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Abstract—Software uses and approaches in the Internet of
Things (IoT) are very varied and rich. But the data they collect is
often gathered from networks of sensors. However, the constraints
of Wireless Sensors and Actuators Networks (WSAN) are not
always well taken into account by IoT software approaches. Thus,
the massive data collection, well managed by Big Data tools in
IoT applications, conflicts with the energy constraints to which
the sensors are subject. Each transmission is costly for these
devices and a massive stream reduces the whole WSAN lifetime.

This article presents an approach that meets the data needs
in the vision of IoT users while seeking to limit the impact of the
massive transmissions required. Edge computing is often used to
reduce the amount of data to be treated in this research field. But
the reduction is still made outside the WSAN, leaving a significant
transmission load for these constrained networks. Energy-aware
IoT applications get increased attention from the researchers.
Network coding is an appropriate and already well-known tool
for saving energy in constrained networks. Then the question is
how to combine all the messages to reduce their number while
maintaining their accuracy.

In this paper, we present an approach focusing on the
gain obtained thanks to the semantics of data. The Semantic
Network Coding leads to a reduction in the number of messages
forwarded, thus leveraging the network and saving energy, while
keeping a good quality to the collected data.

Index Terms—IoT, Semantic, Network coding, WSAN

I. INTRODUCTION

The Internet of Things (IoT) is a major trend in net-
work research. It combines the large installed base of public
protocols for network interconnection (Internet) with recent
developments in the field of sensor networks, which have
become a major part of the objects of 10T (Things). With
strong demand from the industry, the field is very active and
the angles of analysis very diversified.

The usual solutions in the proposed approaches are usually
based on Cloud/Big Data. Very large amount of data are
collected by objects (sensors in WSAN), and sent to the Cloud
where it is stored. Then applications use BigData tools to
create analysis and extract representations whose objective is
to help users manage their buildings, business or cities.

In this vision, the data stream is always coming from the
Things, which are mainly Wireless Sensors and Actuators,
and send to the Cloud. This centralized architecture has
some issues, in terms of ownership, privacy, and amount of
data. Another way to handle the data stream is to distribute
the treatment. As the content of each message in Things is
rather small and specific, specialized in a limited or unique

value, it appears that some pre-treatment can be done before
transmitting the data to the central point.

The idea of distributed computing for IoT has been pre-
sented in many papers, under different names such as Edge
computing, Cloudlet or Fog computing, depending on the
place and the actor in charge of the treatment. In Edge com-
puting, a trade-off is made between the computing capability
of a device and its proximity to the place where the data was
collected. The solution is to limit the number of hops, and to
control the amount of basic information stored in the cloud.
Data are treated as closely to the sensors as possible, and as
soon as possible. But it is very rare that the treatment has
been considered to be done directly on the nodes, because the
limited processing power of IoT devices are not able to handle
big processes.

In fact, WSAN devices have poor processing capabilities
and small memory, because they were intend to mainly create
and receive network messages. But as the main constraint
of these devices is energy consumption, it appears that data
transmission is one of the most costly operations they offer.
And even with its limited processing capabilities, we assume
that the device has enough to manipulate, adapt the data and
then limit the need for transmission. We also assume that the
treatments are not that complex, because the nature of the
data manipulated is simple (in size, value and type) and the
computation easy.

In this paper, we present our proposition to use the se-
mantics of the collected data, assuming that it is fairly well
defined and not very variable within a given WSAN. In
Section II, we present the energy issue in WSAN/IOT, the
contribution of network coding and the interest for semantic in
IoT. Section III describes our approach with its pros and cons,
while Section IV gives details on our experimentation. Finally,
we conclude and give some propositions for the evolution of
this work.

II. RELATED WORK

In the IoT field, precisely in Massive IoT, there are two
important issues to solve. On one side, the huge amount of data
to be treated by Big-Data solutions, and on the other side, the
difficulty to send these data from the very constrained devices
used in IoT. With a large number of devices, the pricing
leads the manufacturers to design them with low processing
power, memory size, low network range and throughput to
reduce the total cost of the installed hardware. These devices



must be very cheap (because of the number to be used), the
energy consumption very low (because the maintenance must
be reduced to the minimum). On the other hand, users want
them to send a lot of information, which goes against the
previous constraints.

One idea that we have already explored in previous pa-
pers [7] [8] is to limit energy consumption by computing data
right in place, within the device. As IoT devices offer some
computing capabilities, our proposition is to try to maximize
the use of the processing power instead of transmission, as the
energy cost of computing is often less than sending/receiving
data (see Tables I and II). In this approach, the discrete values
sensed by the device are lost. Depending on the use-case, it
can make sense. Some IoT applications propose to react to
events and not to store data for a asynchronous post-analysis
(event-centric approach instead of data-centric). Y. Sun et al.
use a similar idea with a rule-engine on the devices filtering
a “majority of the unused atomic event” [16].

F. Xhafa et al. have explained in [18] that “processing and
aggregating large data generated at IoT layer before sending”
give good results for IoT applications. The authors argue
that this solution “achiev[es] low latency”, and “enhanc[es]
privacy, security”. We also invoked the same argument in a
previous paper [6].

H. Nasiri et al. show in [11] that (“Internet of Things (IoT)
technologies enable cities to obtain valuable intelligence from
a large amount of real-time produced data”). Smart city is
one of the domain of the IoT which is main concerned with
this solution. In fact, there is a main difference between the
network flow of the Internet of Data'. The data stream in the
Internet of Data is more versatile, irregular and diversified.
In the Internet of Things (and more precisely, from the
devices of a WSAN that feeds the IoT), the kind of data is
less different, less complex, and more repetitive. These are
specificities that can be useful from this “Continuous streams
of unstructured data” [11] with a “lack of semantic inter-
operable standard” [5].

T. Li et al. also present Network coding in the IoT
in [10] “Network Coding (NC) can increase the robustness and
throughput of wireless networks”, but their purpose is mainly
based on encryption and security.

G. Peralta et al. argue [14] in the same direction on security.
They also show the reduction in terms of delay in the network,
and the improvement on the energy consumption. On the other
hand, the authors warn against “The non-negligible increase in
packet size and computational cost” of this kind of solutions.
However, it seems that the way IoT applications work focuses
mainly on the network capabilities of IoT devices, and not the
contribution of their processors which remains underused.

There is a need for a better management of the network load.
F. Safara et al. argue [15] that “Most IoT applications focus on
monitoring discrete events that generate an excessive amount
of data”. In their survey about network coding and reliability in
WSAN [3], E. Al-Hawri et al. explain that “Energy efficiency is

I As the opposite of Internet of Things.

the main concern rather than bandwidth, since nodes typically
produce small volumes of data”. Increasing reliability means
to work primary on energy. To reach that goal, the authors
present different solutions based on the nodes placement, and
on network coding.

C.HS. Oliveira et al. from our lab have also presented a
proposal for network coding in wireless network [12], but the
implementation of their solution is too much a burden for the
limited processing capabilities of our devices (as shown above
by G. Peralta et al. in [14]).

There are multiple solutions to select inside the network the
set of elements that will be mixed. One approach is to define
clusters. S. Balakrishna et al. describe different types of clus-
ters [5] : Centroid base, connectivity based et density based,
depending on the constraints the solution tries to solve. The
idea of semantic network coding was presented by F. Xhafa
et al. in [18]. In their paper, they describe a experiment
in which the sensors generate raw data. Semantics (meta-
information such as the “geo-location information, timestamp,
actor (device)’) will be added to these data. The network
coding is made at the Edge level. In this paper, we propose to
code at the node level, to avoid energy consumption on upper
nodes in the tree.

S. Balakrishna et al. have also classified the information
inside the network in different classes: “Raw Data, Structured
data, Perception data and Executive Data” [5]. Raw data are
gathered by the sensors (sound, temp, humidity). They are
then structured (date, format, unit, source) in Structured data.
The next Level (Perception data) adds the semantic (Context,
concept). The highest level (Executive Data) is the application
reasoning, with analysis, predictive and actions.

The idea of a Semantic IoT was described by A. Palavalli
et al. in [13]. For the authors, the conception of an Ontology
is mandatory to describe and to request in the large amount
of data, once associated to concepts. They focus on the
improvements from the application point-of-view, and the
definition of their model. They didn’t study the impact of the
place where the metadata are added, neither the gain in energy
consumption from the devices side, as their solution is mainly
centralized, which is the common practice..

Our idea in this paper is to create semantic clusters, mapped
on the network topology. In a given WSAN, the nodes sense
the same kind of physical values, and all the nodes are known.
The content format is known in advance, and the network
organization too. WSAN devices are able to measure some
data such as temperature, luminance, movement. Often, the
list is short. We assume that there are not so much different
kinds of data, so the semantics are limited. Within the WSAN,
the device are quite similar (even if at the IoT application level,
multiple and various WSAN and other Things are included).

In our proposal, the data will be semantically network
coded directly inside the WSAN. This approach is not adapted
to all IoT applications. Depending on the use-case, merging
the values collected in the global result can be accepted,
as in fact the goal of IoT applications can be real time
reactions to events that are detected. However, in a smart city



application monitoring traffic for example, the precise value
of the number of cars on each specific road at a specific
time may be required. But IoT applications are very varied,
and this precision is not always useful. Y. Sun et al. argue
that “In real application scenario, [...] many messages may
include the same event signal” [16]. The cost of storing such
detailed information must be justified by the treatment that the
application will make of it. Y. Sun et al. assume that “In a
smart building system, sensors report data periodically” [16]
and their solution in which “transmission messages [...] are
the aggregated results” “reduce[s] the throughput of data
transmission, thus saving energy effectively”.

III. DISCUSSION

TABLE I
CC2420 POWER CONSUMPTION
Mode Parameter | Comsumption
Receive -25 dBm 8.5 mA
Transmit -15 dBm 9.9 mA
Transmit -10 dBm 11 mA
Transmit -5 dBm 14 mA
Transmit 0 dBm 17.4 mA
TABLE 11
CC2538 POWER CONSUMPTION
Mode Parameter | Comsumption
CPU Running, no Radio 16 Mhz 7 mA
CPU Running, no Radio 32 Mhz 13 mA
RX mode -50 dBm 20 mA
RX mode -100 dBm 24 mA
TX mode 0 dBm 24 mA
TX mode 7 dBm 34 mA

In [6], we already have studied the impact on energy
according to the design of the software architecture. As the
WSAN devices are very constrained in energy, network usage
must be taken into account. Our lab uses two kinds of devices
based on Texas Instruments CC2420 [1] or cc2538 [2] chips.
Tables I and II show the energy consumption on these two
chips for different functions, from computation compared
to the reception/transmission of the data. It shows that the
cost of transmission is greater than processing. However, the
computing capabilities of these nodes are limited, the clock is
slow, and the memory small. But it is still possible to make
some operations.

In our lab, we mainly use Contiki [9] to create IoT ap-
plications. The interest for Contiki is that it offers 6LowPan,
RPL [17] and CoAP. It is then possible to mimic a REST
architecture to exchange data between the WSAN and the
outside world, forming the IoT application, while hiding from
outside the characteristics of a IEEE 802.15.4 network.

In order to give the IPv6 access to each node, Contiki
organizes the mesh WSAN network using the RPL routing
protocol. With RPL (see Fig. 3), each node has its own IPv6
address, and is accessible from outside the network. RPL

builds a tree inside the WSAN to give the illusion of a direct
access to each node, while in fact there are multi-hops from
the sink to the given node.
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Fig. 1. In a RPL tree, the sink is the root of the tree and the node routing data
outside the network. Nodes are accessible from the Internet with their IPv6
address (i.e. From outside, all nodes seem to be at the same level, but inside
the WSAN, a message from R7 will be forward by R2. It is also not visible
from outside that the node R7 is in charge of relaying messages to/from nodes
NI3 and N14)

From the IoT application point-of-view, the WSAN is flat
and all nodes are directly connected and accessible in IPv6.
In fact, the WSAN is a multi-hop mesh network. Some nodes
act as routers, forwarding data to others 1. Transmitting data
has a cost for the node itself, but also for each node that is on
the path to the sink. As the energy is one of the main concern
for the researchers in WSAN, S.A. Alvi et al. have proposed
in [4] some improvements in RPL for a better stability of
the tree and a reduction of energy consumption. In our paper,
we concentrate on the way the RPL tree can be used, and
the impact of the data transmission by the nodes. In the tree
T (such as the RPL tree presented Fig. 1) where each node
nel:

e the root of the tree is ng.

e The level of a node n is the distance from the sink ng
(The sink ng is at level 0)

o the height n(T) is the longest path found in T°

o the size |T| is the number of nodes of the tree

o the pathlength w(T) is the sum of the levels of each of
the nodes in T'

o the subtree T is the tree having ny as root.

When a node n, sends data, the message is forwarded by
all the nodes on the path to the sink. Each node n, sends data,
and forwards all the messages from each node of its sub-tree
T,.. When all the nodes send data in a tree 7', a total of 7(T")
messages are transmitted within the network.

In our network presented Fig. 1, when the 16 nodes send
one message each, there are 34 transmissions. The node N2
sends its own data, and is in charge of forwarding all the data
from its sub-tree (5 nodes).

Each transmission/reception consumes energy (Table I
and II), and the 4 nodes at level 1 represent 47% of the global
consumption (Table III) (but only 25% of the total number
of nodes). Looking at Fig. 1, we can see that node R2 has
6 nodes in charge. This node has a risk of consuming all its
energy quickly, because of all the forward to do. As RPL is



TABLE III
MESSAGES BY LEVEL IN TREE FIG. 1
Level | Nb of msg | Nb of forward | Total %
1 4 12 16 47%
2 6 6 12 35%
3 6 0 6 17%

dynamic, the tree can change after a while (as an important
router node runs out of energy), i.e. R7 attaches to R1 and
N8 and N9 to R3. But in that case, R1 will have 7 nodes
to deal with, and will consume 7 times more energy than, for
example, N4. The issue here is that the most important nodes
(from the routing point-of-view) will be the first to run out of
energy, stopping or endangering the network operation.

One idea to protect the network from this issue is to reduce
the number of transmissions, with semantic network coding.
Instead of transmitting its own data, and forward all the data
coming from the sub-tree, the node mixes its own data with
the upcoming message, reducing the number of transmission
to a single one. At the end-point, the receiver has a unique
message with a global value.

In our solution, nodes limit the number of messages they are
forwarding. We assume that in this WSAN, the devices senses
a unique, or a limited set of physical values (temperature,
humidity, presence, luminance, etc). The semantics of the
content are similar, or chosen in a small list. And in a multi-
hop mesh network, we can consider than nodes in the same
sub-tree are not far from each other.

As said above, the network tree is never very far from the
real topology: l.e. in a smart city, the devices counting the
number of cars on the road transmit the value to a router
in the bock of buildings, that will forward the data to another
router in the same neighborhood, and so on. So it makes sense
to add the number of cars counted on each router to get the
global traffic information in these city’s district. Adding all
the results of the different routers gives a global view of the
traffic of this part of the city. The similarity in the collected
data, and the proximity of the network organization compared
to the topological position of the nodes argue for the use of
a data computation to obtain a reduction of the number of
transmissions.

This can be organized in multiple ways. With a unique kind
of sensing (let’s say temperature), each node can average its
value with the values received from its children (see Fig. 2),
and send this to its father (the average value, and the number
of measures, as the weight of this average). At each level, the
average is computed, and a unique message is transmitted to
the upper level. The semantic network coding function here
is average, but our solution proposes also to sum up or count
values. This can be useful with traffic surveillance, or to count
people in a smart building, a museum, etc.

If there are multiple kinds of measures, a vector of different
values is transmitted, each node filling its part of interest. Here
also, at each level of the tree, a computation is made, using
average or sum of the different vectors received to create a
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Fig. 2. In this example, the semantic network coding uses a simple vector
containing the cardinality and the average temperature value. The leaves at
the bottom of the tree send their sensed values. The first router mixes these
value with its own and send the result to its router, and so on. The sensed
and the calculated values may be stored on the node if necessary.

new one to send to the upper level. Data computing costs less
energy than sending it. The CC2420 or CC2538 devices offers
enough computation power (CPU speed, memory space) to get
the result.

In our example Fig. 1, the semantic network coding reduces
the number of messages from 34 to 16 (from 7(7T) to |T)).
If we assume that messages are short (only a value gathered
by the sensors, or a vector with some values) and that the
semantic network coded data still fits in one message, the
global transmission reduction ratio R of the tree 7' can be

calculated by the following formula: R; = |(7;l).

IV. EXPERIMENTATION

To test the feasibility of our proposal, we programmed an
experiment for a 6LowPAN network. For this purpose, we
chose Contiki-3.0 [9]. This free operating system runs on sev-
eral devices that use the IEEE 802.15.4 protocol for wireless
network. It implements 6LowPAN? to have IPv6 on these
devices. With the routing protocol RPL, the IEEE 802.15.4
network is then organized in a cluster tree, making each node
accessible with its IPv6 address without knowing the tree
organization.

The Figure 3 shows the tree being build during experiment
startup. Each node discovers its neighborhood and participates
to the elaboration of the DODAG (Destination-Oriented Di-
rected Acyclic Graph). The construction of this tree has a
convergence time of few minutes. There are few restrictions to
note. The tree may not match the topology of the environment,
as each node choose its preferred parent according to a
metric called LQL (Link Quality Level). Depending on the
interference, a node can choose a different parent than the
obvious one. Another characteristic of RPL is that the DoDAG
is dynamic, and can change over times. But as mentioned
above, we can assume that the network topology will be close
to the geographical one.

2 Acronym of IPv6 over Low -Power Wireless Personal Area Networks.
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Fig. 3. State of the RPL DODAG in our Cooja simulation at 02:05. Node
I (in green) is the sink in the centre of the figure. The tree is visible, and
nodes 19, 17, 43 and 26 are in charge of forwarding messages to the sink.
Each square represents 100m?.

TABLE IV
EXPERIMENTAL SETUP (SEE FIG. 3)
Parameter Value
Radio range of the node 25 m
Network dimensions 130 x 130 m
node type Zolertia Z1
radio chip TI CC2420
Sink (RPL root) 1
Normal node 50

For this experiment, we used Zolertia Z1 devices. They are
equipped with a CC2420 radio chip(see Table I). The micro
processor is a MSP430f2617, consuming less that 10mA at
16MHz, and 0.5mA when running at IMHz. The CC2420
consumes between 17 and 18mA in Rx/Tx mode. It has 92kB
of ROM (to store the operating system, 6LowPAN stack, RPL
protocol plus the soft we created) and 10kB of RAM to
manipulate data (see Table IV).

For our simulation, we used Cooja, the network simula-
tion/device emulator provided with Contiki-OS. It gives the
programmer the ability to test the code in real conditions (as
the device emulator strictly respects the constraints of each
device) in a simulated network. The only difference is the
software execution time in the devices emulated (depends on
the server processor power, the number of node to emulate,
and the soft complexity). For our experiment, this speed varies
from 10% to 1000% of the real software speed. The other
difference is the quality of the simulated radio network, which
is flawless (which is not always realistic). Nevertheless, Cooja
is a powerful tool for performing experiments.

In this experiment, we have one sink and 36 nodes (See
Fig. 3 and Table IV) that sense physical data, and send them
to the sink. Two versions of the experiment are proposed. In

Number of packets Tx/Rx after a 4 hours experiment

(18 first nodes out of 36)
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Fig. 4. this figure represents the number of packets received and transmitted
for each node (the 18 first only) after a 4 hours experiment. The number of
transmitted packets is the some for each node in the case of Semantic Network
coding. On the contrary, in the standard organization, the router nodes are far
more stressed.
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Fig. 5. With the Semantic Network Coding, each router reduces the number
of forwarded packets. The traffic generated by its children decreases. In this
Figure, Node 9 has less traffic to handle in the Semantic Network Coding
version because its own children have reduced the number of packets to
forward. The higher the router is in the tree, the more visible the reduction.

the standard version, each node sends a value to the sink. In
the Semantic Network Coding version, each node sends the
value to its father. The father calculates a new value (a mix
of of all the values sent by its children) and transmits it to its
own father.

As each router computes data and reduces traffic, activity at
the higher levels of the tree decreases. Fig 5 shows the impact
on each node in terms of data volume received. For example,
the Node 9, very close to the Sink, receives from the sub-tree
13 times its own data volume. In the Semantic Network coding
version, the same node sees its traffic load received reduced
to 4 times its own.
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Fig. 6. Since the Semantic Network Coding reduces traffic, there is less packet
loss. The router nodes still achieves a good transmission quality (Node 9 for
example has a better loss ratio in normal organization, but with 4 times more
packets to transmit). Node 19 has a important loss rate in the normal version,
but is at the edge of the network, with only one child. However, the Semantic
Network Coding has also some reception issues (e.g. Node 21).

Fig. 4 represents the traffic load of each node after a 4
hours experiment. With the Semantic Network Coding version,
the outgoing traffic is equal for each node, saving energy for
the router nodes (reception and transmission). In the standard
version, nodes 9 or 16 are more heavily used for routing sub-
tree messages.

The loss rate analysis in Fig 6 indicates the gain of the
Semantic Network Coding version. This result is very depen-
dent on the activity inside the network. In our experiment,
traffic reduction of Semantic Network Coding version has a
good effect on transmission error rates. The router nodes keep
a good ratio in both experiments, but some nodes far in the
tree have difficulties receiving/transmitting data where there is
heavy traffic load in the standard version (e.g. node 19).

V. CONCLUSION

Data collection in data-oriented IoT applications can lead
to significant consumption of the yet limited resources of
connected objects. Often, for a sensor, calculating a result
right in place, costs less in terms of energy consumption than
transmitting data. We saw that In IoT applications, priority is
mainly given to the transmission of data to the Cloud, where it
is then processed and reduced. However, processing the data in
the device can provide a gain in network longevity at the cost
of a loss of data accuracy, which can be accepted depending
on the use case.

In this paper, we have presented an analysis to reduce data
transmissions, by applying network coding techniques which
focus on the semantics of the data to be transmitted. The exper-
iment was conducted on the Contiki operating system which
offers end-to-end IPv6 connectivity. Our approach significantly
decreases power consumption within the network, limiting

data forwarding at each hop for each node, especially for the
most important ones for the sustainability of the network’s
existence. The possible evolution of this work consists in being
able to dynamically adapt the network coding function used,
or in proposing a passive network mode, triggering network
coded measures only with a granularity adapted to the demand.
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