
ar
X

iv
:1

80
2.

03
15

9v
1

 [
cs

.D
C

]
 9

 F
eb

 2
01

8
1

Running Distributed and Dynamic IoT
Choreographies

Jan Seeger, Rohit Arunrao Deshmukh, Arne Bröring

Abstract—IoT systems are growing larger and larger and are
becoming suitable for basic automation tasks. One of the features
IoT automation systems can provide is dealing with a dynamic
system – Devices leaving and joining the system during operation.
Additionally, IoT automation systems operate in a decentralized
manner. Current commercial automation systems have difficulty
providing these features. Integrating new devices into an automa-
tion system takes manual intervention. Additionally, automation
systems also require central entities to orchestrate the operation
of participants. With smarter sensors and actors, we can move
control operations into software deployed on a decentralized
network of devices, and provide support for dynamic systems. In
this paper, we present a framework for automation systems that
demonstrates these two properties (distributed and dynamic).
We represent applications as semantically described data flows
that are run decentrally on participating devices, and connected
at runtime via rules. This allows integrating new devices into
applications without manual interaction and removes central
controllers from the equation. This approach provides similar
features to current automation systems (central engineering,
multiple instantiation of applications), but enables distributed
and dynamic operation. We also quantitatively evaluate the
performance of our chosen approach.

Index Terms—Service Composition, Semantic Representation,
Internet of Things, Dynamic Service Composition, Service Chore-
ography, Semantic automation

I. INTRODUCTION

The Internet of Things (IoT) is making rapid inroads into
peoples’ everyday life. The new breed of devices such as the
Amazon Echo, Phillips Hue lights and the Nest thermostat
allow users to build advanced functionality into their homes.
Using simple configuration tools, users can easily modify their
homes and add new devices or reconfigure old ones.

Similar developments are going on in context of automation
for commercial buildings. Today, automation systems for com-
mercial buildings are installed by specialists and typically only
configured once during the deployment phase. Reconfiguring
building automation (BA) systems after installation takes a
high amount of effort from trained specialists. Also, the en-
gineering of BA systems is mostly static, adding or removing
devices requires the involvement of highly qualified personnel
such as electricians and BA specialists for deploying and (re-
) configuring the devices and system. Expressing dynamic
behavior, where devices are added or removed during the
operation of the system, is even more difficult. Sometimes,

Jan Seeger is with Corporate Technology, Siemens AG and TU München
networking chair

Rohit Deshmuk is with TU Darmstadt
Arne Bröring is with Corporate Technology, Siemens AG
This paper was funded by the EU project 688038, “Bridging the Interop-

erability Gap of the Internet of Things”

not even the installation plans of a BA system are available
after installation, which means that a “reverse engineering” of
the system becomes necessary for reconfiguration.

Current building automation systems are also centralized to
a large degree, with one or more central controllers transferring
and converting signals. The growing computation power of
sensors and actuators will make these controllers superfluous,
and will allow control algorithms to move into sensors and
actuators. Also, controllers form a single point of failure for
the system, where the failure of a controller renders building
parts inoperable. Traditional building automation systems are a
form of orchestration, where a central controller orchestrates

the interaction of components. In this paper, we will move
towards a choreography of sensors and actors, where the
actions of each participant are not controlled by a single
controller, but in a distributed fashion. This transition leads
to a number of challenges in management and operation of
the system.

We tackle these challenges in this paper by developing
a mechanism for the dynamic and automated management
of IoT choreographies at runtime. Our approach is based
on semantic technology to describe the structure and con-
figuration of a system based on so-called Recipes. A recipe
defines the data flow between IoT devices, so-called Offerings,
as an abstract template. We introduce runtime configuration
of recipes and allow the definition of communication links
to be expressed as rules, so-called Offering Selection Rules.
These rules are evaluated at runtime whenever devices are
added or removed from the IoT system, in order to keep the
recipe choreography running and automatically incorporate
new devices. We illustrate this approach at hand of a use
case example from the building domain that is referred to
throughout the rest of the paper. This use case validates the
system design and is demonstrates the advantages of dynamic
choreographies.

Our use case for evaluation is as follows: A recipe defines
the interaction between multiple switches, office lights and
motion sensors. The office lights are controlled by motion
sensors and are switched on if motion is detected at any one
sensor, but only if any of the switches is enabled. We will
demonstrate in the rest of this paper how our framework allows
the centralized creation and decentralized operation of such a
system, allowing integration of new devices at runtime.

The remainder of this paper is structured as follows: Sec-
tion II provides background to our work and outlines related
work. In Section III, we describe how services are described in
our automation system. Section IV describes how the selection
of service components can be restricted. In Section V, we

http://arxiv.org/abs/1802.03159v1

2

define the process by which devices are added into the network
and how offering selection rules are evaluated to build a chore-
ography. In Section VI, we provide a performance evaluation
of the central orchestration component. We conclude this paper
in Section VII and illustrate future avenues of research.

II. BACKGROUND & RELATED WORK

Traditional building automation is based on a static con-
figuration created by highly specialized and developed tools.
The per-application (room lighting, room shading, etc.) room

controller (RC) provides functionality by accessing connected
sensors and actors. All services available from the controller
are preloaded on the controller, and may be parametrized via
tools provided by vendors. When adding new devices, they
need to be physically connected to the controller, and the
controller needs to be parametrized to use the newly connected
devices via the provisioning software (Siemens “ABT Site”1

tool, or KNX Association “ETS tool”2). This configuration
process means that room automation functionality is limited
to preconfigured functionality on the controller, and that the
implementation of dynamic services is difficult. Additionally,
this means that that information on building configuration is
only available off-line in the provisioning software configura-
tion file, not on-line in the running system.

Research on building automation tools has led to some
advances in the field: Model-based tools have not gained wide
acceptance, but represent the current state of the art in building
automation system tool research [1]. Model-based tools allow
the configuration and management of BA systems on a higher
level. However, they do not provide the required underlying
technology to realize dynamic choreographies as our approach
integrating both tools and underlying platform does. The
semantic approach taken by Thuluva et al. [2] extends automa-
tion systems to allow engineering and operation of automation
systems. While these approaches provide functionality for
distributed operation of services, no dynamic configuration of
the system is supported without user involvement.

In the commercial sphere, “lightweight” automation services
have become popular. The foremost example here is probably
“If This, Then That” (IFTTT)3, which allows the limited
composition of web services and IoT devices with a user-
friendly interface. IFTTT and similar commercial automation
services are however limited in their integration with other
services. Integrating external services is difficult due to the
inability of these services to export automation descriptions
for use in other tools. By describing services with semantic
technology, our system simplifies the creation of external tools
to interact with our system.

The “recipe” concept is a composition language for au-
tomation components [3]. Service composition consists of
discovering services and connecting them to each other. In
the context of web services, there has been intense research

1http://www.buildingtechnologies.siemens.com/bt/
global/en/buildingautomation-hvac/building-automation/
building-automation-and-control-system-europe-desigo/room-automation/
pages/room-automation.aspx

2https://www.knx.org/in/software/ets/about/index.php
3http://ifthisthenthat.com

Lighting controller
name: brightness_in
type: qudt:Lux

name: switch_in
type: boolean

Brightness sensor Light switch

name: brightness_out
type: qudt:Lux

Lights

Figure 1. A lighting control recipe with sensors, switches and lights.

activity on composition approaches [4], such as WSDL [5] or
REST-based techniques [6], [7].

Other offerings for service composition are Node-RED4

and FlowHub5, which allow the creation of data-flow based
compositions. Flow-based research systems include Calvin [8]
and Distributed Node-RED [9]. However, the underlying
models used by flow-based composition platforms are not
expressive enough to ensure an error-free composition. The
semantic descriptions used in our framework contain enough
information to prevent incorrect service compositions.

Apart from the mechanics of composition, there has also
been research on dynamically adapting systems. Using a
system of rules allows the automation system to automatically
adapt to changing circumstances for autonomous manage-
ment [10] in a similar vein to our rule-based approach.

III. OFFERINGS & RECIPES

In the following, we present the recipe and offering models.
These models have been elaborated as part of the BIG IoT
project [11] and have been initially introduced in our previous
work [3]. Here, we provide an update of these models. This
overview is needed to describe the extensions of these models
for dynamic choreographies and making them runtime-ready
in the following sections.

“Recipes” define templates for compositions of ingredients

and their interactions. Ingredients are placeholders for offer-

ings, devices and services that process and transform data.
Interactions describe the dataflow between these ingredients.
An example recipe is shown in figure 1 describing a light-
ing control system. A lighting controller takes input from
brightness sensors, calculates the output brightness through an
algorithm (averaging, for example) and outputs the calculated
value to the connected lights, but only if one of the switches is
switched on. Inputs and outputs have both a name and a type.
The type is used for matching offerings with ingredients. This
process will be described in Chapter IV.

Offerings describe service or device instances, and how to
access these services or devices. Offerings are specified in a se-
mantic format by the so-called “offering description”. Offering
descriptions contain information on the in- and outputs of an
offering as well as information on how to access the underlying

4http://nodered.org
5http://flowhub.io

http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/building-automation/building-automation-and-control-system-europe-desigo/room-automation/pages/room-automation.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/building-automation/building-automation-and-control-system-europe-desigo/room-automation/pages/room-automation.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/building-automation/building-automation-and-control-system-europe-desigo/room-automation/pages/room-automation.aspx
http://www.buildingtechnologies.siemens.com/bt/global/en/buildingautomation-hvac/building-automation/building-automation-and-control-system-europe-desigo/room-automation/pages/room-automation.aspx
https://www.knx.org/in/software/ets/about/index.php
http://ifthisthenthat.com
http://nodered.org
http://flowhub.io

3

1 {

2 "localId": "officeLightOffering",

3 "category": "schema:lighting",

4 "endpoints": [{

5 "uri":

6 "coap://127.0.0.1:5683/LuminaireController",

7 "endpointType": "COAP_PUT",

8 "acceptType": "APPLICATION_XML",

9 "contentType": "APPLICATION_XML"}],

10 "requestTemplate":

11 "<dimmableValue>@@brightness@@</dimmableValue>",

12 "responseMapping": null,

13 "inputData": [{

14 "name": "brightness",

15 "valueType": "xsd:float"}],

16 "outputData": [],

17 "extent": {"city": "Munich"}

18 }

Listing 1. Example offering description for a CoAP-enabled office light.

service or device (providing the offering implementation). An
excerpted offering description for our switch-sensor-controller-
light example is shown in listing 1.

The offering description contains functional as well as non-
functional properties. Functional properties describe the im-
plementation of the offering (e.g. which web service endpoint
this offering accesses and procotol and payload of the request),
while non-functional properties describe installation-specific
metadata about the offering (such as the price or location
of the offering). Non-functional and functional properties
thus correspond to offering “interface” and “implementation”,
respectively. In detail, the offering description contains the
following information:

The inputData and outputData (lines 14 and 18)
functional properties contain information on the types of input
and output that this offering consumes and produces. They
are visible in the recipe in figure 1 as type annotations on the
input and output nodes. Type annotations are URIs referencing
for example a term in the schema.org [12] or QUDT [13]
ontologies. Additionally, a category is used to classify the
offering, for example, into “smart building” or “transportation”
categories. While being useful for users during the creation of
recipes, type and category properties are also used in the basic
matchmaking algorithm described in the next section.

The internal properties endpoints, requestTemplate
and responseMapping (lines 4, 11 and 13, respectively)
specify how this offering accesses the underlying service or
device. The endpoint describes the adress under which the web
service implementing this offering is reachable. To define and
parse communication payloads, the BIG IoT library can be
used [14]6. The BIG IoT library allows interpolation of input
values into URLs, URL queries and request bodies, while the
response can be parsed into output values via a simple parser
that can be parametrized per offering description. Supported
protocols for endpoints are HTTP and CoAP, with POST, PUT
and GET methods supported for both protocols. Additionally,
the asynchronous OBSERVE option is supported for CoAP.
Payloads can have XML or JSON format.

For example, the offering in figure 1 allows dimming a
light via an XML payload over CoAP as defined in the
endpointType and requestTemplate. Finally, non-

6Available at https://gitlab.com/BIG-IoT/lib-java

functional properties (extent line 19, in this example) con-
tain information about the offering that support their discovery
and selection restriction beyond the basic matching algorithm.
Both algorithms (basic matching on functional properties
and advanced matching on non-functional properties) will be
described in the next section.

The duality between offerings and ingredients is central
to our system: It allows us to utilize a recipe as choreog-
raphy descriptions independent of concrete implementations.
A recipe is concrete enough so it can be successfully created
as a blueprint by users using our tools, but so generic that it
can be implemented and run using a wide variety of service
implementations without requiring modification of the recipe.

In the next chapter, we describe the process of turning a
recipe into a runnable instance.

IV. INSTANTIATING RECIPES

“Instantiating” a recipe refers to the process of replacing in-
gredients with offerings, resulting in a recipe that’s executable.
A recipe may be instantiated multiple times with different
offerings, depending on the requirements. To instantiate a
recipe, suitable offerings are selected by their external prop-
erties described in Section III. Then, extra restrictions called
“offering selection rules” can optionally be applied. Finally,
a recipe can be executed as a choreography, as described in
Chapter V.

The matching algorithm to select suitable offerings works
as follows: For each ingredient in the recipe, the database
is searched for offerings that can replace this ingredient.
Replacement is governed by the following algorithm:

Let i be an ingredient, and o an offering. We also define
category(), inputs() and outputs() to access the so-named
properties of the offering and ingredient description in Chap-
ter III.

Furthermore, we use the “subclass of” operator ⊑ to express
subclass relations.
o can replace i iff:
• The category of the offering is a subclass of the category

of the ingredient: category(o) ⊑ category(i).
• For each input of the offering, the ingredient has at least

one input with the same or subclassed type: ∀ino ∈

inputs(o) : ∃ini ∈ inputs(i) : ini ⊑ ino.
• For each output of the offering, the ingredient has at least

one output with the same or superclassed type: ∀outo ∈

outputs(o) : ∃outi ∈ outputs(i) : outo ⊑ outi.
Note that this allows offerings to have fewer inputs than

the ingredient, as well as more outputs. Superfluous outputs
and inputs are ignored. In order to instantiate a recipe, each
of the ingredients in the recipe has to be filled by at least one
offering.

This purely type-based matching is very generic, but also
rather limited. Realizing simple use cases such as “control all
lights in room 3 via any switch in the same room” would
require defining categories specifically for this application
scenario (e.g., defining the category type “lighting in room
3”).

To address this and to keep recipes generic, we introduce
the concept of “offering selection rules” (OSRs), which allow

https://gitlab.com/BIG-IoT/lib-java

4

Recipe RRC IRC OSR
*1 *1 *1

1*

Figure 2. Relation of Recipes and OSRs

users to specify offerings that should participate in a recipe in
fine-grained detail. These rules are attached to an ingredient
and specify additional requirements on its non-functional
properties that an offering needs to provide to be considered
for filling this ingredient.

Offering selection rules are evaluated on the non-functional
properties of an offering (see Section III). Non-functional
properties can include location of the component, owner of
the component or the energy efficiency of this component.
Because the offering description is specified in a semantic
format, non-functional properties can be extended easily.

OSRs can query these properties for equality or inequalities
to a literal value. Multiple OSRs can be composed using
boolean operators AND and OR.

Additionally, the cardinality of an ingredient can be speci-
fied using OSRs. This means that the minimum and maximum
number of offerings replacing an ingredient can limited.

Using this set of OSRs, it is possible to constrain recipes in
complicated ways going beyond the basic matching algorithm.
The light recipe from figure 1 could for example be con-
strained to only match lights, sensors and switches in room A,
with the controller not being constrained to a certain location,
but to a cardinality of one. Instantiating the recipe would then
result in one controller being connected to all sensors, all lights
and all switches in room A. By adding a different set of OSRs
to the system, the recipe might be constrained to room B.

This functionality is provided in current automation systems
by defining templates that describe the a single deployment
and then instantiating these templates multiple times, once
for each room. Templates are not held available during the
runtime of the system, and thus cannot be reevaluated for
dynamic operation of the system. Using OSRs, the policy that
led to the system’s current configuration is always accessible
and available. The policy can thus be reevaluated on system
changes, something that is not possible with the template-
based approach.

Conceptually, we have implemented these concepts as fol-
lows: Recipes, offerings, ingredients and OSRs are stored in an
Apache Jena triple store7 as a semantic graph. The objects in
this semantic graphs are recipes, recipe runtime configurations,
ingredient runtime configurations and finally offering selection

rules. The relations between those concepts are shown in
figure 2.

Recipes are designed using the recipe design tool described
by Thuluva et al. [3] and are stored in the central repository.
Recipes are then instantiated by creating a “recipe runtime
configuration” (RRC) for this recipe. Each RRC describes a
specific instantiation of a recipe. A RRC is an installation-
specific instantiation of a recipe, because it can (and often
will) contain restrictions on non-functional properties (such as

7https://jena.apache.org/

Triple
store

Controller

Component 1

Component 2

Component 3

Component 4

1: Engine registers with OD
4: Controller sends InDes to engine

5: Component participates
in recipe

2: Repo finds
matching ingredients
3: Repo generates InDes for
each matching ingredient

Figure 3. Incorporation of new devices into orchestration

the location) of offerings. Recipes, on the other hand, describe
installation-independent patterns of interaction.

The RRC can contain per-recipe OSRs such as cardinality,
and always contains per-ingredient information called “in-
gredient runtime configuration” (IRC). Each RRC contains
multiple IRCs, one for each ingredient in the recipe. IRCs
contain runtime information describing the current cardinality
of the ingredient, as well as the offerings which are currently
implementing the ingredient and finally, offering selection
rules (OSRs) restricting the set of offerings that can replace
this ingredient.

The specification of a service composition as a recipe
refined by a set of queries allows the creation of dynamic
systems. We describe the realisation of such systems in the
next section.

V. DESIGN FOR ENABLING IOT CHOREOGRAPHIES

The concept of OSRs allow the addition of offerings into a
running system without manual intervention.

To realize this functionality, our system consists of three
parts, as seen in figure 3:

• A component for computing choreographies (“con-
troller”)

• A triple store for data storage
• An “engine” running on participating components

The controller is the central component of our system. The
controller instantiates recipes, and handles the addition and
removal of offerings using the triple store in the background
for persistent data storage. The “engine” implements a gateway
and enables devices to participate in the system. This is
done by accepting input from other engines running on other
components, passing this input to the offering implementation
via the mechanisms described in Section III, parsing the output
of the implementation, and sending it to the next offerings
currently part of the recipe. Thus, recipes are turned into
distributed choreographies.

In the future, the engine will run on smart sensors and
actuators directly, and enable direct integration of these de-
vices. Currently, the engine is on Raspberry Pi single board
computers connected to hardware devices.

It is crucial to note that the controller is not a single point
of failure. Without the controller, all recipes will continue
operating, only the addition and removal of components is
impacted.

https://jena.apache.org/

5

1 {"offering": "bigiot:light-control",

2 "recipeRuntimeConfiguration":

3 "bigiot:rrc1",

4 "outputs": {

5 "brightness": {

6 "http://lamp1/input":

7 "on_off",

8 "http://lamp2/input":

9 "on_off"

10 }},

11 "inputs": {

12 "bigiot:sensor1": ["sensorin"],

13 "bigiot:switch1": ["switchin"]}}

Listing 2. Example interaction descriptor for a lighting controller connected
to two lights and one sensor and switch.

The workflow for realizing dynamic choreographies is
shown in figure 3. When a new component is connected to the
network, the engine registers at the controller with its offering
description (OD) (step 1). This offering description includes all
the information necessary for deciding whether the component
should be part of a choreography. The offering description is
added to the triple store.

In step 2, the controller finds all matching IRCs for an offer-
ing by computing the matching between the IRC’s ingredient
and the new offering with the algorithm in Section IV. Then,
for each IRC matching the new offering, all associated OSRs
are evaluated. This is done by serializing the OSRs to SPARQL
queries [15] and running them on the triple store. This results
in a number of IRCs that the new component will be added
to.

From this information, interaction descriptors (InDes) are
generated in step 3. Each interaction descriptor describes the
communication behavior of one device as part of a chore-
ography. InDes’ are derived from the recipe by finding all
other offerings that an offering should communicate with and
accept input from. An example interaction descriptor is shown
in listing 2. An interaction descriptor contains information on
where to send the outputs of this offering (lines 5–12) and
which inputs to expect (lines 13–16).

Finally, interaction descriptors are sent to each device par-
ticipating in the choreography (step 4), in order to inform it
of its communication partners.

Based on the information contained in the InDes, each
component has the knowledge to participate in a choreography
(step 5). Thus, each choreography can now run autonomously,
with the new component integrated into it.

This process works analogously for offering removal. When
a device unregisters or fails, its offering description is removed
from the triple store. The controller finds all IRCs that con-
tained this offering and removes it. Optionally, the removed
offering may be replaced by another offering already available
in the triple store.

In the next section, we will quantitatively evaluate the
computational cost of OSR resolution.

VI. EVALUATION

To evaluate the scalability of our implementation, we mea-
sured the performance of the controller when adding new
components. The computational factor dominating the addition
of new components is the matching and resolution of OSRs.

100 200 300 400 500 600 700

250

500

750

1,000

Number of OSRs

T
im

e
in

m
s

Figure 4. Performance evaluation of controller

To find the set of ingredients that the new component can
replace, all OSRs need to be evaluated. Thus, it is expected
that the computation time for the addition of new components
scales with the number of RRCs in the system.

In order to evaluate this, we measured the time between the
addition of a component into the database and the conclusion
of OSR computation, when a list of all suitable choreographies
is available. To check the scalability of the controller, we
measured performance with an increasing number of RRCs
ranging from 7 to 700 using a set of 7 OSRs instantiated
n times for n from 1 to 100. The number of components
or recipes in the system does not influence the matching
performance, since only RRCs are checked for a match with
the new component.

Testing was done on a machine with 8 GB of RAM and a
2.4 GHz i5 mobile Intel processor with 4 threads.

With the controller being the only central component of
the system, its performance dominates that of the complete
system, and is therefore a suitable indicator of the overall
performance. As can be seen in figure 4, the controller scales
well enough, with a computation time of one second being
broken at about 650 RRCs in the controller. The system scales
quadratically in the number of RRCs, but with low constant
factors. Overall, the controller performance only becomes
unacceptable for our purposes with very large systems of more
than 650 components.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we present a concept, implementation and
evaluation for running dynamic IoT choreographies. These
dynamic choreographies provide am approach that is novel
in IoT environments and particularly useful in the domain of
building automation systems. By expressing service composi-
tions as recipes together with selection rules, IoT components
can be dynamically updated and recomposed. This allows the
automatic integration of new components into existing com-
positions without requiring user interaction. The choreography
approach remove single points of failure, and leverages the
computation power of network nodes. The system is reason-
ably efficient and scales acceptably with growing numbers of
devices. The quadratic scaling behavior is problematic with
very large systems, but performance tuning of the triple store
will improve the scaling behavior of the system. Additionally,
the recipe concept is limited in the compositions it can express,

6

only allowing the composition of REST services, without the
ability to add custom properties or scripts. By extending the
recipe context in the future, we will be able to express a wider
range of automation services, and further reduce the reliance
on centralized control algorithms.

Additionally, we are working on using the OSR mechanism
as a building block for reliability of orchestrations. This is a
crucial task, since failure of single IoT components may re-
main unnoticed (or noticed quite late) in distributed workflows.
Using the OSR concept, failures in the orchestration can be
automatically corrected if suitable components are available.
This research will make our system ready for more complex
deployments.

REFERENCES

[1] B. Butzin, F. Golatowski, C. Niedermeier, N. Vicari,
and E. Wuchner, “A model based development ap-
proach for building automation systems”, in Proceed-

ings of the 2014 IEEE Emerging Technology and Fac-

tory Automation (ETFA), Sep. 2014, pp. 1–6. DOI:
10.1109/ETFA.2014.7005365.

[2] A. S. Thuluva, K. Dorofeev, M. Wenger, D. Anicic, and
S. Rudolph, “Semantic-based approach for low-effort
engineering of automation systems”, in On the Move to

Meaningful Internet Systems. OTM 2017 Conferences,
ser. Lecture Notes in Computer Science, Springer,
Cham, Sep. 23, 2017, pp. 497–512, ISBN: 978-3-319-
69458-0. DOI: 10.1007/978-3-319-69459-7_33. [On-
line]. Available: https://link.springer.com/chapter/10.
1007/978-3-319-69459-7_33 (visited on 11/28/2017).

[3] A. S. Thuluva, A. Bröring, G. P. Medagoda, H. Don,
D. Anicic, and J. Seeger, “Recipes for IoT applications”,
in Proceedings of the Seventh International Conference

on the Internet of Things, ser. IoT ’17, New York, NY,
USA: ACM, 2017, 10:1–10:8, ISBN: 978-1-4503-5318-
2. DOI: 10.1145/3131542.3131553. [Online]. Avail-
able: http://doi.acm.org/10.1145/3131542.3131553 (vis-
ited on 12/21/2017).

[4] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo,
S. Bourne, and X. Xu, “Web services composition:
A decade’s overview”, Information Sciences, vol. 280,
pp. 218–238, Oct. 1, 2014, WOS:000339132700014,
ISSN: 0020-0255. DOI: 10.1016/j.ins.2014.04.054.

[5] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith,
M. Paolucci, K. Sycara, D. L. Mcguinness, E. Sirin, and
N. Srinivasan, “Bringing semantics to web services with
owl-s”, World Wide Web, vol. 10, no. 3, pp. 243–277,
2007.

[6] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS:
An HTML microformat for describing RESTful web
services”, in Web Intelligence and Intelligent Agent

Technology, 2008. WI-IAT’08. IEEE/WIC/ACM Interna-

tional Conference on, IEEE, vol. 1, 2008, pp. 619–625.
[7] R. Verborgh, T. Steiner, D. Van Deursen, R. Van

de Walle, and J. G. Vallés, “Efficient runtime service
discovery and consumption with hyperlinked restdesc”,
in Next Generation Web Services Practices (NWeSP),

2011 7th International Conference on, IEEE, 2011,
pp. 373–379.

[8] P. Persson and O. Angelsmark, “Calvin – merg-
ing cloud and IoT”, Procedia Computer Science,
The 6th International Conference on Ambient Sys-
tems, Networks and Technologies (ANT-2015), the
5th International Conference on Sustainable En-
ergy Information Technology (SEIT-2015), vol. 52,
pp. 210–217, Supplement C Jan. 1, 2015, ISSN:
1877-0509. DOI: 10.1016/j.procs.2015.05.059. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S1877050915008595 (visited on 11/06/2017).

[9] N. K. Giang, M. Blackstock, R. Lea, and V. C. M.
Leung, “Developing IoT applications in the fog: A dis-
tributed dataflow approach”, in 2015 5th International

Conference on the Internet of Things (IOT), Oct. 2015,
pp. 155–162. DOI: 10.1109/IOT.2015.7356560.

[10] M. Burkert, H. Krumm, and C. Fiehe, “Technical
management system for dependable building automa-
tion systems.”, in 20th IEEE Conference on Emerg-

ing Technologies & Factory Automation, ETFA 2015,

Luxembourg, September 8-11, 2015, 2015, pp. 1–8.
DOI: 10.1109/ETFA.2015.7301656. [Online]. Available:
http://dx.doi.org/10.1109/ETFA.2015.7301656.

[11] A. Bröring, S. Schmid, C. K. Schindhelm, A. Khelil,
S. Käbisch, D. Kramer, D. L. Phuoc, J. Mitic, D.
Anicic, and E. Teniente, “Enabling IoT ecosystems
through platform interoperability”, IEEE Software, vol.
34, no. 1, pp. 54–61, Jan. 2017, ISSN: 0740-7459. DOI:
10.1109/MS.2017.2.

[12] R. Guha, D. Brickley, and S. Macbeth, “Schema. org:
Evolution of structured data on the web”, Communica-

tions of the ACM, vol. 59, no. 2, pp. 44–51, 2016.
[13] R. Hodgson and P. J. Keller, “Qudt-quantities, units,

dimensions and data types in owl and xml”, Online

(September 2011) http://www. qudt. org, p. 34, 2011.
[14] S. Schmid, A. Bröring, D. Kramer, S. Käbisch, A.

Zappa, M. Lorenz, Y. Wang, A. Rausch, and L. Gioppo,
“An architecture for interoperable IoT ecosystems”,
in Interoperability and Open-Source Solutions for the

Internet of Things: Second International Workshop,

InterOSS-IoT 2016, Held in Conjunction with IoT 2016,

Stuttgart, Germany, November 7, 2016, Invited Papers,
I. Podnar Žarko, A. Broering, S. Soursos, and M. Ser-
rano, Eds., DOI: 10.1007/978-3-319-56877-5_3, Cham:
Springer International Publishing, 2017, pp. 39–55,
ISBN: 978-3-319-56877-5. [Online]. Available: https://
doi.org/10.1007/978-3-319-56877-5_3.

[15] S. Harris, A. Seaborne, and E. Prud’hommeaux,
SPARQL 1.1 query language, ser. W3C Recommenda-
tions. W3C, 2013. [Online]. Available: https://www.w3.
org/TR/sparql11-query/.

http://dx.doi.org/10.1109/ETFA.2014.7005365
http://dx.doi.org/10.1007/978-3-319-69459-7_33
https://link.springer.com/chapter/10.1007/978-3-319-69459-7_33
https://link.springer.com/chapter/10.1007/978-3-319-69459-7_33
http://dx.doi.org/10.1145/3131542.3131553
http://doi.acm.org/10.1145/3131542.3131553
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://dx.doi.org/10.1016/j.procs.2015.05.059
http://www.sciencedirect.com/science/article/pii/S1877050915008595
http://www.sciencedirect.com/science/article/pii/S1877050915008595
http://dx.doi.org/10.1109/IOT.2015.7356560
http://dx.doi.org/10.1109/ETFA.2015.7301656
http://dx.doi.org/10.1109/ETFA.2015.7301656
http://dx.doi.org/10.1109/MS.2017.2
https://doi.org/10.1007/978-3-319-56877-5_3
https://doi.org/10.1007/978-3-319-56877-5_3
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

	I Introduction
	II Background & Related Work
	III Offerings & Recipes
	IV Instantiating Recipes
	V Design for Enabling IoT Choreographies
	VI Evaluation
	VII Conclusions & Future Work

