
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Detection of LDDoS Attacks Based on TCP
 Connection Parameters

Michael Siracusano
School of Computing, Electronics and

Mathematics
Faculty of Science and Engineering

Plymouth University, UK

michael.siracusano@postgrad.
.plymouth.ac.uk

Stavros Shiaeles
School of Computing, Electronics and

Mathematics
Faculty of Science and Engineering

Plymouth University, UK

stavros.shiaeles@plymouth.ac.uk

Bogdan Ghita
School of Computing, Electronics and

Mathematics
Faculty of Science and Engineering

Plymouth University, UK

bogdan.ghita@plymouth.ac.uk

Abstract— Low-rate application layer distributed denial of
service (LDDoS) attacks are both powerful and stealthy. They
force vulnerable webservers to open all available connections
to the adversary, denying resources to real users. Mitigation
advice focuses on solutions that potentially degrade quality of
service for legitimate connections. Furthermore, without
accurate detection mechanisms, distributed attacks can bypass
these defences. A methodology for detection of LDDoS attacks,
based on characteristics of malicious TCP flows, is proposed
within this paper. Research will be conducted using
combinations of two datasets: one generated from a simulated
network, the other from the publically available CIC DoS
dataset. Both contain the attacks slowread, slowheaders and
slowbody, alongside legitimate web browsing. TCP flow
features are extracted from all connections. Experimentation
was carried out using six supervised AI algorithms to
categorise attack from legitimate flows. Decision trees and k-
NN accurately classified up to 99.99% of flows, with
exceptionally low false positive and false negative rates,
demonstrating the potential of AI in LDDoS detection.

Keywords— DoS, LDoS, LDDoS, Distributed Denial of
Service, Low rate attack, RoQ, Artificial Intelligence, Network
Defence, Machine Learning, Deep Learning, Computer Security,
Cyber Security.

I. INTRODUCTION

In an increasingly connected digital world, reliable and
secure access to our online resources has never been more
important. 60% of people in the UK are using e-banking,
doubling in just nine years [17] and 1.61 billion of the
world’s population shop online [21]. But with reliance on
these platforms comes a serious threat from malicious
attackers seeking to degrade and deny access to these
services.

Application layer attacks are a relative newcomer to the
hacker’s toolkit with the frequency and potency set to
increase in the coming years [8]. Many of these attacks
exploit weaknesses within the HTTP protocol. A subset of
these attacks are known as low-and-slow, or low-rate DoS
(LDoS). They do not require vast swathes of traffic to
overload services and can go undetected with static
fingerprints.

Research and mitigation advice regarding LDoS attacks
are primarily focussed on altering the configuration of the
webserver, rather than detection of attack streams. This can
reduce the quality of service for legitimate users.

The aim of this study is to detect application layer
LDDoS attacks through TCP flow metadata analysis, from a
distributed attack. The specific application layer attacks that
will be categorised will be: slowread, slowheaders and
slowpost. All flows will be run against six supervised

machine and deep learning algorithms for binary
classification in to attack or legitimate flows. Analysis will
highlight the best algorithms and features to be used for
detection of LDDoS attacks..

II. RELATED WORKS

LDDoS attacks are LDoS attacks that are launched from
hosts distributed on the Internet. A low-rate DDoS (LDDoS)
attack has significant ability to conceal its traffic because of
its similarity with normal traffic Since LDoS was initially
proposed in [8], a series of variants of LDoS attacks have
been discussed, including: Reduction of Quality (RoQ)
attacks [4] that exploit the performance vulnerability during
a system’s adaptation process and LDoS attacks targeting
application servers (LoRDAS attacks) [9].

Whilst there has been much research in DoS/DDoS,
LDoS/LDDOS attacks, there are some common weaknesses
throughout literature that should be addressed, especially
related to the quality of the data analysed. For instance, many
studies used far too little and outdated data, up to two
decades old, [2], [11], [1]. This will miss many of the
modern attack vectors that utilise LDoS capabilities and
reduce the ability to generalise conclusions to modern
systems. Furthermore, mitigation advice based on reducing
the number of connections allowed from a source IP address
have the potential to reduce the QoS for users [12], this is a
weakness that must be solved if effective mitigation of
LDDoS attacks is to be employed.

A significant amount of the literature regarding LDoS
and LDDoS attack mitigation have not utilised recent
advances in machine learning and deep neural networks to its
full extent. They have focussed on too few traffic features,
[5], [10], [21], [12], [13]. An optimal number of features will
reduce the quantity of false positives, whilst maintaining
relatively low computational overheads. Artificial
intelligence may also create an adaptive model, capable of
understanding the standard traffic flows to a web server. This
can be achieved through understanding the features of the
TCP flow that may highlight and attack stream.

Through analysis of the best feature set and testing
against various algorithms, it may be possible to find a
solution that can detect the presence of LDoS and LDDoS
attacks from TCP flows. This methodology has not been
employed in literature analysed. It will produce a detection
mechanism that will highlight LDDoS TCP flows, before
they cause a DoS attack.

The proposed methodology seeks to overcome criticisms
of the studies mentioned by improving the test datasets,
diversity of features and number of algorithms used to
ascertain the best combination to generate high accuracy.

III. PROPOSED METHOD

In the section below, we will analysed the proposed
methodology followed in steps

A. Concept

As identified in the previous section, existing methods
have had limited success in dealing with LDDoS, either due
to generating excessive false positives and denying access to
legitimate users or, to provide robustness, monitoring traffic
from the volume perspective and producing false negatives.
While it is very easy to note the limitations, identifying a
solution to overcome them is a rather complex issue, as the
chosen method should not rely on timing-related patterns, yet
be able to discriminate attack traffic.

One possible approach is to consider the use of TCP
connection characteristics to be used as discriminating
features. From a functional perspective, the connection
characteristics are indicative of the client behaviour. While
for a typical client the main objective is to download the data
and close the connection, an LDDoS connection is more
likely to keep the connection open and occupy server
resources in the process. In the case of slowread,
slowheaders and slowpost, rather than terminate the
connection, the attack connections aim to exhaust server
resources through all transport-related alternatives – read or
send data at a very low rate, maintain the connection open
for as long as possible, and collectively, occupy server
memory until legitimate clients are denied access. The
connections associated with such an attack would not be
detected by either rate- or volume-based features; at best,
they may be identified as a poorly-connected client in terms
of performance. However, looking at TCP connection
parameters, with client-related parameters in particular,
would indicate that the client is indeed aiming to stall the
connection and drain server resources.

In this context, this paper investigates the use of TCP
connection parameters as a discriminator for identifying
LDDoS attacks. The method is aiming to differentiate the
stalling behaviour of attack flows versus normal, legitimate
connections, by separating network traffic into TCP
connections, extracting the associated TCP parameters into a
connections dataset, and passing the dataset through an AI-
based analysis.

B. Pre-processing

The raw traffic must be pre-processed in order to produce
a dataset of TCP parameters dataset to be used as input for
the method. The analysis must be robust in order to be able
to cope with relatively large data rates, but also sufficiently
complex to extract all the relevant TCP parameters. While a
bespoke solution is likely to be the more accurate alternative,
the TCPtrace analysis tool can deliver a comprehensive set of
parameters in an automated fashion, including a total of 142
characteristics associated with a connection. While a
significant proportion of these parameters are likely to be
irrelevant for the LDDoS detection, particularly the ones that
relate to the network performance, such as RTT or
retransmissions, or connection control (SYN and FIN packet
count), TCPtrace also extracts the necessary endpoint-based
parameters, such as receiver-advertised window or initial
congestion window, or stalling-related parameters, such as
idle time.

In order to simplify the decision process, the full set may
be processed through the chosen classification methods,
which can subsequently determine the optimal subset to be
used as preferred features.

C. Classifier

The behaviour of a TCP connection is rather complex,
with both endpoint- and network-related parameters
influencing the perceived performance of a data transfer and
the resources demand that it places on the server. Given this
complexity, together with the input data, the classifier plays a
critical role in the process, as its ability to discriminate
between legitimate and attack connections depends on the
relationship between parameters for both legitimate and
attack traffic. To ensure a comprehensive evaluation of the
TCP parameters feature set, the preferred option for the study
was to process the resulting dataset through several
classification methods, including Logistic Regression, k-NN,
SVM, Decision Trees, Random Forest and Deep Neural
Network. The results of the six classifiers were then
compared in terms of accuracy, confidence matrix, false
acceptance and rejection rates, and evaluation speed.

IV. EVALUATION

The section below is divided into two sub-sections for better
understanding how the evaluation was conducted.

A. Environment and dataset

As indicated in the review section, prior studies used
various attack datasets, but they all shared the same
limitation, as were not necessarily focused on LDDoS
attacks. For this study, the preferred alternative was to
produce a bespoke set, to include a mix of genuine and attack
traffic. A topology of 24 legitimate clients, 8 attackers, and
one web server was created in GNS3. The creation of a
simulated network capable of generating hundreds of
thousands of TCP flows, enough for machine learning
training and testing was fundamental to the success of this
project. The simulation was created in GNS3, using
containers for all network nodes. Figure 1 is a overview of
the network topology.

Figure 1 - Simulated network topography overview

The webserver was configured in a typical LAMP stack
(Linux, Apache v2.4 HTTP server, MySQL database and
PHP), using the default Apache settings and was set to run
five websites. The legitimate activity was simulated and
configured to randomly selected URLs stored on the
webserver. It also simulated the HTTP POST method, by

sending data to the MySQL database. In addition to traffic
passing through at the unrestricted rate of 1Gbps, the
scenario also included emulated slow connections by
applying traffic shaping and throttling traffic to 11520 bps
for some of the connections. The scenario included 84
hours of traffic generation, to include several types of
attack, as summarised in Table 1. The resulting traffic was
collected in pcap format using Wireshark on a network tap
between the webserver and switch. The PCAP files were
then processed using TCPtrace to extract the TCP
connection parameters.

Table 1 - Summary of simulations performed and TCP Flow count

Tool Met

hod
Traffic

type
Duration Node

count
TCP Flow

count
Siege GET Legiti

mate
18 hours 18 69969

Siege POS
T

Legiti
mate

6 hours 6 107299

Siege GET Throttl
ed

24 hours 18 10569

Siege POS
T

Throttl
ed

12 hours 6 185471

Slowrea
d

GET Attack 8 hours 8 80305

Slowhe
aders

GET Attack 8 hours 8 22312

Slowbo
dy

POS
T

Attack 8 hours 8 78325

In order to generalise the results and allow for comparison,
the dataset was used in conjunction with the CIC Dataset, an
application layer DoS dataset generated by the University of
New Brunswick [6], filtered to include only web activity.
Four datasets were produced, as listed in Table 2 below, by
normalising, labelling and merging the simulated traffic and
CIC dataset.

Table 2 – Test datasets

D
at
as
et

CIC
Attack
Flows

CIC
Legitimat
e Flows

Simulated
Attack
Flows

Simulated
Legitimate

Flows

Total
TCP
Flows

1 9311 9311 9305 9305 37233
2 9355 9355 0 0 18710
3 0 0 34586 34758 69344
4 0 66472 180942 373308 620722

Each of the four datasets has a slightly different purpose.
Dataset 1 represents a balanced environment, with an equal
amount of legitimate and attack simulated flows. Dataset 2
and 3 are to determine whether using a simulated
environment has an impact on the accuracy of the
estimation, as opposed to capturing traffic from a real
network. Finally, dataset 4 evaluates the ability of the
classification algorithms to generalise across a mix of
simulated and real traffic by combining the legitimate traffic
in the CIC dataset with the traffic from the simulations run.

B. Processing

Data processing involved three stages: feature selection,
parameter tuning, and classification. Feature selection was
achieved through Recursive Feature Elimination with 10-

fold Cross Validation (RFECV) using SVM. The analysis
indicated that the accuracy does not improve when
increasing the number of features beyond 20 features, with
the same subset making a significant impact on detection.
To support the decision, some of the features appeared to be
heavily correlated, as shown in Figure 22; the correlation
analysis was run against dataset 1.

Figure 2 - Features correlation analysis

The automated RFECV analysis was then followed by a
review of the parameters to determine correlated features.
Following the two-stage selection, the dataset was filtered to
include only the features giving the highest accuracy for
LDDoS detection, as listed in Table 3.

Table 3 - Feature selection with descriptions

Feature Description

avg_win_adv_a2b Average window advertisement.

data_xmit_time_a2b Data transmit time.

max_win_adv_a2b Maximum window advertisement.

throughput_a2b Average throughput.

max_owin_a2b
Maximum outstanding unacknowledged
data (bytes)

resets_sent_a2b Number of reset packets sent.

avg_owin_a2b
Average outstanding unacknowledged
data (bytes)

max_#_retrans_a2b Retransmitted bytes, client to server.

min_segm_size_a2b Minimum segment size.

initial_window_bytes_a2b
Total number of bytes sent in the initial
window.

idletime_max_a2b
Maximum idle time between consecutive
packets

idletime_max_b2a
Maximum idle time between consecutive
packets

triple_dupacks_a2b
Triple duplicate ACKs sent from client to
sever.

unique_bytes_sent_a2b Total number of unique bytes sent.

Six classifiers were chosen to determine the effectiveness of
the TCP connection parameters in LDDoS detection:
Logistic Regression (LG), k-NN (KNN), SVM, Decision
Trees (DT), Random Forest (RF) and Deep Neural Network

(DNN). The aim behind the wide range of classifiers was to
determine whether the choice of classifier does have a
significant impact on the detection or the accuracy would be
mainly due to the selected set of features. The analysis was
performed using the TensorFlow machine learning
framework [18] which allows automating the workflow data
processing.
The classification stage involved running all six algorithms
over the pre-processed input datasets. The output metrics for
analysis were as follows: accuracy values from 10-Fold
cross-validation, false positive rate (FPR), false negative
rate (FNR). Besides accuracy, the algorithms were also
assessed in terms of efficiency by monitoring the time it
took to process to classify the data. In terms of training and
testing, datasets 1-3 had a 1/2 train/test ratio and dataset 4
had a 10/90 test/train split.

V. RESULTS

The table 4-7 below shows the results from the classification
algorithms. We can see that k-NN and decision trees
appeared to perform better, but all methods led to very high
accuracy.

Table 4 - Results

Datas
et

LG LG KNN SVC DT RF DNN

1

Accur
acy

95.85 99.81 97.39 99.87 99.07 97.06

FPR 7.76 0.08 4.09 0 0.58 N/A

FNR 1.09 0.19 0.44 0.03 4.79 N/A
Eval
time
[s]

0.023 0.558 1.87 0.019 1.842 471.9

2

Accur
acy

94.82 99.96 99.96 99.96 99.93 99.96

FPR 1.8 0 0 0 0.16 N/A

FNR 9.65 0.03 0 0 0.13 N/A

Eval
time
[s]

0.017 0.221 0.092 0.013 1.261 305.7

3

Accur
acy

98.75 99.86 99.77 99.92 99.41 99.47

FPR 1.77 0.06 0.26 0 0.56 N/A
FNR 0.62 0.06 0.11 0.01 0.57 N/A

Eval
time
[s]

0.034 1.096 1.727 0.029 2.951 510.8

4

Accur
acy

92.75 99.9 99.35 99.92 99.41 99.47

FPR 21.63 0.14 0.91 0 1.31 N/A

FNR 1.3 0.03 0.54 0 0.14 N/A
Eval
time
[s]

0.51 61.21 463.3
8

0.505 581.8
4

5203

Dataset 1 was used to observe how an equal mixture of
legitimate and attack traffic would impact the classification.
The results indicated excellent performance for k-NN,
decision trees and random forests; given the results are
based on 10-fold cross validation, the results do not suffer
from overfitting. The exceptionally low FPR and FNR rates
of the decision trees and k-NN indicate a value low enough
to use within an IDS or IPS and

demonstrate the potential of automated IP blocking for
LDDoS prevention, as they would be unlikely to adversely
affect a substantial quantity of legitimate flows. For decision
trees, only two flows out of 6235 were inaccurately classed
as legitimate with also the fastest evaluation time of all the
classifiers of 0.019s for over 12000 TCP flows, using 14
features. This speed further highlights the potential for real-
time flow categorisation. At the other end of the spectrum,
the inaccuracy of both logistic regression and SVM was due
to their bias towards categorisation of attack traffic, leading
to an unacceptably high FPRs of 7.78% and 4.09% and
being almost 2% less accurate than the better performing
classifiers. Aside from the performed parameter tuning, it is
possible to slightly improve on the results and lead to a
more balanced FPR and FNR split. However, the FNR rates
are high, even in this biased setting relative to the more
accurate classifiers, which indicates they are unlikely to be
more accurate than decision trees or k-NN. Finally, the deep
neural networks performed disappointingly compared to the
more successful classifiers, achieving the second lowest
accuracy of 97.061%. Similar to the parameter tuning,
results could be marginally improved with a larger number
of epochs, but it is unlikely that the increase would be
statistically significant.
Dataset 2 was based on the CIC data. As it can be seen in
the results, all classifiers performed excellent, with both
SVM and decision trees having no false positives or false
negatives, and k-NN only having one malicious TCP stream
misclassified as legitimate. The exception was logistic
regression, which had a high false positive rate of over 9%
and its accuracy was more than 5% below the other
classifiers. An additional observation that can be made
based on these results is that the high categorisation is
possibly indicative of the lack of artificially generated slow
traffic; this was the purpose of the throttled traffic within the
simulated network activity. Given this, it is possible that
some of the detection is based on the algorithms
categorising slow and fast TCP activity, as the attack traffic
emulates very slow TCP connections.
Dataset 3 was a single dataset experiment consisting of a
balanced mix of over 70K TCP flows from the simulated
network. The accuracy of k-NN, SVM and decision tress
was exceptional, with decision trees having wrongly
classified only one flow in the test data subset. The high
accuracy for k-fold cross validation indicates a well-fitting
model, capable of performing well on new input data from
this network. The deep learning algorithms also performed
very well with 99.962% accuracy; the learning process
plateaued after 50 epochs, so it may be worth exploring as
part of future research whether a lower learning rate could
further improve the results. It is worth noting that, as part of
this simulation, the traffic was throttled to simulate
legitimate TCP connections running over slow links. This is
likely to have caused the a high FNR for the logistic
regression method, but it did not affect the other algorithms,
which were all successful in classifying the activity.
Dataset 4 aimed to observe the ability of the algorithm to
classify a highly unbalanced dataset, which includes a
significant amount of legitimate traffic from both the CIC
dataset and simulated network. Despite the unbalanced
nature of the dataset the accuracy for all algorithms, except
logistic regression, were very high. Decision trees is the

clear best with a FPR and FNR of 0.001% and 0.004%,
respectively. This represents only misclassification of only
11 TCP flows out of over half a million flows. k-NN
performed well also, with FPR and FNR of 0.031% and
0.14%, respectively. The main advantage over decision trees
compared to k-NN is not simply the accuracy, however. The
evaluation time for k-NN is 61.21s while decision trees is
only 0.505s. In an IDS/IPS this evaluation time is vital to
avoid processing overload and to cope evaluating vast
quantities of TCP connections to a busy webserver. This is
where the speed and accuracy of decision trees will show
the true benefit as each flow will take a millisecond to
categorise and potentially block. This is a significant step
towards the mitigation of LDDoS attacks. Once again,
logistic regression is the lowest performing classifier, with a
very high FNR of 21%. This indicates bias and high
sensitivity for the data and can be seen in the ROC curve
gradients and the low precision score of 90.163%. Tweaking
the classifier parameters could mitigate some of the
inaccuracies. However, it is unlikely to perform better than
decision trees with its near perfect score and slightly faster
(by 0.07s) evaluation time. The accuracy of the deep neural
network was relatively high at 98.954%. However, the
graph indicates the gradient still converging, rather than
plateauing. With additional epochs, this may have improved
a few hundredths of a percent. However, the training and
evaluation time for a dataset this size was high, being 86
minutes for evaluation compared to 0.505 seconds for
decision tree evaluation. With a lack of powerful parallel
processing capabilities running the tests for longer would
not significantly alter the conclusions of this research. These
results highlight how well this methodology can work
across very large datasets, with relatively few training
examples. The near perfect results from the decision trees
once again shows how useful this algorithm is for
classification of attack and legitimate streams.

VI. DISCUSSION

The primary aim of the research was to ascertain if machine
learning, using TCP performances as features, could be
employed to detect malicious LDDoS attacks amongst
legitimate activity, utilising artificial intelligence and TCP
flow metadata. The results of the validation tests indicate
that accurate categorisation can indeed be achieved. Both k-
NN and decision trees accurately detect the activity with
such low FPR and FNR that once the model is trained, they
could be used to automatically block the attacking flows.
significantly reducing the danger of these attacks. The
techniques employed within this project categorise the TCP
flows independent of the source IP address, thereby making
equally effective against both single source and distributed
attacks.
Through analysis of these results clearly machine and deep
learning algorithms performed well across all the datasets.
The deep learning model achieved an accuracy of 97-99.9%.
However, the complexity of neural networks did not
outperform the lightweight machine learning algorithms.
The relatively significantly longer time taken to train and
test these networks is an unnecessary drain on
computational resources, that does not lead to an
improvement over faster and more lightweight algorithms
such as decision trees and k-NN. It is possible that will

lower learning rates, more data and thousands more epochs
accuracy could be improved. This is unlikely to be a
proportional gain relative to the extra computational
overheads, especially in the presence of other fast and
accurate algorithms.
The extra computational time require for random forests led
to less accurate results than the decision trees in all the tests.
This could be due to the time and effort taken to pick
relevant and accurate features in stage 1 of the evaluation.
Logistic regression was the least accurate throughout, with
Dataset 1 having almost double the FPR of the second least
successful algorithm. It is possible that there were issues
with the parameter selection of the classifier, causing
excessive bias and sensitivity throughout the classification
of the activity. The most accurate algorithms throughout
were k-NN and decision trees. They were capable of
extremely low FPR and FNR across all datasets and tests.
The evaluation time per flow and consistently high accuracy
across all tests for decision trees makes it the clear favourite
algorithm for binary classification of LDDoS activity. The
speed and the extremely low FPR and FNR demonstrate that
this could be used for automated detection and mitigation of
malicious TCP flows real-time in an IPS system.
Dataset 4 had a dual purpose – to determine the capacity of
the method to generalise when presented with other traffic,
but also to determine its robustness, as the test/train ratio
was 10/90, with 2.5 times more legitimate activity. Even
with this data, all models bar logistic regression and DNN
achieved over 99.3% k-fold validation precision and with
low FPR and FNR. It was anticipated that decision trees
were likely to be the most successful, which was confirmed
by experimental validation. The lack of accuracy with the
logistic regression could highlight the data not being linearly
separable, as this tends to be more accuracy for classifying
data of that sort. The SVM RBF kernel outperformed the
linear kernel, which supports this conclusion.
The main limitation of this research is that fact it was carried
out entirely on two datasets, based on simulated attacks,
which may be perceived as slightly biased. Lack of parallel
GPU processing capabilities consequently led to lower
epochs and higher learning rate than would have been
optimal for achieving the best accuracy level. Volume of
data is also an important aspect of machine learning for
training, testing and validation. More data could result that
models could be created that could be applicable to a variety
of server set ups and content..

VII. CONCLUSION AND FUTURE WORK

LDDoS attacks are well known for their stealth, with static
snort signatures unable defend and the traditional volumetric
DoS and DDoS attack mitigation strategies being redundant.
Most mitigation advice focuses on the necessity of limiting
the number of connections per IP address to the webserver.
This will be ineffective for a distributed attack, which would
still require far less zombie nodes than a standard
volumetric attack.
The primary aim of the research was to ascertain if machine
learning could be used to detect malicious LDDoS attacks
amongst legitimate activity, utilising artificial intelligence
and TCP flow metadata. Following an evaluation of a
number of algorithms over a mix of simulated and real data,
it was demonstrated that stealthy application layer

distributed LDoS attacks can be accurately categorised from
legitimate traffic using features associated with their TCP
flows. A range of AI algorithms can use these features to
accurately predict the presence of attack streams; given the
evaluated algorithms, the most accurate ones appeared to be
decision trees and k-NN.
The accuracy achieved within the experiments is
comparable or an improvement on much
of the research analysed within the literature review. [15] for
a slow read application layer DoS attack achieved accuracy
of 99.37% with their random forest classifiers. This
experiment achieved between 99.41% and 99.94%. Whilst
only a slight increase, in a real word environment this can
mean the difference between a successful attack and one
that is mitigated. [4] in their study on IP flows of botnets
achieved 97% accuracy for detection of Citadel and 86% for
Zeus using decision trees and Naïve Bayes. The decision
trees within across all four experiments were higher, with k-
fold cross validated figures between 99.88% and 99.97%.
[14] trained neural networks to detect a variety of DoS
attacks from packet header analysis and achieved and
accuracy of 98%. A Probabilistic Neural Network trained to
detect attacks by [17] achieved 97.89% accuracy. The DNN
used within these experiments achieved between 97% and
99.9%.
Future work could involve using a wider range and larger
volume of real-world data. Cloud computing platforms
capable of network simulation, data storage, data analytics
and machine learning can provide better data sources and
processing capability. Lastly, integration within an
aggregated SIEM solution could allow a richer feature set,
including webserver metrics such as connection events,
CPU load and memory usage. This would likely lower the
chances of false positives outside of a simulated
environment.

ACKNOWLEDGMENT

This work was supported by CYBER-TRUST
project, which has received funding from the

European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 786698.

REFERENCES

[1] Adi, E., Baig, Z. & Hingston, P., 2017. Stealthy Denial of Service
(DoS) attack modelling and detection for HTTP/2 services. Journal of
Network and Computer Applications, 01 August, Volume 91, pp. 1-
13.

[2] Choudhury, S. & Bhowal, A., 2015. Comparative Analysis of
Machine Learning Algorithms along with Classifiers for Network
Intrusion Detection. International Conference on Smart Technologies
and Management for Computing, Communication, Controls, Energy
and Materials (ICSTM), 06 May.pp. 89-95.

[3] Guirguis, M., Bestavros, A., Matta, I., Exploiting the transients of
adaptation for RoQ attacks on Internet resources, in: IEEE
International Conference on Network Protocols (ICNP), Berlin,
Germany, 2004, pp. 184–195.

[4] Haddadi, F., Morgan, J., Filho, E. G. & Zincir-Heywood, A. N., 2014.
Botnet Behaviour Analysis using IP Flows With HTTP filters using

classifiers. 28th International Conference on Advanced Information
Networking and Applications

[5] Hirakawa, T., Orgura, K., Bista, B. B. & Takata, T., 2016. A Defense
Method against Distributed Slow HTTP DoS Attack. International
Conference on Network-Based Information Systems (NBiS), pp. 152-
158.

[6] Jazi, H. H., Gonzalez, H., Stakhanova, N. & Ghorbni, A. A., 2017.
Detecting HTTPbased Application Layer DoS attacks on Web Servers
in the presence of sampling. Computer Networks, 05 July, Volume
121, pp. 25-36.

[7] Kaspersky, 2016. Kaspersky DDoS Intelligence Report for Q1 2016.
[Online] Available at: https://securelist.com/kaspersky-ddos-
intelligence-report-for-q1-2016/74550/ [Accessed 21 July 2017].

[8] Kuzmanovic, A., Knightly, E.W., Low-rate TCP-targeted denial of
service attacks – (the shrew vs. the mice and elephants), in: ACM
SIGCOMM, Karlsruhe, Germany, 2003, pp. 75–86

[9] Macia-Fernandez, G., Diaz-Verdejo, J.E., Garcia-Teodoro, P.,
Evaluation of a low-rate DoS attack against iterative servers,
Computer Networks 51 (2007) 1013–1030.

[10] Moustis, D. & Kotzanikolaou, P., 2013. Evaluating security controls
against HTTPbased DDoS attacks. Information, Intelligence, Systems
and Applications (IISA), 2013 Fourth International Conference, pp. 1-
6.

[11] Panda, M. & Patra, M. R., 2009. EVALUATING MACHINE
LEARNING ALGORITHMS FOR DETECTING NETWORK
INTRUSIONS. International Journal of Recent Trends in
Engineering, 1(1), pp. 472-477

[12] Park, J., Iwai, K., Tanaka, H., & Kurokawa, T. (2014, October).
Analysis of slow read DoS attack. In Information Theory and its
Applications (ISITA), 2014 International Symposium on (pp. 60-64).
IEEE.

[13] Robinson, R. R. & Thomas, C., 2015. Ranking of Machine learning
Algorithms Based on the Performance in Classifying DDoS Attacks.
IEEE Recent Advances in Intelligent Computational Systems
(RAICS), 10 December.pp. 185-190.

[14] Saied, A., Overill, R. E. & Radzik, T., 2016. Detection of known and
unknown DDoS attacks using Artificial Neural Networks.
Neurocomputing, 08 January, Volume 172, pp. 385-393.

[15] Shafieian, S., Zulkernine, M. and Haque, A., 2015, October.
CloudZombie: Launching and detecting slow-read distributed denial
of service attacks from the cloud. In Computer and Information
Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE
International Conference on (pp. 1733-1740). IEEE. [tensorflow
reference!]

[16] Statista, 2017. Online banking penetration in Great Britain from 2007
to 2016. [Online] Available at:
https://www.statista.com/statistics/286273/internet-banking-
penetration-in-great-britain/ [Accessed 21 July 2017].

[17] Tammi, W. M. et al., 2015. Artificial Neural Network based System
for Intrusion Detection using Clustering on Different Feature
Selection. International Journal of Computer Applications,
September, 126(12), pp. 21-28.

[18] TensorFlow. (2018). TensorFlow. [online] Available at:
https://www.tensorflow.org/ [Accessed 5 Jul. 2018]

[19] University of New Brunswick, 2017. CIC DoS dataset. [Online]
Available at: http://unb.ca/cic/research/datasets/dos-dataset.html
[Accessed 23 April 2017].

[20] We Are Social, 2017. DIGITAL IN 2017: GLOBAL OVERVIEW.
[Online] Available at: https://wearesocial.com/uk/special-
reports/digital-in-2017-global-overview [Accessed 21 July 2017].
Workshops.

[22] Ye, C., Zheng, K. & She, C., 2012. Application layer DDoS detection
using clustering analysis. International Conference on Computer
Science and Network Technology, pp. 1038-1041.

