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Abstract— Super-resolution imaging (S.R.) is a series of 
techniques that enhance the resolution of an imaging system, 
especially in surveillance cameras where simplicity and low cost 
are of great importance. S.R. image reconstruction can be viewed 
as a three-stage process: image interpolation, image registration, 
and fusion. Image interpolation is one of the most critical steps in 
the S.R. algorithms and has a significant influence on the quality 
of the output image. In this paper, two hardware-efficient 
interpolation methods are proposed for these platforms, mainly 
for the mobile application. Experiments and results on the 
synthetic and real image sequences clearly validate the 
performance of the proposed scheme. They indicate that the 
proposed approach is practically applicable to real-world 
applications. The algorithms are implemented in a Field 
Programmable Gate Array (FPGA) device using a pipelined 
architecture. The implementation results show the advantages of 
the proposed methods regarding area, performance, and output 
quality. 

Keywords— Super-resolution, image interpolation, bilinear and 
bicubic interpolation, FPGA interpolation, Real-time. 

I. INTRODUCTION 

High resolution (H.R.) means pixel density within the image 
is distinguished, and the super-resolution (S.R.) process is one 
of the ways that bring us to this purpose[1]. In super-resolution 
to improve image quality, the size of the image will be 
expanding as well to improve image quality for different 
purposes. The importance of super-resolution algorithms in 
today's world to serve human beings is inexhaustible. Especially 
in surveillance applications, the timely execution of the 
algorithm is significant. In a wide range of humanitarian 
applications like security applications [٣-٢], face detection 
systems, self-driving cars, computer-aided detection systems [4-
٧], and robot-assisted surgery systems, quality of the image, low 
cost, and real-time processes are the key points to show they are 
successful and pioneers. 

In super-resolution, interpolation plays an essential rule and 
is the bottleneck of the SR algorithms. How to resize the image 
considering as much information as possible is an issue of 
concern in many applications [٨]. So, designing an optimal 
system for this step is important. Field Programmable Gate 
Array (FPGA) is a suitable platform to reach this goal. 

Interpolation is the process of calculating the intermediate values 
of a continuous event from available discrete samples. It is 
practiced extensively in digital image processing to magnify or 
reduce images and to correct spatial distortions  [1, 9].  

Among existing image interpolation techniques [10], nearest 
neighbor, bilinear, and bi-cubic interpolations have become 
popular. One of the causes of this prevalence is the capability of 
implementing these mentioned methods on the hardware 
platform. Due to difficulties of blocking artifacts and blurring 
effects in more straightforward methods such as the nearest 
neighbor and bilinear, the bicubic interpolation is used for 
superior interpolation quality because of the amount of data 
associated with digital images. On the other hand, the volume of 
computing for bicubic interpolation is high.  

The bicubic interpolation algorithm addressed in this paper 
is a simplified computation complexity version of the algorithm 
presented in [11]. The proposed architecture is real-time and 
applicable in many security and surveillance applications, such 
as identifying the car plates, authentications, remote sensing 
[12], and similar practices, where real-time processing is 
necessary. A low-cost architecture of the bilinear interpolation 
is also proposed. The bilinear and bicubic interpolation 
algorithms presented here are implemented using a pipelined 
parallel architecture to improve the throughput for the real-time 
applications on FPGA. These architectures provide real-time 
outcomes, since after an initial latency, every pixel is estimated 
at the input data rate. This feature is especially important in 
applications such as surveillance camera. 

The rest of the paper is organized as follows: In section II, 
the bicubic and bilinear methods are explained. In section III, 
some related works are discussed. Section IV presents the 
proposed architectures and implementation results. Finally, 
section V concludes the paper. 

II. BICUBIC AND BILINEAR INTERPOLATION 

A. BICUBIC INTERPOLATION 

The bicubic interpolation method efforts to fit a surface 
among four corner pixels using a third-order polynomial 
function [13]. In order to compute a bicubic interpolation, the 



intensity values and the horizontal, vertical, and diagonal 
derivate at the four corner points should be calculated. The 
interpolated surface, f(x,y), described by a third-order 
polynomial given by Eq. (1) 
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Fig. 1. Bicubic coefficients calculation (a) The neighborhood of a point P 
in a 2-D image space (b) Common neighborhood of points P1, P2, and P3 
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Fig. 2. The 4 neighborhood of a point ’p’ in a 2-D image space 

There are 16 coefficients (aij) that we determine to compute 
the function expressed by Eq. (1), each one of these 16 pixels 
due to their distance from the location of the reference pixel (see 
Fig.1) will take a coefficient. 

To create the pipelined parallel architecture, first, based on 
Eq. (2), the interpolated pixel is calculated in each row. The 
results p1', p2', p3' and p4' are horizontal interpolated pixels. The 
final pixel will be calculated based on Eq. (3). 
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Here Wri and Wci are the coefficients of the ith row and 
column, respectively. To compute these coefficients, the most 
current interpolation kernel is the one proposed in [14]. The 
same kernel function is expressed by Eq. (4). We utilize this 
kernel in our proposed architectures.  

For hardware implementation, the most critical step is 
computing the coefficients of Eq. (4). If the exact values adopted 
in the hardware implementation, the volume of computation will 
be increased. Therefore, in this paper, the approximate 
coefficients are used to benefit from the advantages of 
approximate computing [15-17]. In section III it will be 
discussed in detail. In comparison with the bilinear interpolation, 
the IQS (image quality assessment) is higher, but the hardware 
resources are also more. The selection between these two 
depends on the user request. 
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B. Bilinear Interpolation 

  The bilinear interpolation techniques are among the most well-
known methods used in image processing due to their arithmetic 
simplicity [18]. It combines the values of the four nearest pixels 
using separable linear interpolation, as shown in Fig. 2, based on 
the horizontal and vertical distance from neighborhood pixels’ 
coefficient will be calculated. The ultimate value of interpolated 
pixel calculated through Eq. (5). 

𝑃 = 𝑃ଵଵ(1 − 𝑑𝑦)(1 − 𝑑𝑥) + 𝑃ଵଶ(1 − 𝑑𝑦)𝑑𝑥 

    Pଶଵ𝑑𝑦(1 − 𝑑𝑥) + Pଶଶ𝑑𝑥𝑑𝑦 
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III.  BACKGROUND 

In this section, We analyze and investigate several hardware 
implementations of bicubic and bilinear interpolation. 

In [18], a Real-time FPGA Implementation of Barrel 
distortion correction method by using bilinear interpolation is 
presented. The architecture in [11] grants high output quality but 
demands very high output resources; hence consumes high 
power. 

In [11, 19], the bicubic interpolation is implemented. These 
architectures store the entire image pixels in external memory. 
Hence, sizable external memory is required. This external 
memory increases the overall cost of the system, reduces the 
performance, and increases the power consumption. 

In [20], a comparison between classical interpolation and 
new convolution-based interpolation is presented. This 
comparison includes other cubic interpolation systems not 
earlier studied in signal and image processing. The experimental 
results in [20] also compare the computational complexity of 
these methods.  

Most of the bicubic interpolation implementations using 
FPGA for image scaling [19, 21] typically use floating-point 
units (FPU). The FPU imposes a significant area overhead, 
consumes high power, and affects the overall performance of the 
system. In [19], a lookup table method, along with parameterized 
modules, is used instead of a floating-point multiplayer.  

In [22], a different interpolation kernel is established based 
on five independent parameters that measure its angular 
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frequency, amplitude, standard deviation, and duration. 
However, this method has complexity in computation and is not 
suitable for hardware implementation. To overcome this 
computational complexity, a novel low-complexity cubic 
interpolation implementation for spaceborne georeferencing 
images is proposed in [23]. While the architecture in [23] 
reduces the computational complexity, it is only applicable to 
the spaceborne georeferencing images. 
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Fig. 3. The block diagram of the proposed algorithm 
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Fig. 4. The block diagram for 4*4 sliding window 
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Fig. 5. The block diagram for 2*2 sliding window 

 

IV. PROPOSED ARCHITECTURES FOR BICUBIC AND 

BILINEAR INTERPOLATION AND IMPLEMENTATION 

RESULTS 

A. Proposed Architectures  

Proposed architecture for bilinear and bicubic interpolation 
consists of 2 main steps, are shown in Fig. 3. 

First, the architecture provides proper pixels for interpolation 
computing part. And then determining the coefficients and 
calculate the interpolated pixels. It is clear that step 2 is more 
critical, and the main idea of this paper is in this step.  

The architecture presented in [11, 19] stores all of the image 
pixels in external memory. However, in our proposed 
architecture, by using the sliding window, which is presented in 
detail in Fig. 4, there is no need to save the whole image. Thus, 
the first step provides a good saving in memory and, as a result, 

in hardware resources. The size of the line buffer is equal to the 
length of the image. As in the bicubic interpolation, 16 
neighborhoods require to be read; The sliding window has 3 line 
buffers. Fig. 4 shows the architecture of the sliding-window for 
bicubic interpolation. 

Accordingly, as four neighborhood pixels are required for 
the bilinear process, we just need a line buffer. Fig .5 shows the 
architecture of the sliding-window for bilinear interpolation. 

After the first step and providing the pixels for the second 
step, the pixels are multiplied by the coefficients. If the exact 
values are used, a large number of multipliers will be needed. In 
this paper no multiplier block is used for interpolation 
implementation. However, as this is a trade-off between 
hardware resources and accuracy, we have developed an 
approximated bicubic- and bilinear-based method, which is 
more suitable for computational systems with limited memory, 
such as FPGAs and DSPs [24]. The block diagram of the 
interpolate part for bilinear, and bicubic interpolations are shown 
in Figs. 6 and 7, respectively.  
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Fig. 6. The Architecture of final value calculation of bilinear interpolation 
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Fig. 7. The Architecture of final value calculation of bicubic interpolation 
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Fig. 8. The final results (a) Input image (b) Result of the bilinear interpolation (c) Result of the bicubic interpolation 

TABLE I.  COMPARISON OF THE PROPOSED ARCHITECTURE WITH RECENT INTERPOLATION METHODS 

Architectures 
Image  
size 

Interpolation 
algorithm 

Implementation 
platform 

Frequency 
(Mhz) 

Slice 
LUTs 

Slice 
registers 

Block 
RAM 

DSP 

Proposed in [14] 640*480 Linear  Virtex-2 104.3 NA NA NA NA 

Proposed in [25] 2560*1920 Cubic Virtex-6 130.0 NA NA NA NA 

Proposed in [11] 2560*1920 Cubic Virtex-6 75.0 7900 7843 78 48 

Proposed in [23] 256*256 Cubic Artix-7 100.0 5293 8432 102 39 

Bi-linear 256*256 Linear Artix-7 314.8 97 44 0 0 

Bicubic 256*256 Cubic Artix-7 289.2 359 162 0 0 

TABLE II.  PSNR AND SSIM OF OUTPUT IN COMPARISON TO THE 
SOFTWARE METHOD 

Images 
Bi-linear Bicubic 

PSNR SSIM PSNR SSIM 

Cameraman 23.77 0.972 29.02 0.987 

Moon 25.76 0.961 29.92 0.974 

Rice 23.77 0.973 29.19 0.985 

Coins 24.06 0.974 28.42 0.990 

B. Implementation and Simulation Results  

The implementation and simulation of the proposed 
architecture are done using the ISE design suite and MATLAB.  

As mentioned before, the hardware-based design techniques 
such as parallelism and pipelining techniques can be developed 
on an FPGA, which is impossible in a dedicated DSP design. 
FPGA is a matrix of logic blocks that are combined by a network 
of switches. Logic blocks and switching networks are 
reconfigurable, allow in application-specific hardware to be 
formed. As FPGA allows a compromise among the adaptability 
of general-purpose processors and the hardware-based speed of 
ASICs. 

By implementing image processing algorithms on 
reconfigurable hardware, the time to market costs can be 
reduced. Besides, it can enable quick prototyping of complicated 
algorithms, and simplifies the debugging and verification 
phases. So, FPGAs are reliable options for the implementation 

of real-time image processing algorithms. The advantage of the 
FPGA-based interpolation is that the design can be implemented 
in smart camera designs, which means, it is useable in embedded 
systems where the sensor is attached to the FPGA for pixel data 
processing. These kinds of applications usually produce low-
cost and real-time processing devices. 

Figure 8 shows the results of the proposed architectures. As 
indicated in Fig. 8, the proposed architectures provide an 
acceptable output quality while occupying low resources and 
delivers high performance. 

Table I shows the results of the implementation of the 
proposed architectures. As this table exhibits, thanks to the 
approximate coefficients and pipelined architecture, the 
proposed architectures offer high frequency and occupy low 
resources with negligible lower output quality. Table II gives the 
peak signal to noise ratio (PSNR) [26] and structural similarity 
(SSIM) [27] of the proposed architectures for different input 
images. As this table shows, the proposed methods offer high 
PSNR and SSIM. With reducing the image dimensions, the 
PSNR and SSIM will be reduced as well. Therefore, medium 
size images are selected in this paper to have pessimistic results. 
However, by this choice, the hardware resources are reduced. 
Notably, even if we utilize large size images, the hardware 
resources are much less than the other works like [11, 14, 22, 
24]. 

As proposed architectures offer high frequency, low power 
consumption, and occupy small resources with negligible lower 
output quality, we can utilize it in applications such as 



surveillance cameras where hardware resources and power are 
limited. Besides, according to the mentioned features (high 
frequency, low power consumption, low area overhead, and 
negligible lower output quality), the proposed architectures can 
be implemented in applications such as internet of things (IoT) 
nodes and sensors, communication and information 
technologies, and mobile clinics which are also facing the 
mentioned limitations. 

V. CONCLUSION 

Interpolation is one of the critical steps in super-resolution 
techniques, tracking systems, robotic, online videos, mobile 
applications, and most importantly, security applications like 
surveillance cameras. In this paper, an FPGA implementation 
for the improved bicubic and bilinear convolution interpolation 
for real-time applications is proposed. The proposed method 
reduces the computational complexity, enhances the speed, and 
reduces the FPGA resources while providing an excellent trade-
off between image quality and calculation simplicity. Due to the 
few computational requirements and real-time capability of the 
proposed architecture, it can be considered a reasonable solution 
for applications that require interpolation in real-time with the 
minimum cost in hardware. 
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