
Low-Cost Implementation of Bilinear and Bicubic
Image Interpolation for Real-Time Image Super-

Resolution

1Donya Khaledyan*, 1Abdolah Amirany, 1Kian Jafari,1Mohammad Hossein Moaiyeri,
 2Abolfazl Zargari Khuzani, 3Najmeh Mashhadi

1Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.
2Department of Electrical and Computer Engineering, University of California, Santa Cruz, USA
3Department of Computer Science and Engineering, University of California, Santa Cruz, USA

* d.khaledyan@mail.sbu.ac.ir

Abstract— Super-resolution imaging (S.R.) is a series of
techniques that enhance the resolution of an imaging system,
especially in surveillance cameras where simplicity and low cost
are of great importance. S.R. image reconstruction can be viewed
as a three-stage process: image interpolation, image registration,
and fusion. Image interpolation is one of the most critical steps in
the S.R. algorithms and has a significant influence on the quality
of the output image. In this paper, two hardware-efficient
interpolation methods are proposed for these platforms, mainly
for the mobile application. Experiments and results on the
synthetic and real image sequences clearly validate the
performance of the proposed scheme. They indicate that the
proposed approach is practically applicable to real-world
applications. The algorithms are implemented in a Field
Programmable Gate Array (FPGA) device using a pipelined
architecture. The implementation results show the advantages of
the proposed methods regarding area, performance, and output
quality.

Keywords— Super-resolution, image interpolation, bilinear and
bicubic interpolation, FPGA interpolation, Real-time.

I. INTRODUCTION

High resolution (H.R.) means pixel density within the image
is distinguished, and the super-resolution (S.R.) process is one
of the ways that bring us to this purpose[1]. In super-resolution
to improve image quality, the size of the image will be
expanding as well to improve image quality for different
purposes. The importance of super-resolution algorithms in
today's world to serve human beings is inexhaustible. Especially
in surveillance applications, the timely execution of the
algorithm is significant. In a wide range of humanitarian
applications like security applications [٣-٢], face detection
systems, self-driving cars, computer-aided detection systems [4-
٧], and robot-assisted surgery systems, quality of the image, low
cost, and real-time processes are the key points to show they are
successful and pioneers.

In super-resolution, interpolation plays an essential rule and
is the bottleneck of the SR algorithms. How to resize the image
considering as much information as possible is an issue of
concern in many applications [٨]. So, designing an optimal
system for this step is important. Field Programmable Gate
Array (FPGA) is a suitable platform to reach this goal.

Interpolation is the process of calculating the intermediate values
of a continuous event from available discrete samples. It is
practiced extensively in digital image processing to magnify or
reduce images and to correct spatial distortions [1, 9].

Among existing image interpolation techniques [10], nearest
neighbor, bilinear, and bi-cubic interpolations have become
popular. One of the causes of this prevalence is the capability of
implementing these mentioned methods on the hardware
platform. Due to difficulties of blocking artifacts and blurring
effects in more straightforward methods such as the nearest
neighbor and bilinear, the bicubic interpolation is used for
superior interpolation quality because of the amount of data
associated with digital images. On the other hand, the volume of
computing for bicubic interpolation is high.

The bicubic interpolation algorithm addressed in this paper
is a simplified computation complexity version of the algorithm
presented in [11]. The proposed architecture is real-time and
applicable in many security and surveillance applications, such
as identifying the car plates, authentications, remote sensing
[12], and similar practices, where real-time processing is
necessary. A low-cost architecture of the bilinear interpolation
is also proposed. The bilinear and bicubic interpolation
algorithms presented here are implemented using a pipelined
parallel architecture to improve the throughput for the real-time
applications on FPGA. These architectures provide real-time
outcomes, since after an initial latency, every pixel is estimated
at the input data rate. This feature is especially important in
applications such as surveillance camera.

The rest of the paper is organized as follows: In section II,
the bicubic and bilinear methods are explained. In section III,
some related works are discussed. Section IV presents the
proposed architectures and implementation results. Finally,
section V concludes the paper.

II. BICUBIC AND BILINEAR INTERPOLATION

A. BICUBIC INTERPOLATION

The bicubic interpolation method efforts to fit a surface
among four corner pixels using a third-order polynomial
function [13]. In order to compute a bicubic interpolation, the

intensity values and the horizontal, vertical, and diagonal
derivate at the four corner points should be calculated. The
interpolated surface, f(x,y), described by a third-order
polynomial given by Eq. (1)

෍ ෍ 𝑎௜௝ × 𝑥௜

ଷ

௝ୀ଴

ଷ

௜ୀ଴

𝑦௝ (1)

Fig. 1. Bicubic coefficients calculation (a) The neighborhood of a point P
in a 2-D image space (b) Common neighborhood of points P1, P2, and P3

dy

dx

P11 P12

P21 P22

P

Fig. 2. The 4 neighborhood of a point ’p’ in a 2-D image space

There are 16 coefficients (aij) that we determine to compute
the function expressed by Eq. (1), each one of these 16 pixels
due to their distance from the location of the reference pixel (see
Fig.1) will take a coefficient.

To create the pipelined parallel architecture, first, based on
Eq. (2), the interpolated pixel is calculated in each row. The
results p1', p2', p3' and p4' are horizontal interpolated pixels. The
final pixel will be calculated based on Eq. (3).

𝑃௜
ᇱ = 𝑃௜ଵ × 𝑊௥ଵ(𝑑𝑥) + 𝑃௜ଶ × 𝑊௥ଶ(𝑑𝑥) +

 𝑃௜ଷ × 𝑊௥ଷ(𝑑𝑥) + 𝑃௜ସ × 𝑊௥ସ(𝑑𝑥) 𝑖 = 1.2.3.4
(2)

𝑃 = 𝑃ଵ
ᇱ × 𝑊௖ଵ(𝑑𝑦) + 𝑃ଶ

ᇱ × 𝑊௖ଶ(𝑑𝑦) +

 𝑃ଶ
ᇱ × 𝑊௖ଷ(𝑑𝑦) + 𝑃ଶ

ᇱ × 𝑊௖ସ(𝑑𝑦)
(3)

Here Wri and Wci are the coefficients of the ith row and
column, respectively. To compute these coefficients, the most
current interpolation kernel is the one proposed in [14]. The
same kernel function is expressed by Eq. (4). We utilize this
kernel in our proposed architectures.

For hardware implementation, the most critical step is
computing the coefficients of Eq. (4). If the exact values adopted
in the hardware implementation, the volume of computation will
be increased. Therefore, in this paper, the approximate
coefficients are used to benefit from the advantages of
approximate computing [15-17]. In section III it will be
discussed in detail. In comparison with the bilinear interpolation,
the IQS (image quality assessment) is higher, but the hardware
resources are also more. The selection between these two
depends on the user request.

w(d) =

⎩
⎪
⎨

⎪
⎧

3

2
|d| −

5

2
|d|ଶ + 1 0 ≤ |d| < 1

−1

2
|d|ଷ +

5

2
|d|ଶ − 4|d| + 2 0 ≤ |d| < 1

0 O. W

 (4)

B. Bilinear Interpolation

 The bilinear interpolation techniques are among the most well-
known methods used in image processing due to their arithmetic
simplicity [18]. It combines the values of the four nearest pixels
using separable linear interpolation, as shown in Fig. 2, based on
the horizontal and vertical distance from neighborhood pixels’
coefficient will be calculated. The ultimate value of interpolated
pixel calculated through Eq. (5).

𝑃 = 𝑃ଵଵ(1 − 𝑑𝑦)(1 − 𝑑𝑥) + 𝑃ଵଶ(1 − 𝑑𝑦)𝑑𝑥

 Pଶଵ𝑑𝑦(1 − 𝑑𝑥) + Pଶଶ𝑑𝑥𝑑𝑦

(5)

III. BACKGROUND

In this section, We analyze and investigate several hardware
implementations of bicubic and bilinear interpolation.

In [18], a Real-time FPGA Implementation of Barrel
distortion correction method by using bilinear interpolation is
presented. The architecture in [11] grants high output quality but
demands very high output resources; hence consumes high
power.

In [11, 19], the bicubic interpolation is implemented. These
architectures store the entire image pixels in external memory.
Hence, sizable external memory is required. This external
memory increases the overall cost of the system, reduces the
performance, and increases the power consumption.

In [20], a comparison between classical interpolation and
new convolution-based interpolation is presented. This
comparison includes other cubic interpolation systems not
earlier studied in signal and image processing. The experimental
results in [20] also compare the computational complexity of
these methods.

Most of the bicubic interpolation implementations using
FPGA for image scaling [19, 21] typically use floating-point
units (FPU). The FPU imposes a significant area overhead,
consumes high power, and affects the overall performance of the
system. In [19], a lookup table method, along with parameterized
modules, is used instead of a floating-point multiplayer.

In [22], a different interpolation kernel is established based
on five independent parameters that measure its angular

(a)

(b) (a)

frequency, amplitude, standard deviation, and duration.
However, this method has complexity in computation and is not
suitable for hardware implementation. To overcome this
computational complexity, a novel low-complexity cubic
interpolation implementation for spaceborne georeferencing
images is proposed in [23]. While the architecture in [23]
reduces the computational complexity, it is only applicable to
the spaceborne georeferencing images.

Sliding
window

Interpolation
computing

Pixel_in Pixel_out

Fig. 3. The block diagram of the proposed algorithm

Reg Reg
8

P4

Reg
8

P3

Reg
8

P2
8

Line Buffer

Reg Reg
8

Reg
8

Reg
8

8
P8 P7 P6

Line Buffer

Reg Reg
8

Reg
8

Reg
8

8
Line Buffer

P12 P10

Reg Reg
8

P16

Reg
8

P15

Reg
8

P14
8

8
P1

8
P5

8 P9

8
P13

P11

Fig. 4. The block diagram for 4*4 sliding window

Reg Reg
8

8
Line Buffer

P2

Reg
8

Reg
8

P4

8

8
P3

P1

Fig. 5. The block diagram for 2*2 sliding window

IV. PROPOSED ARCHITECTURES FOR BICUBIC AND

BILINEAR INTERPOLATION AND IMPLEMENTATION

RESULTS

A. Proposed Architectures

Proposed architecture for bilinear and bicubic interpolation
consists of 2 main steps, are shown in Fig. 3.

First, the architecture provides proper pixels for interpolation
computing part. And then determining the coefficients and
calculate the interpolated pixels. It is clear that step 2 is more
critical, and the main idea of this paper is in this step.

The architecture presented in [11, 19] stores all of the image
pixels in external memory. However, in our proposed
architecture, by using the sliding window, which is presented in
detail in Fig. 4, there is no need to save the whole image. Thus,
the first step provides a good saving in memory and, as a result,

in hardware resources. The size of the line buffer is equal to the
length of the image. As in the bicubic interpolation, 16
neighborhoods require to be read; The sliding window has 3 line
buffers. Fig. 4 shows the architecture of the sliding-window for
bicubic interpolation.

Accordingly, as four neighborhood pixels are required for
the bilinear process, we just need a line buffer. Fig .5 shows the
architecture of the sliding-window for bilinear interpolation.

After the first step and providing the pixels for the second
step, the pixels are multiplied by the coefficients. If the exact
values are used, a large number of multipliers will be needed. In
this paper no multiplier block is used for interpolation
implementation. However, as this is a trade-off between
hardware resources and accuracy, we have developed an
approximated bicubic- and bilinear-based method, which is
more suitable for computational systems with limited memory,
such as FPGAs and DSPs [24]. The block diagram of the
interpolate part for bilinear, and bicubic interpolations are shown
in Figs. 6 and 7, respectively.

P1

P2

P3

P4 × 1

Σ
× 1

× 1

× 1

>> 2
Pout

Fig. 6. The Architecture of final value calculation of bilinear interpolation

× 5

Σ

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

× 5

× 6

× -1

× 5

Σ
× 5

× 6

× -1

× 5

Σ
× 5

× 6

× -1

× 5

Σ
× 5

× 6

× -1

× 5

Σ

× 5

× 6

× -1

Pout

>> 4

>> 4

>> 4

>> 4

>> 4

Fig. 7. The Architecture of final value calculation of bicubic interpolation

(a) (b) (c)

Fig. 8. The final results (a) Input image (b) Result of the bilinear interpolation (c) Result of the bicubic interpolation

TABLE I. COMPARISON OF THE PROPOSED ARCHITECTURE WITH RECENT INTERPOLATION METHODS

Architectures
Image
size

Interpolation
algorithm

Implementation
platform

Frequency
(Mhz)

Slice
LUTs

Slice
registers

Block
RAM

DSP

Proposed in [14] 640*480 Linear Virtex-2 104.3 NA NA NA NA

Proposed in [25] 2560*1920 Cubic Virtex-6 130.0 NA NA NA NA

Proposed in [11] 2560*1920 Cubic Virtex-6 75.0 7900 7843 78 48

Proposed in [23] 256*256 Cubic Artix-7 100.0 5293 8432 102 39

Bi-linear 256*256 Linear Artix-7 314.8 97 44 0 0

Bicubic 256*256 Cubic Artix-7 289.2 359 162 0 0

TABLE II. PSNR AND SSIM OF OUTPUT IN COMPARISON TO THE
SOFTWARE METHOD

Images
Bi-linear Bicubic

PSNR SSIM PSNR SSIM

Cameraman 23.77 0.972 29.02 0.987

Moon 25.76 0.961 29.92 0.974

Rice 23.77 0.973 29.19 0.985

Coins 24.06 0.974 28.42 0.990

B. Implementation and Simulation Results

The implementation and simulation of the proposed
architecture are done using the ISE design suite and MATLAB.

As mentioned before, the hardware-based design techniques
such as parallelism and pipelining techniques can be developed
on an FPGA, which is impossible in a dedicated DSP design.
FPGA is a matrix of logic blocks that are combined by a network
of switches. Logic blocks and switching networks are
reconfigurable, allow in application-specific hardware to be
formed. As FPGA allows a compromise among the adaptability
of general-purpose processors and the hardware-based speed of
ASICs.

By implementing image processing algorithms on
reconfigurable hardware, the time to market costs can be
reduced. Besides, it can enable quick prototyping of complicated
algorithms, and simplifies the debugging and verification
phases. So, FPGAs are reliable options for the implementation

of real-time image processing algorithms. The advantage of the
FPGA-based interpolation is that the design can be implemented
in smart camera designs, which means, it is useable in embedded
systems where the sensor is attached to the FPGA for pixel data
processing. These kinds of applications usually produce low-
cost and real-time processing devices.

Figure 8 shows the results of the proposed architectures. As
indicated in Fig. 8, the proposed architectures provide an
acceptable output quality while occupying low resources and
delivers high performance.

Table I shows the results of the implementation of the
proposed architectures. As this table exhibits, thanks to the
approximate coefficients and pipelined architecture, the
proposed architectures offer high frequency and occupy low
resources with negligible lower output quality. Table II gives the
peak signal to noise ratio (PSNR) [26] and structural similarity
(SSIM) [27] of the proposed architectures for different input
images. As this table shows, the proposed methods offer high
PSNR and SSIM. With reducing the image dimensions, the
PSNR and SSIM will be reduced as well. Therefore, medium
size images are selected in this paper to have pessimistic results.
However, by this choice, the hardware resources are reduced.
Notably, even if we utilize large size images, the hardware
resources are much less than the other works like [11, 14, 22,
24].

As proposed architectures offer high frequency, low power
consumption, and occupy small resources with negligible lower
output quality, we can utilize it in applications such as

surveillance cameras where hardware resources and power are
limited. Besides, according to the mentioned features (high
frequency, low power consumption, low area overhead, and
negligible lower output quality), the proposed architectures can
be implemented in applications such as internet of things (IoT)
nodes and sensors, communication and information
technologies, and mobile clinics which are also facing the
mentioned limitations.

V. CONCLUSION

Interpolation is one of the critical steps in super-resolution
techniques, tracking systems, robotic, online videos, mobile
applications, and most importantly, security applications like
surveillance cameras. In this paper, an FPGA implementation
for the improved bicubic and bilinear convolution interpolation
for real-time applications is proposed. The proposed method
reduces the computational complexity, enhances the speed, and
reduces the FPGA resources while providing an excellent trade-
off between image quality and calculation simplicity. Due to the
few computational requirements and real-time capability of the
proposed architecture, it can be considered a reasonable solution
for applications that require interpolation in real-time with the
minimum cost in hardware.

REFERENCES

[1] P. Milanfar, Super-resolution imaging. CRC press, 2017.
[2] M. Heidari, S. Samavi, S.M.R. Soroushmehr, et al. "Framework for robust

blind image watermarking based on classification of attacks," Multimed
Tools Appl, vol.76, no.22, pp.23459–23479, 2017.

[3] J. Hathaliya, S. Tanwar and R. Evans, "Securing electronic healthcare
records: A mobile-based biometric authentication approach", Journal of
Information Security and Applications, vol. 53, p. 102528, 2020.

[4] A. Z. Khuzani, M. Heidari, S. A. Shariati, "COVID-Classifier: An
automated machine learning model to assist in the diagnosis of COVID-19
infection in chest x-ray images." medRxiv, 2020.

[5] M. Heidari, A. Z. Khuzani, A. B. Hollingsworth, et al. "Prediction of breast
cancer risk using a machine learning approach embedded with a locality
preserving projection algorithm." Physics in Medicine & Biology, vol.63,
no. 3, p.035020, 2018.

[6] A. Zargari, Y. Du , et al. "Prediction of chemotherapy response in ovarian
cancer patients using a new clustered quantitative image marker." Physics
in Medicine & Biology, vol.63, no. 15, p.155020, 2018.

[7] M. Heidari, S. Mirniaharikandehei, W. Liu, et al. "Development and
assessment of a new global mammographic image feature analysis scheme
to predict likelihood of malignant cases." IEEE Transactions on Medical
Imaging, vol.39, no. 4, pp.1235-1244, 2019.

[8] Y. Zhang, D. Mao, Q. Zhang, Y. Zhang, Y. Huang and J. Yang, "Airborne
Forward-Looking Radar Super-Resolution Imaging Using Iterative
Adaptive Approach", IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 12, no. 7, pp. 2044-2054, 2019.

[9] T. M. Lehmann, C. Gonner, and K. Spitzer, "Survey: interpolation methods
in medical image processing," IEEE Trans Med Imaging, vol. 18, no. 11,
pp. 1049-75, Nov 1999.

[10] I. Amidror, "Scattered data interpolation methods for electronic imaging
systems: a survey," Journal of Electronic Imaging, vol. 11, no. 2, 2002.

[11] G. Mahale, H. Mahale, R. B. Parimi, S. K. Nandy, and S. Bhattacharya,
"Hardware architecture of bi-cubic convolution interpolation for real-time
image scaling," presented at the 2014 International Conference on Field-
Programmable Technology (FPT), 2014.

[12] A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, "Super-
resolution target identification from remotely sensed images using a
Hopfield neural network," IEEE Transactions on Geoscience and Remote
Sensing, vol. 39, no. 4, pp. 781-796, 2001.

[13] R. Keys, "Cubic convolution interpolation for digital image processing,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 6, pp. 1153-1160, 1981.

[14] C.-c. Lin, M.-h. Sheu, H.-k. Chiang, C. Liaw, and Z.-c. Wu, "The efficient
VLSI design of BI-CUBIC convolution interpolation for digital image
processing," in 2008 IEEE International Symposium on Circuits and
Systems, 2008: IEEE, pp. 480-483.

[15] A. Amirany and R. Rajaei, "Nonvolatile, Spin-Based, and Low-Power
Inexact Full Adder Circuits for Computing-in-Memory Image Processing,"
Spin, vol. 9, no. 3, p. 1950013, 2019.

[16] R. Rajaei and A. Amirany, "Nonvolatile Low-Cost Approximate
Spintronic Full Adders for Computing in Memory Architectures," IEEE
Transactions on Magnetics, vol. 56, no. 4, pp. 1-8, 2020.

[17] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, "A Majority-Based
Imprecise Multiplier for Ultra-Efficient Approximate Image
Multiplication," IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1-9, 2019.

[18] K. Gribbon, C. Johnston, and D. G. Bailey, "A real-time FPGA
implementation of a barrel distortion correction algorithm with bilinear
interpolation," in Image and Vision Computing New Zealand, 2003, pp.
408-413.

[19] M. A. Nuno-Maganda and M. O. Arias-Estrada, "Real-time FPGA-based
architecture for bicubic interpolation: an application for digital image
scaling," presented at the 2005 International Conference on Reconfigurable
Computing and FPGAs (ReConFig'05), 2005.

[20] E. Meijering and M. Unser, "A note on cubic convolution interpolation,"
IEEE Trans Image Process, vol. 12, no. 4, pp. 477-9, 2003.

[21] Y. Zhang, Y. Li, J. Zhen, J. Li, and R. Xie, "The Hardware Realization of
the Bicubic Interpolation Enlargement Algorithm Based on FPGA,"
presented at the 2010 Third International Symposium on Information
Processing, 2010.

[22] A. Hilal, "Image re-sampling detection through a novel interpolation
kernel," Forensic Sci Int, vol. 287, pp. 25-35, Jun 2018.

[26] D. Q. Liu, G. Q. Zhou, X. Zhou, C. Y. Li, and F. Wang, "Fpga-Based on-
Board Cubic Convolution Interpolation for Spaceborne Georeferencing,"
ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. XLII-3/W10, pp. 349-356, 2020.

[24] T. York, S. Powell, and V. Gruev, "A comparison of polarization image
processing across different platforms," presented at the Polarization
Science and Remote Sensing V, 2011.

[25] X. Wang, Y. Ding, M.-y. Liu, and X.-l. Yan, "Efficient implementation of
a cubic-convolution based image scaling engine," Journal of Zhejiang
University SCIENCE C, vol. 12, no. 9, pp. 743-753, 2011.

[26] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing
using MATLAB. Pearson Education India, 2004.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality
assessment: from error visibility to structural similarity," IEEE Trans
Image Process, vol. 13, no. 4, pp. 600-12, Apr 20

