
HAL Id: hal-02007159
https://hal.science/hal-02007159

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LATe: A Lightweight Authenticated Time
Synchronization Protocol for IoT

Renzo Efrain Navas, Laurent Toutain

To cite this version:
Renzo Efrain Navas, Laurent Toutain. LATe: A Lightweight Authenticated Time Synchronization
Protocol for IoT. 2018 Global Internet of Things Summit (GIoTS), Jun 2018, Bilbao, Spain. pp.1-6,
�10.1109/GIOTS.2018.8534565�. �hal-02007159�

https://hal.science/hal-02007159
https://hal.archives-ouvertes.fr

LATe: A Lightweight Authenticated Time
Synchronization Protocol for IoT

Renzo E. Navas, Laurent Toutain
Network Systems, Cybersecurity and Digital Law Department

IMT Atlantique
Cesson-Sevigne, France

{renzo.navas, laurent.toutain}@imt-atlantique.fr

Abstract—Time synchronization is fundamental for a wide
variety of IoT applications. Time is also fundamental to provide
security services such as certificates or OAuth-token validation.
Having a secure source of time is a fundamental problem, and
the first step to provide other services for applications. There
is no standardized lightweight and secure time synchronization
solution suitable for IoT. We propose a Lightweight Authenti-
cated Time (LATe) Synchronization Protocol. Our proposal is
based on IETF open standards and is agnostic to underlying
communication technologies. We also provide a computer-aided
proof of the security claims using the Scyther tool.

Index Terms—time ; synchronization; secure; authenticated;
protocol design ; ietf ; formal method; verification ; Scyther;

I. INTRODUCTION

Synchronized time is needed in several Internet of Things
(IoT) applications, from time-stamping of sensor data to
the establishment of authenticated secure channels. However,
many time synchronization protocols are not secure: they
assume existing secured communication channels. The estab-
lishment of secure channels, in most cases, assumes a secure
source of time e.g. to assure freshness of transactions. This
creates a circular dependence problem that has already been
spotted on the standardization community. Time protocols
are being designed to overcome this, such as the Internet
Engineering Task Force (IETF) work-in-progress Network
Time Security (NTS) [1]. However, NTS or secure-versions
of existing time protocols, are not designed for the IoT
constraints, e.g. in NTS the simplest time synchronization
takes at least six messages, including a Datagram Transport
Layer Security (DTLS) handshake, and the format of each of
the message is not optimized in terms of size.

Our study provides a solution for a coarse-grained secure
time synchronization problem in a lightweight manner, i.e.
requiring the least possible messages at the synchronizing
node, minimizing the number of cryptographic operations
and optimizing the traffic sent on the network. It is not a
goal to provide precise time synchronization; we also use
open standards to encode the messages, and the proposed
protocol is agnostic to the underlying technologies (e.g. a
packet switched network), guaranteeing end-to-end security
properties among heterogeneous networks and in the presence
of untrusted nodes.

The rest of this paper is structured as follows: Section II
briefly discuss state of the art and related work on time syn-

chronization. Sections III-IV describe our proposed solution.
Section V presents a formal proof of the protocol and Section
VI analyses possible attacks. On Section VII we compare our
solution against different protocols. Finally, Sections VIII-IX
offer some perspectives and a final conclusion for our work.

II. STATE OF THE ART FOR SECURE TIME
SYNCHRONIZATION

Prominent standardized time synchronization protocols are
the IETF Network Time Protocol (NTP) [2], IEEE 1588
Precision-Time-Protocol (PTP), and satellite-based Global
Navigation Satellite System (GNSS). An excellent overview of
time synchronization protocols over packet-switched networks
is done in [3], it also analyses security threats and solutions.
Moussa et al. [4] focus on time synchronization for the smart
grid and its security requirements. Current standardized solu-
tions to achieve secure time synchronization include Annex K
of PTP, and authenticated mode of NTP. Design of secure time
synchronization protocols from scratch is an active topic, such
as the aforementioned Network Time Security for NTP [1].
The IETF has released a document [5] that specifies the threats
and security requirements for future time protocols. Current
standardization efforts do not deal with the specific constraints
of IoT, and focus mostly on precision and robustness at the
expense of increased requirements at the node and network.
A standard suitable for IoT is an unsolved problem.

Outside standardization bodies the secure time synchro-
nization problem has been prominently studied for wireless-
sensor-networks (WSN) [6][7][8][9]. WSN share many of
IoT constraints. However the aforementioned solutions either
require already loose time synchronization, use asymmetric
cryptography, or they use nonces but requiring more messages
exchanges than our proposed solution. On Section VII we will
compare them to our proposed solution. To our knowledge
none of the proposed lightweight time synchronization meth-
ods have been formally proved with computer-aided crypto-
graphic tools.

III. LIGHTWEIGHT AUTHENTICATED TIME (LATE)
SYNCHRONIZATION PROTOCOL: SEMANTICS

A. Background and justification

The non-cryptographic part of the proposed protocol can
be traced to Cristian’s time synchronization protocol [10].

However, the problem that needs to be solved concurrently
is related to security and is how to assure the freshness and
authentication of an exchange of information in the absence
of time-awareness. The concept of authenticated and fresh
exchange of information is generalized by Bauer et al. [11]
with the concept of event-markers.

The proposed solution is intended to be the simplest possible
to the secure time synchronization problem: namely using an
event-marker for a two-message protocol; but our contribution
also has the added value of using open standards suitable for
the IoT and presenting a computer-aided security proof.

B. LATe Synchronization Protocol Entities

The nonce-based Lightweight Authenticated Time (LATe)
Synchronization Protocol is our solution that allows to se-
curely bootstrap time. The protocol involves two entities. Time
Client (TC): the entity that attempts to update its local time
representation. Time Server (TS): the entity that provides its
local time representation. TC and TS have valid pre-shared
cryptographic material. The messages are transported over
unsecured communication channels.

C. Protocol Goals

Functional Goal: Provide an entity, i.e. the Time Client,
with the time representation from a trusted party, i.e. the Time
Server.

Security Goals: (1) Data Authentication: The time rep-
resentation must be authenticated, data origin-authentication:
coming from the intended party. (2) Data Integrity: The time
representation must be integrity-protected, an alteration of the
original information must be detected. (3) Freshness: The time
representation must be fresh, it corresponds to the current run
of the protocol and not replayed from an earlier run.

Design Goals: (1) Lightweight: Minimize the number of
messages to exchange; minimize the cryptographic operations
to execute (in terms of complexity, that will be equivalent to
minimize CPU processing power-time needed at the entities);
minimize the information to exchange and provide a compact-
representation of the information over the channel1. (2) Agnos-
tic to underlying communication technologies: The protocol
messages should be easily transported over any underlying
communication technology (wired, wireless, Ethernet, IP, non-
IP, datagram oriented, etc)2. (3) Cryptographic agility: The
crypto-primitives used by the protocol must be easily inter-
changeable, e.g. ready for future algorithms, or if an attack is
discovered in current one easily to replace with other.

Non-goal: Precise, fine-grained, time synchronization its not
a goal. e.g. not synchronize at the order of µs but rather at ms
(will be determined by round-trip delay time of the network).

D. The LATe Synchronization Protocol

The Lightweight Authenticated Time (LATe) Synchroniza-
tion Protocol consists of two messages exchanged between a
Time Client (TC) and a Time Server (TS). KCS is a symmetric

1Not a semantic goal but strictly related with the syntax of the protocol.
2Idem footnote 1.

Time Client

KCS

Time Server

KCS

fresh NC

IDC , NC

NC , T imeS ,MACKCS
(NC , T imeS)

sync Time

protocol LATe synchronization protocol

Fig. 1. LATe Synchonization Protocol Diagram. KCS is a symmetric pre-
shared key between the Time Client (TC) and the Time Server (TS). IDC is
the identity representation of TC. NC is a nonce generated by TC.

pre-shared key between TC and TS. MACKk
(M) is a

message authentication code of message M using shared key
Kk. A protocol run can be described as follows:

1) TC generates a random nonce NC

2) TC sends to TS Message 1. Containing: IDC the identity
representation of TC, and NC .

3) TS sends to TC Message 2. Containing: NC ,
TimeS the local time representation of TS, and
MACKCS

(NC , T imeS) a message authentication code
of NC and TimeS using the key KCS

4) TC can synchronize its internal time representation
according to subsection III-E

The protocol is described on Figure 1.

E. Time Synchronization Calculation

The Time Client (TC) will have to run the following steps
to achieve authenticated time synchronization:

1) Timestamp when it sends Message 1: T1.
2) Validate Message 2:

• Verify nonce N ′C on Message 2 matches NC sent
on Message 1. (Freshness)

• Verify data authentication and integrity: C Calcu-
lates MACKCS

(NC , T imeS) and compares with
the received value on Message 2.

3) Calculate Round Trip Time (RTT) as RTT = T2 − T1,
where T2 is the local time of TC when performing this
calculation.

4) Set the internal time representation TC as TC =
TimeS + RTT

2 , the associated uncertainty is ±RTT
2

IV. LATE SYNCHRONIZATION PROTOCOL: SYNTAX

A. IETF standards: CBOR and COSE

The Internet Engineering Task Force (IETF) is an open
standards organization that has developed and published many

TABLE I
CBOR MAP ”TIC INFORMATION” OBJECT DEFINITION

Parameter
name

CBOR Key Value Type Description

nonce 4 binary string A random nonce

kid 5 binary string

Key-ID is an opaque
value and identifies the
cryptographic key to be
used in the response

alg
(optional)

6 int
Identifies the crypto-
graphic algorithm to be
used in the response

server
(optional)

7 string

Identifies the intended
Server for time syn-
chronization
(Absulute URI)

of the protocols that are in use on the Internet (e.g. IP
and TCP). We use the CBOR and COSE IETF standards
to encode the LATe messages. The Concise Binary Object
Representation (CBOR)[12] is a binary data format inspired by
JSON and provides a compact representation of most common
data types used at Internet standards; it also has the explicit
goals of a lightweight implementation in terms of code and
RAM needed. For the security services of the messages we
use CBOR Object Signing and Encryption (COSE) [13]. COSE
describes how to create and process encryption, signatures and
message authentication codes using CBOR for serialization.
Security using COSE is at the application-layer of the network
it is also referred as object security, the security properties can
be maintained end-to-end (even if different technologies are
used at lower layers, and -untrusted- intermediate nodes are
involved) and can be set on a per-message basis (as opposed
to session oriented security, e.g. IPSec, D-TLS).

B. LATe Message Encodings

The protocol consists of two messages encoded with CBOR.
COSE is used to cryptographically protect the second message.
We define two new CBOR objects: TIC Information and TOC
Response. Those objects are CBOR Maps which consist of
key-value pairs of information. Additionally, to give semantic
meaning to the objects without relying on external information
we assign a CBOR Tag to each of the objects. CBOR Tag
values range between ±65536, and are registered on the
Internet Assigned Numbers Authority, tags on the 1-23 range
take one byte when encoded -but all are allocated-; tags in the
24-255 range take two bytes: we chose values in this range.

1) Message 1 - TIC Information: The message will consist
of a new CBOR MAP TIC Information as defined on Table I,
we propose the CBOR Tag 59 to describe a TIC Information
object. About the nonce generation: Nonce must be at least
64-bits and cryptographically secure randomness is needed, a
pseudo-random number generator may be used if the seed has
sufficient entropy, for details see [14].

TABLE II
CBOR MAP ”TOC RESPONSE” OBJECT DEFINITION

Parameter
name

CBOR Key Value Type Description

time 3 unsigned int
Time representation
information

nonce 4 binary string A random nonce

The Key-ID is an opaque identifier of the key to be used
by the server, it is the equivalent of the client’s identity. The
Alg field allows cryptoagility, some recommended algorithms
are HMAC w/SHA-256 truncated to 64 bits (using
a 256-bit pre-shared-key), AES-CBC-MAC or AES-CMAC
(for both, 128-bit key will suffice). The client can explicitly
request for a time server, e.g. in cases where the message
is dealing with intermediate nodes. On Listing 1 we show a
TIC Information object on human-readable CBOR diagnostic
notation.

{ nonce:h'73616E206C6F7265',
kid :h'0001',
alg :4/*HMAC w/SHA-256 truncated to 64 bits*/}

Listing 1: TIC Information on CBOR diagnostic notation.

The binary representation of the same TIC Information
object is found on Listing 2 the size of the message is 19
bytes.

D83B # tag(59) (TIC Info.)
A3 # map(3)

04 # unsigned(4) (=nonce)
48 # bytes(8)
73616E206C6F7265 # Nonce Value

05 # unsigned(5) (=kid)
42 # bytes(2)
0001 # Key-ID Value

06 # unsigned(6) (=alg)
04 # unsigned(4)

Listing 2: TIC Information CBOR object (19 Bytes).

2) Message 2 - TOC Response: The message consists of a
new CBOR MAP TOC Information as defined in Table II, we
propose the CBOR Tag 60 to describe a TOC Information ob-
ject. The TOC Information object contains the representation
of the time from the server and a nonce.

The TOC Response object needs to include a Message
Authentication Code, this security service will be provided
by COSE using a COSE_Mac0 object. A TOC Response
authenticated and wrapped in COSE can be found on Listing
3 on CBOR diagnostic notation.

{protected: { /* Protected header of COSE_Mac0 Object*/
kid: h'0001',
alg: 4 /* HMAC w/ SHA-256 truncated to 64 bits */
},

payload : { /* TOC Response CBOR MAP*/
time : 1477307841,
nonce : h'73616E206C6F7265'
},

tag : h'36f5afaf0bab5d43' /* MAC Code*/}

Listing 3: TOC Information on CBOR diagnostic notation.

V. FORMAL METHOD VERIFICATION USING SCYTHER

A. Security protocols verification
There are currently two main approaches to verify secu-

rity protocols: the provable security and the formal method
approach. Provable security defines a rigorous framework
to define and prove (theorem-proof) cryptographic properties
from a mathematical point of view, proving a protocol secure
is hard on the provable security approach, and although there
is criticism to this approach [15] it is still regarded as the
most sound proof possible for a protocol. The formal method
approach proposes a simpler model to describe an analyze
cryptographic protocols, by abstracting basic properties (e.g:
encryption), it assumes perfect cryptography (e.g. the crypto-
primitives can not be broken), and the attacker capabilities
need to be modeled also (and restricted), then logical flaws
can be found on such model. Several formal methods exists;
the most known is the Burrows-Abadi-Needham (BAN) logic
or logic of beliefs, and is deprecated: flaws have been found
on protocols that have been proved secure on the BAN logic.

State-of-the-art approaches include the automatic falsifica-
tion or verification of protocols with computer-aided tools
like: Coq, CertiCrypt, EasyCrypt and CryptoVerif, all these
aimed at achieve or help to manually achieve computational
security -a subset of provable security-, in which the proof of
security is reduced to the computational infeasibility of solving
some mathematical problems for an adversary e.g. semi-prime
factorization- (these methods cannot find particular attacks
just prove they exist); on the other hand, tools like ProVerif,
Scyther, and Tamarin are all three on a higher abstraction level
(formal methods assuming a particular attacker model, e.g. the
Dolev-Yao and perfect cryptography), they provide a weaker
proof than a computational security one, but is easier to model
complex cryptosystems.

B. The Scyther tool and a formal proof of LATe
The choice of the formal proof method for this paper

is using the Scyther tool [16]. The reasoning behind is its
simplicity to model cryptosystems, the attacker model found
adequate to our setting, and the possibility to find concrete
attacks. Scyther assumes perfect (or black-box) cryptography:
the cryptoprimitives can not be broken. Another important
assumption is the Dolev-Yao adversary model [17]. In Dolev-
Yao an adversary has complete control over the communica-
tion channel: it can eavesdrop, intercept; modify, delete, and
insert any message; the adversary is a legitimate user of the
network.

To prove LATe security claims using the Scyther tool
and its model we needed notably two additional tasks not

straightforward: (1) express a message authentication code
(MAC) function (the primitive does not exist); (2) express
properly the security-authentication goals claimed.

To represent a MAC function over message m we use
two primitives: Enck(m) symmetric encryption of message
m using key k, and a non-cryptographic hash function H(m)
(a hash function on Scyter is a one-way-function and known to
every agent); then to obtain the keyed MACk(m) of a message
m we chose to encrypt-then-hash as follows H(Enck(m)),
the captured semantical meaning is that only an agent in
possession of the key k will be able to produce this one-way
function over m.

Regarding the modeling of the authentication and freshness
claims, Scyther offers the check of secrecy of a variable
m, and the following notions of authentication: aliveness,
weak agreement, non-injective agreement and non-injective
synchronization. Non-injective synchronization requires that
all protocol messages occur in the expected order with the
expected values. Proving non-injective synchronization will
implicitly include aliveness, weak agreement and non-injective
agreement. For a deep analysis on authentication hierarchies
and precise definitions see [18] and [19].

1) The LATe Protocol Description: The LATe Synchroniza-
tion Protocol defined on the Security Protocol Description
Language (SPDL) from Scyther is shown on Listing 4.

LATe: Authenticated Time Synch Protocol

hashfunction H1;
usertype TimeStamp;

protocol LATe(I,R)
{
role I # Time Client - Initiator
{
fresh Na : Nonce;
var T : TimeStamp;

send_1(I,R,I,Na);
recv_2(R,I,Na,T,H1({Na,T}k(I,R)));#encrypt-then-hash

claim_I1(I,Nisynch); #encrypt-then-hash
claim_I2(I,Niagree);
claim_I3(I,Alive);
claim_I4(I,Weakagree);
}

role R # Time Server - Responder
{
var Na : Nonce;
fresh T : TimeStamp;

recv_1(I,R,I,Na);
send_2(R,I,Na,T,H1({Na,T}k(I,R)));#encrypt-then-hash
}
}

Listing 4: LATe Protocol on Scyther’s SPDL

C. Verify Results

We verify our protocol using Scyther v1.1.13 compiled from
source running on OS Ubuntu 17.04 x64. The Scyther settings
are: Maximum number of runs 0 (unbounded), Matching
type ”find all type flaws”, advanced parameters were left
to default values. The results are the following: all claims
have been verified (Nisynch, Niagree, Alive and Weakagree).

Notably we achieved non-injective synchronization for the
protocol. Secrecy of the server time was not a goal. The
data authentication-integrity claims are satisfied by these
results. However, the non-injective synchronization does not
guarantee, by itself, the freshness goal of the LATe protocol,
we will discuss this on Section VI.

VI. ATTACKS, MITIGATIONS AND REAL-WORLD ISSUES

This section studies possible attacks, its mitigations, and
discuss other real-world issues that affect the LATe protocol.

A. Replay-attack, Injectivity and the Freshness claim

Our protocol satisfies the notion of non-injective synchro-
nization, however, this is not enough to claim resilience to
replay-attacks. This kind of attacks can be formally ruled out
by the notions of injective agreement and injective synchro-
nization. Injective-synchronization is the strongest notion of
authentication on the model we are using and -informally-
is defined as follows: ”an Initiator I considers a protocol
injectively synchronizing if the protocol (non-injective) syn-
chronizes and each run of I corresponds to a unique run of
Responder R.”. The freshness goal of our protocol is strictly
related to the injectivity property. The question arises if our
protocol satisfies injective synchronization, while we will not
make a formal proof, that will involve to prove the LOOP
property proposed in [19], but an affirmative response can be
done, informally justified by observing that every client run
will have a unique and unpredictable Nonce Ni which is used
in all the messages exchanges with the Server in that run.
This guarantees a one-to-one correspondence between all the
messages of the same run, and message from others runs will
not be able to be injected. On the formal model, a response that
matches the nonce on the request, corresponds to the current
run of the protocol and not another, it is fresh.

B. Real nonces and pre-play attack

The injective synchronization claim, who assure freshness,
relies on the (idealized) properties of the Nonce as being
unique and unpredictable. On practice this will not be the case,
and the guarantees will be limited by the randomness quality
of the nonce generation and by its length (not infinite). Shorter
nonces will be more prone to collisions and pre-play attacks
e.g. an attacker obtaining all possible nonce responses from the
server, will be able to reply these responses -with old values of
time- to any future client run of the protocol. To mitigate this
risk one straightforward solution is to use longer nonces: e.g.
128-bits (the MAC-tag should also be increased accordingly).
To make pre-play attacks infeasible (i.e. an attacker will not be
able to obtain responses from the server to inject on the client)
we define a stronger version of the protocol that includes the
authentication of the first message as shown on Listing 5.
Avoiding randomness: Authentication of the first message
allows another refinement, the nonce does not need to be
random and a counter (i.e. a sequence number) will suffice; the
counter value must be stored on persistent memory to avoid
being reset by an attacker.

1 : C → S : IDC , NC ,MACKCS (IDC , NC)

2 : S → C : NC , T ime,MACKCS (NC , T ime)

Listing 5: LATe w/MAC of first message: NC can be a counter

1 : C → S : IDC , NC ,MACKCS (IDC , NC)

2 : S → C : T ime,MACKCS (IDC , NC , T ime)

Listing 6: LATe Synchronization Protocol v2

C. Reflection Attack

Another attack can be done if the Time Client also acts as a
Time Server: on the original LATe protocol an attacker can use
a message generated by the actor in the Time Server role, to
be injected in another run of the protocol with the same actor
acting as a Time Client. The modified version on Listing 5
does not suffer from this attack. This can also be avoided if
the second message includes the recipient ID in the MAC.

D. Symmetric cryptography: server key management issues

The use of symmetric cryptography comes at a burden
at the server: it has to keep a copy of all clients’ keys.
We assume an IoT setting where the constrained node (i.e.
Time Client) has a well-known trusted party which it uses for
many purposes e.g. an Authorization Server (AS) as defined
on IETF Authentication and Authorization for Constrained
Environments [20] framework. On such a setting the AS can
also act as a Time Server. LATe has also the flexibility to use
asymmetric crypto to relieve the Time Server key management
issues if fits better the envisioned IoT use case.

E. Protocol refinement

Using the Scyther tool we verified that the same security
claims from the original LATe synchronization protocol are
hold true in a protocol using a more compact Message 2.
By omitting the Nonce in the response, but still using it to
calculate the MAC, all the security claims hold still true, but
we achieve a non-negligible gain in message size. This can
be done only if we assume that a client can run only one
concurrent run of the protocol (i.e. when receiving a response
it can assume implicitly the nonce to use to calculate the
MAC), this assumption is reasonable.

To conclude this section we gather all the mitigations
proposed for attack plus this optimization to propose a stronger
version of the LATe Synchronization Protocol on Listing 6.

The authentication of the first message that mitigates com-
pletely pre-play attacks, can also be used to mitigate Denial-of-
Service attacks at the server-side. A version that does not au-
thenticate the first message is still useful on real environments
if the users are aware of the pre-play and nonce considerations
of section VI-B.

VII. COMPARISON OF TIME SYNC. PROTOCOLS

To define a common baseline to compare several time syn-
chronization protocols we do not take in account underlying
layers overhead (e.g. IEEE 802.15.4), but only application
data. We also simplify the encoding of the messages, assuming
no overhead for metadata, and we assume the following data

TABLE III
SECURE TIME SYNCHRONIZATION PROTOCOLS BASELINE COMPARISON

Protocol Nr. of
Msg.

Avg.
msg.
size

(Bytes)

Total
Bytes

Crypto Ops.
at Node

SPS [6] 2 21 41 1×MAC
1×Nonce

E-SPS [6] 3 17 50 1×MAC
1×Nonce

TinySeRSync [7] 2 21 42 2×MAC

Guo et al. [8] 3 39 116 2× Signature
1×MAC

E-SPBS [9] 3 35 104 1× Signature
1×Nonce

LATe 2 15 30 1×MAC
1×Nonce

LATe v2 2 15 30 2×MAC
1×Nonce

sizes: Timestamp representation is 4 bytes, Node Identity is 2
bytes, a Nonce is 8 bytes, and a MAC is 8 bytes. In E-SPBS
[9] an ECDSA signature is 48 bytes; In Guo et al. [8] we
assume an Unspecified Signature being of 16 bytes, and non-
cryptographic hash 16 bytes; In [6][7] syn-ack information of
1 byte. On Table III we can se the results.

We also calculated values for NTS Extensions for NTPv4
after Key Establishment [1]: 2 Messages; 134 bytes avg. msg.
size; 268 total bytes; 2 AEAD (symmetric) operations. And
for PTP with Annex-K after Security Association: 4 Messages;
128 bytes avg. msg. size; 512 total bytes; 4×MAC. Both are
one order of magnitude greater due to the calculations taking in
account real applicative messages and not simplified encoding.

At the IoT constrained node energy is the scarcest resource
and, simplifying, the total bytes to be exchanged is the most
important factor to be minimized. LATe minimizes both the
number of messages and the total bytes count, needing ≈ 25%
less application data exchange than the second-lowest Secure
Pairwise Synchronization Protocol (SPS). This percentage will
vary if we include other protocols’ overhead, or change the
application data representation estimations, however LATe will
still be strictly inferior. In terms of cryptographic burden LATe
is also the lightest, with one MAC operation and one nonce
generation.

VIII. PERSPECTIVES

Two main topics have been highlighted on this work: the
need for a lightweight secure time synchronization protocol
in the context of IoT, and the use of computer-aided tools to
prove the security claims of protocols. The first issue needs to
be solved, WSN time solutions aim at homogeneous one-hop
precise time synchronization, and the end-to-end NTP-based
IETF solution is not lightweight in any way; meanwhile IoT
nodes need to securely bootstrap time, and we assume real-
world implementations are using home-brew solutions. This
paper has shown how difficult is to prove secure even a simple
protocol like LATe, and this reinforces the need for an open
standardized effort that will benefit from the scrutiny of experts
and the academic community.

IX. CONCLUSION

Secure time synchronization is a fundamental service for
many IoT applications. Notably, security services need a
secure source of time. We proposed a nonce-based lightweight
authenticated time synchronization protocol, which allows
a client to securely bootstrap time with a trusted server.
The proposed protocol guarantees end-to-end security among
heterogeneous networks. We provided a specification of the
protocol using state-of-the-art IETF standards suitable for
IoT. We used the computer-aided tool Scyther to prove some
security claims of our protocol on a formal model.

ACKNOWLEDGMENT

The authors would like to thank Göran Selander and Ludwig
Seitz for its contributions on the design of the LATe protocol
and his efforts on the IETF community.

REFERENCES

[1] D. F. Franke, D. Sibold, and K. Teichel, “Network Time Security for
the Network Time Protocol,” IETF, Internet-Draft draft-ietf-ntp-using-
nts-for-ntp-11, Mar. 2018, work in Progress.

[2] J. Burbank, W. Kasch, and P. D. L. Mills, “Network Time Protocol
Version 4: Protocol and Algorithms Specification,” RFC 5905, 2010.

[3] M. Lévesque and D. Tipper, “A Survey of Clock Synchronization
Over Packet-Switched Networks,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 4, pp. 2926–2947, 2016.

[4] B. Moussa, M. Debbabi, and C. Assi, “Security Assessment of Time
Synchronization Mechanisms for the Smart Grid,” IEEE Communica-
tions Surveys and Tutorials, vol. 18, no. 3, pp. 1952–1973, 2016.

[5] T. Mizrahi, “Security Requirements of Time Protocols in Packet
Switched Networks,” RFC 7384, 2014.

[6] S. Ganeriwal, C. Pöpper, S. Čapkun, and M. B. Srivastava, “Secure Time
Synchronization in Sensor Networks,” ACM Transactions on Information
and System Security, vol. 11, no. 4, pp. 1–35, 2008.

[7] K. Sun et al., “TinySeRSync: secure and resilient time synchronization
in wireless sensor networks,” Proceedings of the 13th ACM conference
on Computer and communications security, p. 264, 2006.

[8] L. Guo et al., “A Lightweight Secure Time Synchronization Mechanism
for ISO/IEC/IEEE 21451 Sensor Networks,” in IEEE Precision Clock
Synchronization for Measurement, Control, and Communication, 2015.

[9] C. Benzaid et al., “An Enhanced Secure Pairwise Broadcast Time
Synchronization Protocol in Wireless Sensor Networks,” Euromicro Int.
Conf. on Parallel, Distributed, and Network-Based Processing, 2014.

[10] F. Cristian, “Probabilistic clock synchronization,” Distributed Comput-
ing, vol. 3, no. 3, pp. 146–158, 1989.

[11] R. K. Bauer, T. A. Berson, and R. J. Feiertag, “A key distribution
protocol using event markers,” ACM Transactions on Computer Systems,
vol. 1, no. 3, pp. 249–255, 1983.

[12] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” RFC 7049 (Proposed Standard), RFC Editor, Oct. 2013.

[13] J. Schaad, “CBOR Object Signing and Encryption (COSE),” RFC 8152,
Jul. 2017.

[14] D. E. E. 3rd, S. Crocker, and J. I. Schiller, “Randomness Requirements
for Security,” RFC 4086, Jun. 2005.

[15] N. Koblitz and A. J. Menezes, “Another look at ”provable security”,”
Journal of Cryptology, vol. 20, no. 1, pp. 3–37, 2007.

[16] C. J. F. Cremers, “The Scyther Tool: Automatic Verification of Security
Protocols,” Computer Aided Verification, vol. 5423, pp. 414–418, 2008.

[17] D. Dolev and a. C. Yao, “On the security of public key protocols,” 22nd
Annual Symposium on Foundations of Computer Science, no. M, 1981.

[18] G. Lowe, “A hierarchy of authentication specifications,” Proceedings
10th Computer Security Foundations Workshop, pp. 31–43, 1997.

[19] C. J. F. Cremers et al., “Injective synchronisation: An extension of the
authentication hierarchy,” Theoretical Computer Science, no. 1-2, 2006.

[20] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth),” IETF, Internet-Draft
draft-ietf-ace-oauth-authz-11, Mar. 2018, work in Progress.

