIs are 
obtained. 

III. METHODOLOGY 

The flowchart of the research method is shown in Fig. 2, 
which includes four major procedures. (1) Classification 
scheme design and parcel generation; (2) Coarse-grained 
classification; (3) Fine-grained classification; (4) Accuracy 
assessment. 

A. Designing Classification Shcemes 

Urban built-up regions generally refer to places dominated 
by artificial buildings and structures, while non-built-up 
regions are mainly composed of forest land, cultivated land 
and water areas. Based on the characteristics of built-up and 
non-built-up regions, the standard for urban land 
classification, and the actual situation of Guangzhou, the 
classification scheme is designed to be 8 level-1 and 16 level-
2 categories (including categories of both built-up and non-
built-up regions), as shown in TABLE I.  

 

Fig. 2. Flowchart of the research method including four major procedures. 

1) Classification scheme design and parcel generation; 2) Coarse-grained 

classification; 3) Fine-grained classification; 4) Accuracy assessment. 

B. Generating Land Parcels Based on Road Networks 

This study uses land parcels as the basic unit, and assumes 
that the same land parcel has homogeneous socio-economic 
function. Roads and water are the boundaries of natural 
division of urban areas; thus, we use administrative 
boundaries, OSM road networks, and water boundaries to 
divide urban land into parcels. In order to obtain more accurate 
parcel polygons, topology modification of OSM road 
networks is needed. For roads with suspension points, if the 
suspension points are less than 500m away from adjacent 
roads, they will be extended. If the road length is less than 
500m, they will be trimmed. After the topology modification, 
referring to the Code for Design of Urban Road Engineering 
of China (CJJ37 - 2012) and the actual road conditions of 
Guangzhou, the primary, secondary and tertiary roads are 
widened by 40m, 20m and 10m respectively to generate road 
space. Finally, the road and water space are removed in the 
administrative division and 3,645 parcels are generated (Fig. 
3).  

 

Fig. 3. Distribution of urban land use parcels generated from OSM road 

networks. (A) Overall pattern; (B) and (C) are zoomed-in views (red frame) 

of the original road networks and the segmented land parcels, respectively. 



TABLE I.  LAND USE CLASSIFICATION SCHEMES. 

Level-0 Level-1 Level-2 Description 

Non-built-up region 

(NBUR) 

Agriculture (A) 

Cropland (Cro) Farm lands 

Orchard (Orc) Parcels planted with fruit trees 

Aquaculture (Aqu) Fish pond and aquaculture land 

Green Space (G) 
Forest (For) Trees with distinct canopy textures 

Shrubland (Shr) Shrubs with textures finer than trees 

Waterbody (W) Waterbody (W) Natural or artificial waterbodies 

Undeveloped (U) Undeveloped (U) Bare land or land under construction 

Built-up region 

(BUR) 

Residential (R) 
Village (Vil) Urban villages and rural areas 

Community (Com) Urban residential building groups 

Commercial (C) 
Marketing (Mar) Consumption and leisure land 

Service building (Ser) Office building for service industry 

Industrial (I) Industrial (I) Manufacturing, warehousing, mining 

Public Service (P) 

Medical (Med) Hospitals 

Educational (Edu) Education and scientific research institutions 

Government (Gov) Government and social organizations 

Transportation (Tra) Aviation, railway, passenger station and port land 

 

C. Coarse-grained Classification 

1) Extracting physical features from RSI 
To better distinguish feature information, we first retrieved 

Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Water Index (NDWI) from the 
Sentinel-2 imagery. 

 NDVI = (NIR − RED)/(NIR + RED)  (1) 

 NDWI = (GREEN	– 	NIR)	/	(GREEN	 + 	NIR)  (2) 
where, NIR is band 8 of sentinel-2, RED is band 4, and 
GREEN is band 3. 

Then, the mean values of RED, GREEN, BLUE (band2), 

NIR，SWIR1 (band11), NDVI and NDWI were extracted as 

the physical features for classification. 

2) Annotating samples 
By referring to the Sentinel-2 image (including both true-

color and false-color composite images) and high-resolution 
images from Google Earth and Baidu map, we annotate the 
training samples with prominent characteristics for both 
coarse- and fine-grained classification. For example, the 
texture of forest land is rough, while the texture of cultivated 
land is fine and the shape is regular; the density of villages is 
usually high; a community is generally a regularly arranged 
building group including some green vegetation; and the 
industrial land is usually large in scale but low in intensity. 
Based on these characteristics, we collected 127 samples for 
coarse-grained classification and 124 for fine-grained 
classification. Some typical examples of different land use 
types are shown in Fig. 4. The numbers of training samples for 
different levels of classification are presented in TABLE II.  

3) Identification of built-up and non-built-up regions  
Based on the coarse-grained training samples, RF model 

can be trained and then leveraged to classify the Sentinel-2 
image of the study area in pixel level. According to the 
classification results, the area proportion of built-up region in 
each parcel is calculated. Referring to the previous research 
[12, 13] and combined with the actual situation of Guangzhou, 
the threshold for distinguishing built-up region from non-
built-up region is set to 0.37.  

TABLE II.  OVERVIEW OF THE COLLECTED TRAINING SAMPLES
a. 

(COARSE: COARSE-GRAINED CLASSICATION; FINE: FINE-GRAINED 

CLASSICATION) 

Level-1 
Num. 

(coarse) 

Num. 

(fine) 
Level-2 

Num. 

(coarse) 

Num. 

(fine) 

Agriculture 24 17 

Cropland 7 6 

Orchard 9 5 

Aquaculture 8 6 

Green Space 21 14 
Forest 14 7 

Shrubland 7 7 

Waterbodyb 12 - Waterbodyb 12 - 

Undeveloped 8 2 Undeveloped 8 2 

Residential 14 25 
Village 8 12 

Community 6 13 

Commercial 13 24 

Marketing 5 10 

Service 

building 
8 14 

Industrial 11 12 Industrial 11 12 

Public 

Service 
24 30 

Medical 6 6 

Educational 5 6 

Government 8 9 

Transportation 5 9 

a. A sample for coarse-grained classification is a block of pixels of the same 
category, while a sample for fine-grained classification is a land parcel of a 
specific category. 
b. The category of waterbody is not applicable for fine-grained classification 

as there are no parcels that meet the criterion. 

 



Fig. 4. Typical examples of training samples of different land use types. 

(A) Cropland; (B) Orchard; (C) Aquaculture; (D) Forest; (E) Shrubland; (F) 

Waterbody; (G) Undeveloped; (H) Village; (I) Community; (J) Marketing; 

(K) Service building; (L) Industrial; (M) Medical; (N) Educational; (O) 

Government; (P) Transportation. 

If the proportion of built-up region of a parcel is greater 
than the threshold, the parcel is identified as built-up region, 
otherwise it is non-built-up region. 

D. Fine-grained Classification 

1) Extracting socio-economic features from POIs and 

AOIs 
POIs are discrete points. In order to densify the influence 

of POIs, we calculate the kernel density of different POI 
categories, and then normalize them to eliminate the volume 
differences of different categories to make them comparable 
[14].  

 �!"#$ =
%&'!"#

'!$%&'!"#
  (3) 

where, �!"#$  is the normalized value of the POI kernel 
density map, and �$(!  and �$)*  are the minimum and 
maximum values in the POI density maps, respectively. 

For AOIs, the area proportion of each category in a parcel 
is leveraged as an input feature for the RF model. 

 �( =
∑ ,"
#
&

,'$()*+
 (4) 

where, �( is the area proportion of category i, �( is the area of 
each AOI of category i within a parcel, n is the number of 
AOIs of category i within a parcel, and �-)#./0 is the area of 

this parcel. 

2) Classification in non-built-up region 
For non-built-up region, the classification result of pixel 

scale at the coarse classification stage is used. By 
summarizing the area of each category, the area proportion of 
each category is used to determine the function of the parcel, 
the one with the largest proportion will be identified as the 
land use category for the parcel. 

3) Classification in built-up region 
For built-up region, another RF model can be trained based 

on the annotated training samples of fine-grained labels. Then, 
the trained model is used to recognize the functions of land 
parcels [15]. Specifically, for each parcel, the input features 
include spectral characteristics of RSIs, normalized kernel 
density map of all categories, and the area proportions of all 
categories of AOIs.  

E. Accuracy Assessment 

We use the confusion matrix to evaluate the accuracy of 
land use classification. 255 validation parcels are generated in 
the study area by stratified sampling, including 150 built-up 
parcels and 105 non-built-up parcels. The land use types of the 
parcels are determined by visually inspecting Google Earth 
satellite imagery and Baidu map by local experts. Finally, the 
confusion matrices of level-1 and level-2 are established. In 
addition, metrics including overall accuracy (OA), Kappa 
coefficient, user accuracy (UA), producer accuracy (PA) are 
also used for classification performance evaluation. 

IV. RESULTS AND ANALYSIS 

A. Overall Results 

1) Coarse-grained land use mapping results 

The results of dividing built-up and non-built-up regions 
are shown in Fig. 5 and TABLE III. It can be seen that the 
spatial division of these two regions is in line with the actual 
situation to a great extent. The OA is 94% and the kappa 
coefficient is 0.87, which demonstrates the effectiveness of 
using physical features extracted from RSIs to separate built-
up and non-built-up regions.  

The PA of the built-up region is 100%, which means all 
parcels with the ground truth of built-up region were 
successfully identified. The PA of the non-built-up region is 
89%, where parcels misclassified mainly include both built-
up region and non-built-up region, such as villages and 
farmland, residential communities and green space. There are 
mainly two possible sources of errors. One is the error caused 
by spectral feature classification at the pixel scale. The other 
is the error caused by the classification based on the area 
proportion threshold of built-up and non-built-up region at the 
parcel scale. When the area proportion of the two is close to 
the threshold, it is difficult to decide the category. 

 

Fig. 5. Coarse-grained land use mapping results. 

TABLE III.  CONFUSION MATRIX OF COARSE-GRAINED 

CLASSIFICATION. 

Level-0 NBUR BUR Total UA Kappa 

Non-build-up region (NBUR) 25 0 25 100% 0 

Build-up region (BUR) 3 20 23 87% 0 

Total 28 20 48 0 0 

PA 89% 100% 0 94% 0 

Kappa 0 0 0 0 0.87 

2) Fine-grained land use mapping results 



The fine-grained classification maps are shown in Fig. 
6(b) (level-1) and Fig. 6(e) (level-2). Based on features 
extracted from RSI and POIs, the two-stage approach can 
achieve an OA and kappa coefficient of 73% and 0.68 for 
leve-1 classification, while that of level-2 are 62% and 0.58, 
as shown in Fig. 7(b)(e) and Fig. 8(b)(e). We can see that the 
spatial distribution of land use categories is roughly consistent 
with the actual situation in Guangzhou, with green space 
distributed in the north, agriculture in the east, west and south, 
and the core built-up region of residential, commercial and 
public service land, and periphery the industrial land. 

For the level-1 classification results, the PA and UA of 
undeveloped land, agriculture land and green space are all 
larger than 90%, which shows that the model performs well in 
the non-build-up region. For build-up region, residential and 
commercial land have the lowest PA (both 45%), while 
commercial and industrial land have the relatively low UA 
(56% and 50% respectively). Combined with the confusion 
matrix of level-2 classification, it can be seen that the 
misclassified residential land is mainly villages, most of which 
are misclassified as industrial land, and the misclassified 
commercial land is mainly the market land, which is mainly 
misclassified as communities. This is reasonable because in 
built-up region, factories are usually located together with 
urban villages, and residential communities are usually 
accompanied by consumption and entertainment facilities. 

 

Fig. 6. Fine-grained land use mapping results of level-1 and level-2. (a) 

and (d) One-stage approach (baseline), (b) and (e) Two-stage approach 

(ours), (c) and (f) Two-stage approach with extra AOI data. 

 

Fig. 7. Confusion matrices of level-1 classification. (a) One-stage 

approach (baseline), (b) Two-stage approach (ours), and (c) Two-stage 

approach with AOIs. The upper row (a,b,c) presents the original confusion 

matrices, while the bottom row (d,e,f) shows corresponding normalized 

confusion matrices. 

 

Fig. 8. Confusion matrices of level-2 classification. (a) One-stage 

approach (baseline), (b) Two-stage approach (ours), and (c) Two-stage 

approach with AOIs. The upper row (a,b,c) presents the original confusion 

matrices, while the bottom row (d,e,f) shows corresponding normalized 

confusion matrices. 

B. Comparison between One- and Two-stage Approaches 

The OA obtained by the baseline one-stage method 
(directly identifying the land use categories of the whole city 
in parcel level based on RSI and POI features) is relatively 
low, with level-1 accuracy of 48%, and level-2 accuracy of 
32%, and the kappa coefficient of them are 0.37 and 0.26, 
respectively (Fig. 7(a)(d) and Fig. 8(a)(d)).  

From the perspective of distinguishing non-built-up and 
built-up region, this method performed worse for the 
identification of built-up region, in which 37 of the 155 
validation samples of built-up region were identified as non-
built-up region (Fig. 6(a)(d)). After adopting the proposed 
two-stage approach, this number was reduced significantly to 
3. From the internal subclassified results of non-built-up and 
built-up region, their average PA is 48% and 41% 
respectively, and have improved to 96% and 61% respectively 
after adopting the two-stage scheme. It can be seen that when 
RSI and POI are applied to non-built-up and built-up region 
for RF classification at the same time, whether it is to 
distinguish non-built-up and built-up region, or to finer 
categories, the results cannot compete with applying them to 
different regions separately. This may be because the vast 
majority of POI data are located in built-up region, and the 



model performance will be significantly impacted by the 
extremely uneven data distribution. 

C. Analysis of the Effects of AOIs 

At present, research on urban land identification involving 
AOIs is still relatively rare. Therefore, we set up a comparative 
experiment to compare the classification performance before 
and after adding AOIs as an extra data source. 

Together with POI and spectral features, extra AOI 
features help improve the accuracy of level-1 classification to 
86%, with a kappa coefficient of 0.83, and the OA and kappa 
coefficients of level-2 are 76% and 0.74 respectively (Fig. 
7(c)(f) and Fig. 8(c)(f)). It can be seen that the results of both 
levels have been significantly improved. The classification 
maps of level-1 and level-2 are shown as Fig. 6(c) (f). It can 
be seen that compared with the results before adding AOI, the 
overall land pattern is more consistent with the actual 
situation. The residential, commercial and industrial land 
presented multiple cores rather than simple aggregation. 

In the level-1 result, the PA an UA of all categories have 
been improved or remained unchanged. Among which, the 
significant increase of PA are in the categories of commercial 
(31%), residential (25%) and public service (24%). Combined 
with level-2 results, the PA of transportation land has 
improved most significantly from 33% to 100%. This may be 
because the traffic hub usually has a boundary of large floor 
area in AOI data, so it is easy to be identified compared with 
only one or several points in POI data, which is easy to be 
affected by the surrounding POIs. Similarly, since most 
villages, industrial parks, business centers and residential 
communities in AOI data have clear boundaries, the confusion 
between villages and industrial land, and between marketing 
and residential land have been alleviated to varying degrees. 
After adding AOI data, the PA of villages and marketing land 
improved by 45% and 32% respectively. At the same time, the 
importance analysis of features also shows that AOIs has the 
greatest contribution of the model, showing that AOI data can 
be used as an effective data source for urban land 
classification. 

D. Analysis of the Land Use Pattern of Guangzhou 

According to the parcel-level land use mapping results, the 
built-up region of Guangzhou is 1,868.48km2, accounting for 
25.1% of the whole city area. The proportions of residential 
land, commercial land and industrial land are similar in the 
built-up region, which account for 31.4%, 28.3% and 29.4% 
respectively, and remaining public service land hold a 
proportion of 10.9%. 

Due to the influence of terrain, the land use pattern of 
Guangzhou presents a north-south spatial structure. The 
ecological space is mainly distributed in the north, while the 
agricultural space lays in the east and west wings and the 
southwest, and the urban space is relatively concentrated in 
the middle. Among them, the urban space roughly presents the 
concentric circle development model. The residential and 
public service land are mainly distributed in the urban core 
area, with commercial land closely distributed in the 
periphery, and the industrial land is concentrated in the east, 
south and north wing in a cluster development mode. 

V. DISCUSSION AND CONCLUSIONS 

Automatic urban land use mapping is essential for timely 
and accurate urban land monitoring and management. RSIs 

are widely used, and can efficiently capture the physical 
elements and have high accuracy in the recognition of ground 
features in non-built-up region. However, it is often not 
sufficient to distinguish complex land use types in built-up 
region using RSIs alone. The emerging open social data 
include rich socio-economic information that can be leveraged 
to identify the functions of built-up region, but there is almost 
no data in non-built-up region. Due to their significant 
differences in spatial coverage, distributions, and  scales, it is 
non-trivial to fuse them effectively for land use mapping.  

To address this issue, in this paper, we propose a coarse-
to-fine machine learning-based approach for urban land use 
mapping, integrating multisource RSI, POI and AOI data. 
Specifically, we first divide the city area into built-up region 
and non-built-up region, and then adopt different 
classification strategies according to their different 
characteristics. In addition, the rarely explored AOI data are 
added as an extra data source. AOIs focus on features with a 
certain scale, which can more directly reflect land use than 
POIs. The experimental results show that using the proposed 
coarse-to-fine classification strategy and combined with AOI 
data can produce a more detailed and accurate land use map at 
parcel level.  

Our approach has achieved good results in generating 
detailed urban land use map on a large district, however, there 
are still some limitations. First, the quality of road networks 
directly determines the number and size of land parcels. The 
parcels formed by sparse road networks contain more mixed 
land use types, and therefore it will be difficult to identify the 
functions. Despite the easy access, the integrity and 
correctness of OSM road networks need to be improved. 
Future research can consider combining road networks and the 
segmentation from RSI to generate more detailed and 
consistent parcels. Second, the land use mapping results can 
be further enhanced by using more carefully selected features 
or integrating more sources of data. In this study, RSI, POI 
and AOI data are used. With the increasing availability of 
various urban big data, it is beneficial to include other data 
sources to further improve the classification results, such as 
human mobility data, which are complementary and can 
provide more comprehensive information for land use 
recognition.  
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