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Abstract—Data exchange platforms and marketplaces are
gaining popularity as the “central point of discoverability"
[1] for IoT data. They utilize different information models to
represent heterogeneous data in a uniform and interoperable
manner. Those platforms have the need to dynamically extend
and enrich their semantic models in order to accommodate new
data offerings. Using the BIG IoT [7] semantic models and
the resulting knowledge graph as the basis, we propose a new
approach to incorporate user-defined semantic annotations into
the model on the fly, which firstly makes them usable before
their inclusion into an official release of the model, and secondly
minimizes the efforts required from ontology engineers in the
model evolution phase. The process of new annotation inclusion
is based on the dynamic generation of user interface elements
(e.g. web-forms) from annotation patterns stored in the BIG
IoT knowledge graph. By filling in user interface forms, a co-
operative user creates an unambiguous description of a new
concept meaning and connects the concept with related ones, thus,
preserving knowledge graph integrity and model consistency.

I. INTRODUCTION

The “development of extensible context models” represent-
ing IoT data is one of the key requirements to ensure semantic
interoperability in IoT formulated by the European Research
Cluster on the Internet of Things [6]. The need to make
models extensible is a natural concern as new contexts of
IoT data usage constantly arise, and new devices, sensor and
data types appear. Every data exchange platform starts to
operate with an initial information model (schema, ontology1)
which covers relevant use cases and data samples. In the IoT
data exchange contexts, no ontology is complete or has full
coverage of all possibly needed semantic concepts, and its life
cycle presupposes further enrichment, “timely adaptation of an
ontology to the arisen changes and the consistent propagation
of these changes to dependent artefacts” [8] known as ontology
evolution process.

Ontology evolution comprises the following sub-tasks: 1)
capturing required changes, 2) change representation using a
formal language, 3) testing effects of the changes, resolving
conflicts and forming a complete change request, 4) change
implementation and verification, and finally, 5) change prop-
agation to dependent data and affected applications [2]. The

1From now on, we narrow the space of information models to ontologies,
“formalized vocabularies of terms, often covering a specific domain and shared
by a community of users. They specify the definitions of terms by describing
their relationships with other terms in the ontology” [9].

present work builds on the existing ontology evolution method-
ologies (see the comprehensive surveys on it in [2], [4]). Even
though this problem is a traditional topic in the databases,
knowledge management and Semantic Web communities, on-
the-fly model extension remains rather unexplored.

In the context of IoT data exchange, we define on-the-fly
model extension as the ability of a model user, in most cases a
data provider, to add new concepts and relations and use newly
created model elements to generate semantic descriptions
(metadata) for new data offerings. The proposed elements
are dynamically added to the model without an ontology
engineer intervention, and initially marked by using a special
namespace identifier. Later on, an ontology engineer examines
the proposed changes and makes one of three decisions: 1)
accept: add a proposed concept to the model (in the following
release the new concept is placed in a corresponding domain
model); 2) replace: use another concept already defined in the
model; 3) re-model: introduce a new concept and change the
annotation.

Irrespective of the ontology engineer’s later decision, the
initial proposal operates as the part of the model for a limited
period of time, and thus, fulfills the overall goal of making data
from new providers machine-readable and usable together.
We hypothesize that guiding a user during the process of
introducing changes will highly optimize the quality of such
open data exchange systems and will ease the subsequent
ontology evolution procedure performed by the engineers. This
is especially important at the early stages of the operation
of an open data exchange system as the demand for model
extensibility is high, and the vocabulary used for metadata
creation is not familiar to data providers.

The rest of the paper is structured as follows: in Section II,
we describe the context of BIG IoT project and its semantic
modeling framework. Section III presents the details of the
proposed approach to on-the-fly ontology extension. We con-
clude the discussion and outline the directions of future work
in Section IV.

II. SEMANTIC MODELING IN THE BIG IOT PROJECT

The proposed approach to semantic model extensibility
is discussed in the context of BIG IoT project2 [7] which

2“Bridging the Interoperability Gap in the Internet of Things”, see the
project web-site: http://big-iot.eu.
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addresses the interoperability problem creating an IoT data
exchange platform – a data marketplace, and developing APIs
along with SDKs for data providers and consumers to offer
and search for data programmatically. Heterogeneous data
being exposed on the marketplace is annotated according to a
unified scheme, gaining unambiguous semantics shared by all
marketplace participants, and metadata is further stored in a
knowledge graph. Uniformly annotated data is a key enabler
of cross-platform and cross-domain IoT data integration and
collaborative data use, and thus a core of emerging IoT
ecosystems.

To set up the context for our approach, we first describe
the BIG IoT modeling layer cake which comprises 3
layers: Core, Domain, and Application ontologies. All of
them are exposed on the Web as external extensions of
the schema.org vocabulary. The Core ontology provides
concepts that verbalize basic marketplace functionality,
its actors (e.g. core:Provider3, core:Consumer,
core:Organization) and their activities (e.g.
core:Offering, core:OfferingSubscription).
To describe a data or service offering, a special data structure
called offering description is derived from the Core model. It is
used in the API and in the marketplace web-portal to annotate
offerings with the fields, such as core:name, core:price,
core:license, core:endPoint, core:category,
core:spatialCoverage, core:hasInput and
core:hasOutput.

The last 3 fields of the offering description are the con-
nection points to the Application and Domain models. The
Application model contains categories of data offerings sold on
the marketplace (e.g. Mobility, Environment), further
subdivided into subcategories (e.g. Mobility – Parking,
Charging, LocationTracking, and Environment –
AirPollution, NoisePollution), as well as links to
the expected input/output data types for these categories as
defined in the Domain ontologies.

At the current state of the development, the BIG IoT
marketplace supports two domain ontologies – Mobility
and Environment – contains concepts to characterize the
meaning of the exchanged data (see, for instance, the Mobility
domain concepts: mobility:BikeSharingStation,
mobility:ParkingSite, mobility:Accident
and their corresponding input and output data types:
mobility:NumberOfAvailableParkingSpaces,
mobility:NumberOfAvailableBikes,
mobility:AccidentType). Our domain ontologies
re-use (when appropriate) concepts of well-known models:
schema.org, DATEX II, QUDT (Quantities, units, data

3The following namespace prefixes are used in this paper: core:
– http://schema.big-iot.org/core/; mobility: – http://schema.big-
iot.org/mobility/; schema: – http://schema.org/; rdf: –
https://www.w3.org/TR/rdf-schema/; rdfs: – https://www.w3.org/
2000/01/rdf-schema#; om: – http://www.wurvoc.org/vocabularies/om-
1.8/; dcterms: – http://dublincore.org/documents/dcmi-terms/; sosa: –
https://www.w3.org/ns/sosa/; qudt: – http://qudt.org/1.1/schema/qudt;
xsd: – https://www.w3.org/2001/ XMLSchema; skos: –
https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html.

types ontology), OM (Ontology of measurements), etc. either
directly incorporating them by using their URIs or referencing
them via the “rdfs:seeAlso” or “dcterms:source” predicates.

To sum up, the BIG IoT semantic models reflect the
situation of data exchange: they define an offering’s type or
categorization, terms of use, as well as the input / output
data format and meaning. In order to accommodate new types
of data offerings on our marketplace, extensibility is needed
especially for the domain modeling layer to describe relevant
input and output data.

[
{

" l a t i t u d e " : 48 .2517561098094 ,
" l o n g i t u d e " : 11 .637541693635 ,
" f r e e S p o t s " : 67

}
]

Listing 1. Parking data

We start with the detailed description of how semantic
annotation for input and output works using 2 simple data
offerings. The first one (see the data sample in the Listing 1) is
a service which outputs an array of parking sites with location
and availability information. The second service delivers car
diagnostics data: fuel consumption and CO2 emissions (List-
ing 2).

[
{

" c a r I d " : " 46 e t9 90 0 " ,
" consumpt ion " : 1 2 . 9 6 8 6 ,
"CO2" : 2 .8804

}
]

Listing 2. Car diagnostics data

In order to be able to integrate these data on the fly, a
consumer needs to know the context of measurement: which
class of real-world objects is observed and characterized
by the fields. For the first offering, this will be a parking
site, in the second case, a car. The context can be inferred
from the category (or subcategory) of the offering which
is directly linked to some domain model concept (via the
Application model). For instance, the Parking category
is linked to the concept of mobility:ParkingSite;
its properties – the characteristics of this real-world object
(mobility:NumberOfAvailableParkingSpaces,
mobility:ParkingSiteStatus, etc.), are used to
annotate output fields semantically. The CarDiagnostics
category is linked to the concept of schema:Car. For each
field, a return value type and a unit of measurement can
optionally be specified.

Outpu t d a t a
" f i e ldName " : s e m a n t i c s

d a t a t y p e *
u n i t o f measurement *

Listing 3. Field – Annotation graph pair

In the knowledge graph, the default value types and units of
measurement (if applicable) can be stored for each property
annotation to be used if a data provider didn’t specify them



explicitly. In the core IoT data use cases, the input / output data
sections of the offering description constitute sets of field –
annotation graph pairs, each of which can be either 1:1 (“field
name" – semantic annotation), 1:2 (“field name” – semantic
and value type annotations), or 1:3 (“field name" – semantic,
value type and measurement unit annotations) relations4.
Outpu t d a t a

" f r e e S p o t s " : m o b i l i t y : NumberOfAva i l ab lePa rkSpaces
xsd : i n t
−−

" consumpt ion " : m o b i l i t y : Fue lConsumpt ion
xsd : f l o a t
om : l i t e r _ p e r _ h o u r

Listing 4. Example annotations

To assure consistency of the marketplace knowledge
graph, the BIG IoT domain models are aligned with the
SOSA (Sensor, Observation, Sample, and Actuator) ontol-
ogy [3]. From the example outputs above, it is appar-
ent that a substantial part of the output data captures the
results of sosa:Observation. We re-use the classes
sosa:FeatureOfInterest (“The thing whose property
is being estimated or calculated in the course of an Observation
to arrive at a Result” [3]), sosa:ObservableProperty
(“An observable quality (property, characteristic) of a Feature-
OfInterest” [3]), and sosa:Result (either a complex object
comprising a value and a measurement unit annotations or
a simple value, rdfs:Literal) and some of the related SOSA
properties to build field annotation graphs (their basic structure
is sketched in the Listing 5).
s o s a : O b s e r v a t i o n

[ h a s F e a t u r e O f I n t e r e s t ] s o s a : F e a t u r e O f I n t e r e s t
[ o b s e r v e d P r o p e r t y ] s o s a : O b s e r v a b l e P r o p e r t y
[ h a s S i m p l e R e s u l t ] r d f s : L i t e r a l
===============================================
[ h a s R e s u l t ] s o s a : R e s u l t

r d f : t y p e qud t : Q u a n t i t y V a l u e
qud t : numer icVa lue
qud t : u n i t

Listing 5. Basic annotation graph structure for a input/output field of an
offering

In our first example offering (Listing 1), the
mobility:ParkingSite class is modeled as a sub-
class of sosa:FeatureOfInterest, its characteristic
mobility:NumberOfAvailableParkingSpaces –
as a sub-class of sosa:ObservableProperty, and the
result of observing this property as an rdfs:Literal of
xsd:integer data type.

To create annotations for the second offering
(Listing 2), the re-used concept schema:Car is
subsumed by sosa:FeatureOfInterest, and

4Exposing other types of data (statistical or aggregated data, for instance)
may require more complex modeling. See, as an example, the LBASense
Analytic API (http://www.dfrc.ch/wp-content/uploads/2016/05/LBASense-
Analytic-API-V3.0.pdf) where the visit duration data showing the number of
visitors broken down into fixed length interval values. It contains fields like:
“from1To5Minutes", “from5To10Minutes", “from2To3Hours", etc. Here, to
annotate data semantically, not only a concept of number of people is to be
modeled, but a visit duration interval, with placeholders for values and time
units.

its properties mobility:FuelConsumption,
mobility:EmissionsCO2 are the subclasses of
sosa:ObservableProperty, etc. In the next section,
we show how the described alignment mechanism can be
used to optimize the inclusion of the new concepts proposed
by a user into domain ontologies.

III. SEMANTIC MODEL ENRICHMENT APPROACH

We explain our on-the-fly model extension approach based
on a concrete example. Let us assume that a user provides
a description of his new offering via the marketplace web-
portal and starts with the selection of the offering category:
Parking and subcategory: ParkingSite. The user then
defines the semantic annotations for the input and output
data. However, the drop-down menu of the expected output
annotations does not yet offer any adequate semantic term for
the data property: “totalCapacity". To overcome this limitation,
the user can propose a new semantic term to annotate the
property. In response to a click on the “Propose your own"
choice, the web UI is dynamically extended with a set of
forms: (radio) buttons and editable text input fields with
labels generated from the basic annotation graph explained
above. The dynamically extended web form involve the user
to actively contribute to the semantic model extension in
a user friendly manner. I.e. the system takes into account
previously made user choices to limit the user involvement
to the necessary inputs.

In Table 1, we show how the web-portal automatically
generates forms for user input based on the basic annotation
graph triples5 from Listing 5. The user-provided inputs are
subsequently transformed into a set of triples which both
annotate the field named “totalCapacity" in the offering, and
create a new subclass of sosa:ObservedProperty
proposed:TotalCapacity which is related
to mobility:ParkingSite, a subclass of
sosa:FeatureOfInterest. The return value type
characterization is performed in an analogous manner. I.e. if
a unit of measurement is relevant for a sosa:Result of
a proposed sosa:ObservedProperty, a drop-down list
with concrete units from the ontology of units of measure
(OM) is generated in the web-form and the user is asked to
select the matching unit.

With the help of a basic annotation graph, we can involve
the user in the process of semantic model extension and
automatically generate targeted web-forms, allowing users
with minimal extra effort to contribute to the knowledge
creation. The most notable benefit of this approach is that a
newly proposed semantic annotation is semantically enriched
through established relations to the existing concepts.

Swiss linguist and semiotician Ferdinand de Saussure
stressed that signs are always parts of complex systems, and
their meaning is defined by the relations between signs in such

5Note that questions in natural language forming the UI forms’ la-
bels transform the cited above definitions of corresponding SOSA con-
cepts stored as the content of the skos:definition property (see:
https://www.w3.org/ns/sosa/).



Step Known Triple(s) Generated Label and UI Element User Choice and Derived Triple(s)

(1)

[previous choice:]
Observation/id1
__sosa:hasFeatureOfInterest
____mobility:ParkingSite .

[question to solve:]
Observation/id2
__sosa:hasFeatureOfInterest
____?Feature .

Does the data output relate to mobility:ParkingSite?

Yes
No
[radio buttons]

[user selects “Yes”:]
Observation/id2
__sosa:hasFeatureOfInterest
____mobility:ParkingSite .
[proceed to (3)]

[user selects “No”:]
[proceed to (2) to generate new label and UI element]

(2)

[question to solve:]

Observation/id2
__sosa:hasFeatureOfInterest
____?Feature .

Please select the thing which property is being measured.

[show drop-down list of subclasses of sosa:FeatureOfInterest
within the Mobility domain]

[user selects “mobility:ParkingSpace”:]

Observation/id2
__sosa:hasFeatureOfInterest
____mobility:ParkingSite .

(3)

[previous choice:]
Observation/id2
__sosa:hasFeatureOfInterest
____mobility:ParkingSite .

[question to solve:]
Observation/id2
__sosa:ObservedProperty
____?Property .

Which quality (property, characteristic) of
mobility:ParkingSite is being measured?

[show text field]

[user enters “TotalCapacity”:]

proposed:TotalCapacity
__rdf:typeof
____ssn:Property,
____sosa:ObservableProperty;
__ssn:isPropertyOf
____mobility:ParkingSite .

Observation/id2
__sosa:ObservedProperty
____proposed:TotalCapacity .

Table I
Dynamic web-forms generation and processing

systems [5]. The sosa:Observation-centric relations we
have used are an example of syntagmatic relations in Saus-
sure’s terminology. Syntagmatics is based on co-occurrence
of signs and helps humans to detect properties which operate
together to create meaning. Growing the knowledge graph,
we are able to capture that sosa:ObservedProperty
Temperature is measured in qudt:unit Celsius, Fahren-
heit or Calvin; that sosa:ObservedProperty Speed
refers to a sosa:FeatureOfInterest Vehicle and
its qudt:unit is kilometer per hour, etc. These reg-
ularities can further be incorporated (through inference)
into the new semantic model extension process. For in-
stance, provided that the sosa:Result unit for the pro-
posed semantic annotation is specified as Revolution per
minute, a dynamically generated web-form can automatically
suggest sosa:ObservedProperties and corresponding
sosa:FeaturesOfInterest (e.g. car or washing ma-
chine), which have this unit as part of their basic anno-
tation graph. Syntagmatic relations put similarly structured
sosa:Observation situations closer to each other, and
thus can help users to correct semantic annotations via the
web-portal as the model grows. E.g. a user who introduced a
new semantic annotation in the initial stage due to the lack
of adequate terms may subsequently correct the annotation,
as the web-portal displays closely related concepts next to the
term initially selected, and thus making the change really easy.

Another type of relations between signs defined by
F. de Saussure is called paradigmatic. It groups signs
that can substitute each other, so they define seman-
tically similar things. A very straightforward applica-
tion of this idea might be, for instance, exposing a

user to all sosa:ObservedProperties of a certain
sosa:FeatureOfInterest after it is selected. A user
might also be asked which of the properties is the most similar
semantically to a proposed one, and based on the answer stored
as triple, the new annotation gains a more precise characteri-
zation. Going back to our example in Table 1, instead of the
free-text form and label shown in Step (3), the following selec-
tion list could be first generated: “ParkingSitePriceCategory”,
“ParkingSiteAvailabilityStatus”, “ParkingSiteOpeningStatus”,
“NumberOfAvailableParkingSpaces”. It is very likely that
a co-operative user would select “NumberOfAvailablePark-
ingSpaces", and as a result might also consider the naming
conventions of the current annotations and in turn propose a
new annotation like “TotalNumberParkingSpaces”.

The proposed approach to guide a user through the new con-
cept inclusion process relies on syntagmatic and paradigmatic
relations of concepts and uses basic annotation graphs to unify
the description. The approach brings the following benefits:
first, it allows to contextualize the user-proposed annotations,
to place it (assuming a co-operative user) closely to the
semantically related concepts, and it assures more coherent
and less ambiguous description of it. Second, it reduces the
risk of concept duplication and unconventional naming. Third,
answering questions guided by the basic annotation graph
creates a ready-to-use description which can be used in UIs
(web-forms) and shared with others as linked data. Another
remarkable benefit is that newly proposed concepts can simul-
taneously be used for offering metadata generation. Due to the
links to the related structures, the semantic annotations of the
input / output data is partially known and machine-processable
even before an ontology engineer approves it.



The proposed approach is applicable and beneficial in
the context of data exchange platforms in general: it means
more clarity and less efforts for data-providers when creat-
ing offering descriptions, and for ontology engineers during
model evolution and maintenance. For data consumers the
proposed approach is also favorable, as more meaningful
offering descriptions are provided and consumers can leverage
the extended models also for defining their offering queries.

IV. CONCLUSIONS AND FUTURE WORK

We have introduced an approach to include new user-
defined semantic annotations for data offering input/output
fields, and thus, allow on-the-fly extension of the semantic
model supported by a data exchange platform. The proposed
approach to semantic model extensibility explicitly imitates
substantial aspects of the ontology engineer decision making
process by following uniform consistent modeling principles
and leveraging concepts’ relations. Though filling-in dynami-
cally generated UI elements is still a manual process from the
user side, the underlying structure captured by basic annotation
graph is a step towards partial concept inclusion automation
which is the primary direction for our future work.

We have described the approach referring for simplicity
to only one data pattern related to the sensor measurements
as it is the core use case for most IoT related data ex-
change platforms. With this, most of the IoT streaming data
descriptions can be fully aligned with the SOSA ontology
framework. Still, for some of the spatial and temporal aspects
of data offerings different semantic annotation patterns are
appropriate. Moreover, there exist drastically dissimilar pat-
terns of data representation (statistical data, historic datasets)
and types of services (forecasting, reservation and payment).
Also, the typology of data offerings is still to be studied and
corresponding basic annotation graphs are to be developed.

Finally, we plan to investigate new types of concepts’ rela-
tions which have the potential to ease new concept inclusion
– both user-mediated and automated – and further explore the
flexibility and dynamic interoperability of graph-based models
in the context of IoT data exchanges.
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