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Abstract— Sensor deployments in Smart Homes have long 

reached commercial relevance for applications such as home 

automation, home safety or energy consumption awareness and 

reduction. Nevertheless, due to the heterogeneity of sensor 

devices and gateways, data integration is still a costly and time-

consuming process. In this paper we propose the Smart Home 

Crawler Framework that (1) provides a common semantic 

abstraction from the underlying sensor and gateway technologies, 

and (2) accelerates the integration of new devices by applying 

machine learning techniques for linking discovered devices to a 

semantic data model. We present a first prototype that was 

demonstrated at ICT 2018. The prototype was built as a domain-

specific crawling component for IoTCrawler, a secure and 

privacy-preserving search engine for the Internet of Things. 

Index Terms— Internet of Things, Search Engines, Smart 

Home, Data Integration, Machine Learning 

I. INTRODUCTION 

As typical for many IoT domains, Smart Home 

environments are extremely heterogeneous. Occupants buy and 

deploy sensors and actuators from different vendors each using 

different communication protocols such as ZigBee, Z-Wave, 

Bluetooth, WiFi, and each having different capabilities such as 

sensing and actuating. These devices are typically integrated by 

so-called home gateways that offer a single platform for 

accessing all connected devices. While the list of supported 

devices sounds partially impressive – e.g. Vera claims to be 

compatible with up to 2000 devices – existing gateways only 

contribute to solving the device heterogeneity problem in a 

very limited and restricted way. Each of the gateway vendors 

or open source projects follows their own approach of defining 

APIs and exhibits device metadata in different formats and to a 

varying level of detail. In short, there are no widely adopted 

Smart Home APIs that go beyond voice control. Consequently, 

application developers are forced to integrate with vendor-

specific APIs requiring spending considerable time, money, 

and effort. 

In combination with privacy concerns of home occupants, 

this could be a major roadblock towards realising innovative, 

AI-enabled Smart Home applications in existing domains of 

home automation, energy saving, security, elderly care and 

beyond. 

In this paper we address the challenge of accelerating the 

integration of IoT sensors. We call our approach IoT Crawling 

that is generally applicable to other IoT domains. We define 

IoT Crawling as discovering and understanding the deployment 

of heterogeneous IoT devices and their data relating to a 

domain of interest such as a Smart Home, a city or a Smart 

Factory. Here we describe a concrete instance of a Smart Home 

Crawler that exploits machine learning to map devices to a 

semantic model. The Smart Home Crawler is implemented as a 

domain-specific crawler component of the cross-domain 

IoTCrawler framework. IoTCrawler is a secure and privacy- 

preserving search engine for the Internet of Things [6][9].  

We first relate our ideas to existing research in Section II. 

In Section III we describe two Smart Home services as 

motivation for potential benefits of using the Smart Home 

Crawler. Then we describe our general framework in Section 

IV and present a concrete prototype that has been demonstrated 

at ICT 2018 event in Vienna, Austria. In Section V we discuss 

our current implementation and conclude with a summary in 

Section VI.  

II. RELATED WORK 

We are not aware of any comparable approaches that 

integrate IoT sensors in a semi-automatic way. This paper 

seeks to address the general problem of semantic 

interoperability [13] using Semantic Web approaches as 

demonstrated by many semantic IoT systems such as 

OpenIoT1. However, existing systems do not generally follow 

the idea of an IoT search engine and leave the semantic 

annotation process to integrators. In our approach we explore 

the potential for using machine learning to partially automate  

IoT sensor integration. 

In a broader sense, our work is also related to data 

integration and transformation tools such as Wrangler [8]. 

However, these tools purely focus on data integration, and do 

not provide solutions for discovering, accessing and 

semantically describing IoT devices and their deployment. 

Closer to our work are smart home systems that seek to 

provide a common semantic abstraction facilitating the 

integration of existing Smart home devices. For instance, DOG, 

an ontology-powered OSGi Domotic Gateway [3] exploits 

semantic web technologies for vendor-independent command 

execution across heterogeneous technologies. Similarly, Kotis 

and Katasonov describe the concept of Semantic Smart 

Gateway as a “unified command bus” for executing commands 

across heterogeneous Smart Home installations [11]. They 

propose to use an online ontology-learning mechanism for 

describing entities for semi-automatic annotations generation 

and an online ontology-alignment mechanism for calculating 

similarities between concepts [12]. In contrast, our work 

focuses on providing abstractions for sensing devices. 

 
1 http://www.openiot.eu, last visited 23/04/2019 



Closest to our work are approaches that automate or 

accelerate the integration of IoT sensors and their data. The 

Plaster framework [10] is one such example that provides a 

comprehensive approach for integrating raw metadata from a 

new building into the Brick schema. However, their approach 

is targeted to the domain of buildings and is not directly 

applicable to Smart Homes.  

III. SMART HOME SERVICES 

In this section we briefly highlight two Smart Home 

services that illustrate the potential benefits of our approach. 

A. Recognising User Behaviour  

Recognising the behaviour and activities of home occupants 

is a key enabler for many applications in the home. For 

instance, lighting and heating can be adjusted to users’ activity. 

Other examples include detecting anomalies in the way people 

behave. For instance, a Smart Home service can monitor 

elderly occupants and notify caregivers or relatives about 

unusual behaviour ensuring their well-being.  

When building such applications, one of the main 

challenges is to select and integrate appropriate sensors and 

developing algorithms that reliably detect activities, infer 

behaviours and inform about relevant anomalies. 

Consequently, these systems are usually developed in a way 

that ties the algorithms to a specific combination of sensors and 

Smart Home gateways. Typically, this leads to large efforts and 

costs when additional sensors need to be used or existing ones 

replaced, e.g. when less expensive or technically better 

alternatives appear on the market. 

The Smart Home Crawler approach has the potential to 

significantly reduce the integration effort as (1) it relies on a 

common semantic abstraction that decouples applications from 

specific technologies, and (2) it accelerates the integration of 

new IoT sensors by semi-automatically mapping new devices 

to a semantic data model. 

To a limited degree, the mapping of various Smart Home 

deployments may even offer the potential to provide 

behaviour-based services reusing existing Smart Home 

deployments. 

B. Energy Awareness 

Providing a detailed overview of energy consumption in a 

home has the potential to reduce energy consumption leading 

both to monetary savings and being more environmentally 

friendly. Within the GrowSmarter project2 we have developed 

a full system including a dashboard that collects energy 

measurements from smart plugs and provides home occupants 

a real-time view on their device-level energy consumption.  

In the dashboard, occupants can get a detailed real-time 

view for each device, have access to high resolution historical 

data and obtain energy usage metrics. The dashboard provides 

a detailed analysis of individual devices’ energy consumption 

and cost, both based on time and automatically detected usages. 

In addition, it is possible to compare devices. Our system can 

 
2 http://www.grow-smarter.eu/, last visited 11/04/2019 

also automatically detect device types connected to a smart 

plug minimising labelling effort. 

Currently, the GrowSmarter system supports collecting 

energy measurements from Fibaro Wall Plugs3 connected via 

the Homee Gateway4 or Pikkerton plugs5 integrated via our 

own gateway. 

We implemented the application using our own data 

analytics platform that provides a generic data ingestion format 

and allows efficient stream processing. With the approaches 

defined in this paper we expect that it will be easier to further 

decouple the applications, the sensor, and gateway technologies 

and integrate new IoT data sources faster. 

IV. SMART HOME CRAWLER 

In this section we describe the IoTCrawler architecture, the 

Smart Home Crawler Framework and a prototype that we 

demonstrated at ICT 2018. A video of our prototype is 

available online [15]. 

A. IoTCrawler Architecture 

 

Fig. 1. Simplified view of the IoT Crawler Architecture 

The Smart Home Crawler is a domain-specific component 

of the IoTCrawler search engine. The IoTCrawler infrastructure 

is designed in such a way that it focuses on managing metadata 

about connected IoT data sources rather than storing and 

managing the data itself. The metadata describes the IoT data 

source and is managed in a distributed, and hierarchically 

federated set of Metadata Repositories (MDR). The metadata is 

used to create an index for efficiently discovering data sources 

and for establishing a data path between the application and the 

data source (in our case the Smart Home gateway). 

Fig. 1 shows a simplified view of the IoTCrawler 

infrastructure which is divided into several layers. The lowest, 

the micro layer, is closest to the data sources and contains the 

 
3 https://www.fibaro.com/en/products/wall-plug/, last visited 11/04/2019 
4 https://hom.ee/, last visited 11/04/2019 
5 https://www.pikkerton.de/_objects/1/6.htm, last visited 11/04/2019 



crawling function that discovers new data sources within a 

domain or subdomain. In a second step data sources are 

semantically annotated, and the resulting description is stored 

in the MDR. As can be seen from the figure, either an MDR in 

the micro-layer (e.g. deployed in the Smart home) or in the 

domain layer can be used. The MDR in the inter-domain 

provides a unified view of all available metadata in the 

repository. The MDR metadata is used to create an index based 

on which search queries issued by applications can be 

efficiently answered. In a first step, search queries return 

metadata in form of matching IoTStreams. In a second step, the 

application selects the corresponding sources and accesses the 

data source using an authorisation enabler that manages access 

to the data source and a data source proxy that exposes the data 

via a well-defined API.  

As depicted in Fig. 2, the metadata stored by the MDR is 

centred around the concepts of an IoTStream that extends the 

SSN ontology6 to describe sensor streams. 
 

 

Fig. 2. The IoTCrawler IoTStream ontology  

B. Smart Home Crawler Framework 

Fig. 3 shows a layered view of the Smart Home Crawler 

Framework using the same colour coding as in Fig. 1. 
 

 

Fig. 3. Layers of the Smart Home Crawler Framework 

The network discovery component is responsible for 

discovering local IoT devices that are connected to the local 

wired or wireless TCP/IP network and uses standard discovery 

protocols for discovering IoT devices such as home gateways 

and sensor devices connected to the home network. 

The device linking component links observations from the 

network discovery agent to a device ontology that contains 

 
6 https://www.w3.org/TR/vocab-ssn/, last visited 11/04/2019 

information about known devices such as their type and 

additional metadata such as vendor and product information.  

The API discovery component is responsible for providing 

access to the metadata, i.e. metadata that describes how device 

data can be technically accessed (endpoint description, 

authorisation methods, etc.). A variety of methods can be used 

to obtain such information ranging from manually created 

descriptions to machine learning approaches to extract relevant 

API calls.  

If the discovered device is a home gateway, the device 

discovery component uses the home gateway API to discover 

devices connected to the gateway. The device discovery 

concludes the actual crawling. Results are passed to the 

metadata normalisation component that normalises this 

metadata by linking it to an IoTStream representation. This 

process of metadata normalisation may also use sensor 

measurements. 

Finally, the entity association component further enriches 

the metadata by linking devices to a domain level entity. Such a 

domain level entity may for instance be a vacuum cleaner that 

is connected to a smart plug that measures the energy 

consumed by the vacuum cleaner. In the SSN ontology such a 

domain level entity is called Feature of Interest, in the IoT 

reference model [1] this is called a Virtual Entity. 

C. Smart Home Crawler Prototype  

Fig. 4 shows the architecture as implemented in our 

prototype. In the following sections we describe this 

architecture in detail using the component names of the layered 

structure of Fig. 3 and referencing the step in Fig. 4. 

 

 

Fig. 4. Smart Home Crawler Architecture 

1) Metadata Repository: The MDR is implemented using 

the AllegroGraph7 triple stored deployed on an AWS EC2 

instance. 

2) Network Discovery (Step 1): our component scans local 

networks using UPnP, mDNS-SD and Bluetooth. The agent 

periodically scans the network and updates the triple store 

with timestamped discovery observations. These observations 

contain for instance information about the IP address, device 

names, and in the case of UPnP, also the manufacturer of the 

discovered devices and gateways. For instance, for a 

 
7 https://franz.com/agraph/allegrograph/, last visited 11/04/2019 



discovered Homee gateway we add the following triples8: 
{ 

    “@id”: “57bc95d6-4ed4-4b46-9101-f1d52871f872”, 

    “hasTimeStamp”: "2018-10-29T12:13:01+01:00", 

    “@label”: “homee-0005510F1A3D", 

    “hasNetworkName”: “homee-0005510F1A3D", 

} 

3) Device Linking (Step 2): we query the triple store for 

discovered device names and try to discover a link to a class 

in our device ontology. Fig. 6 shows the relevant subset of our 

ontology.   

 

Fig. 5. Class hierarchy of relevant Device Ontology. Class names represent 
the values of the rdfs:label property that is used for linking. 

We link the devices by performing a string similarity search 

between values of hasNetworkName and the values of 

properties in the device ontology. This way we can link the 

discovered network device to the Homee Gateway class by 

adding the triple: 
{ 

  "@id" : "homee-0005510F1A3D", 

  "@type" : "devices:HomeeGateway" 

} 

With that newlyadded triple we now have information about 

the homee Gateway as depicted in Fig. 6. 
 

 

Fig. 6. As a result of the device linking step we know that the discovered 
device is a Homee Gateway (new rdf:type relationship between homee-

0005510F1A3D and HomeeGateway.) 

4) API Discovery (not shown): In order to obtain the 

endpoints that provide metadata and data about connected 

devices we have manually created adapters for Homee, 

OpenHAB9 and Vera Secure10. However, we are also working 

on tooling for facilitating the identification of the relevant 

endpoints based on existing API documentations. For instance, 

we are able to extract a list of endpoints from API 

specifications such as Blueprint API and OpenAPI. A 

 
8 We use JSON-LD serialisation for showing RDF data. For brevity we omit 

the JSON-LD context. 
9 https://www.openhab.org/, last visited 11/04/2019 
10 https://getvera.com/, last visited 11/04/2019 

developer familiar with the interface can then semantically 

enrich the endpoints with information about which methods 

return metadata and data etc.  

5) Device Discovery (Step 3): We use the gateway API to 

retrieve metadata about connected devices. The Homee 

gateway provides an API in which the metadata and 

measurements are accessible via WebSockets. The client 

obtains the device metadata by sending a GET:nodes/ 

message. In the Homee API nodes represent devices 

connected to the gateway. Each node has a unique id and 

provides an exhaustive list of metadata items for the available 

nodes. Below we show a subset of the response sent by the 

gateway: 
 

{"nodes":[{"added":1548863167,"id":7,"name":"FIBARO 

System FGWPE/F Wall Plug Gen5"},{"added":1550568947, 

"id":8,"name":"Fibaro%20Kitchen"}]} 

 

Each node has a set of attributes that provides further data 

about the device. For instance, all information available for 

node 8 can be obtained by sending the message 

GET:nodes/8. Among other data the result consists of a 

list of attributes. Each attribute has a type. For the Fibaro plug, 

the homee gateway offers two attributes that refer to 

measurements: one of type AccumulatedEnergyUse and 

another one of type CurrentEnergyUse. The current 

energy use attribute is encoded as follows: 
 

{"node":{"added":1550568947,"attributes":[{"current_

value":2.9,"id":64,"last_changed":1550570278, 

"node_id":8,"type":3,"unit":"W"}]}} 

 

As can be seen the key information about the semantics of the 

measurement is contained in the value of the unit 

name/value pair.  

6) Metadata Normalisation (Step 3): In our current 

implementation we use the same approach as for device 

linking, i.e. we perform string similarity between the name 

value of the node object and the labels of the classes in the 

device ontology. This leads to the following triple being added 

to the triple store: 
{ 

   "@id": 

   "#58752baf-00f1-4fe2-a8df-8a097e5da983", 

   "@type" : "devices:FibaroWallPlug", 

   "label" : "Fibaro Kitchen" 

} 

Next, we compare the information from the unit value 

with units in the QUDT ontologies11. Using SSN ontology we 

can then express that the Fibaro Plug provides an 

ElectricPowerObservation that has a Electric-

PowerResult which is a qudt:QuantityValue having 

qudt:PowerUnit as a unit. 

In a similar way the Homee API provides “kWh” as a 

value for the AccumulatedEnergyUse attribute from 

which we can derive that the measurements relate to the 

physical quantity “energy” or “work”. 

 
11 http://www.qudt.org/release2/qudt-catalog.html, last visited 11/04/2019 



7) Entity association (Step 4): In our prototype, entity 

association means that we detect the type of an end user 

device or appliance connected to the smart plug. For that we 

reuse the Device Type Detection component used in the 

GrowSmarter project that currently can recognise 12 home 

appliances with a precision of 95%.  Existing approaches [14] 

rely on multiple measurement types (e.g. active power, 

reactive power, current and/or voltage). However, in reality 

not all sensors can provide the required measurements. 

Therefore, we tested several algorithms that only require a 

stream of power measurements. The random forest classifier 

showed the best performance. The final result of device type 

detection is either a device type label or “not_confident”. 

D. Activity Detection Prototype 

We have developed a simple activity detection application 

that detects user activities based on energy measurements of 

connected devices. 
 

 

Fig. 7. Devices used in the demonstration. Bottom left: homee gateway, top 
(left to right): kettle and desk lamp connected to 2 Fibaro Wall Plug, Amazon 

Echo  

As can be seen in Fig. 7, we use a desk lamp and a kettle, 

each connected to a “Fibaro Wall Plug” which communicates 

using the Z-Wave protocol with a Homee Gateway. 

The application provides both a web-based and voice-

controlled user interface implemented as an Alexa skill. For 

instance, the user can ask a question such as “Alexa, ask 

Crawler what is happening at home” based on which the 

system may reply “It looks like someone is working at the table 

in the living room and somebody is boiling water in the 

kitchen”. The application can also be used for asking a range of 

questions related to network discovery, device discovery, 

appliance types (lamp, kettle) and device usage. 

We infer activities based on usage detection of appliances 

connected to a Smart Plug, based on energy consumption 

thresholds. However, we plan to integrate and extend the more 

robust device usage detection as used in GrowSmarter. 

V. DISCUSSION 

 In the following subsections we shortly discuss some 

aspects of our current implementation. 

A. Implementation of the Metadata Repository 

As described above, we have used a triple store for the 

IoTCrawler Metadata Repository. This way we can reuse RDF 

vocabularies and ontologies and benefit from the powerful and 

standardised SPARQL query language. Despite ongoing 

research regarding scalability and federation of triple stores 

(e.g. [16]), there are still no mature and highly performant 

solutions. Therefore, we are currently examining the use of an 

NGSI-LD [7] broker that has been designed for distributed data 

management of IoT data [4][5]. It uses JSON-LD for 

exchanging data enabling semantic interoperability.  

B. Network Discovery 

In our implementation we have simply stored the results of 

the network device discovery results in our triple store. 

Modelling these results as IoT streams would allow exposing to 

applications. One such application could be a tool for crowd-

based semantic annotations of the discovered data.  

In this model the Network Discovery Agent would simply 

be modelled as a sensor that provides a stream of discovery 

observations. The data itself could be streamed using an NGSI-

LD broker. For instance, we could use SSN for modelling the 

observations as follows:  
{ 

   "@type": "DiscoveryObservation", 

   "hasResult": { 

     "@type": "DiscoveryResult", 

     "discoveredDevice":"#homee-0005510F1A3D" 

   } 

   "resultTime": "2018-10-29T12:13:01+01:00" 

} 

C. Device Discovery 

If an IoT device is connected to WLAN it may be 

discovered both during network discovery and device 

discovery using the gateway API. In this case we would try to 

determine whether the devices are the same. This can be 

reliably done if IP addresses are available in the metadata 

provided by the gateway API. If the devices cannot be 

distinguished, we simply create two instances. This means that 

as long as the ontology does not contain information from 

which it can be inferred that two devices instances are actually 

different (e.g. using owl:inverseFunctional-

Property) the application should be prepared to have 

multiple representations of the same device. 

D. API Discovery 

In our implementation we rely on either explicitly defined 

semantic annotation of an API or well-structured API 

specifications such as OpenAPI or API Blueprint. In practice, 

however, well-structured API specifications are often not 

available. However, it may be possible to generate such 

specifications out of semi-structured online documentation 

[18], or to a limited degree using example API calls [17]. 

E. Metadata Normalisation 

The described approach of using string similarity matching 

has limited applicability. For instance, in user-generated device 

names occupants typically encode locations (kitchen, living 

room) or associated appliances (toaster, lights) instead of the 

device model or its function. This further increases the 

complexity of metadata normalisation since user-generated 

data is highly language-dependent and often uses mixed 



languages. Consequently, we are considering making our 

detection approach language aware. 

Another limitation is that data schemas often use 

abbreviations or encodings that require additional information 

for correctly interpreting their meaning as for instance required 

in the interpretation of the homee attribute types (see section 

IV.C.5). To solve this challenge, we are working on enriching 

our data with additional contextual information extracted from 

API documentation and vendor websites.  

F. Entity Association  

The simplest method to solve recognising device types is to 

ask users explicitly for the type of the attached appliance. 

However, based on our experience with various sensors and 

Smart Home systems deployed in various projects over several 

years, we have seen that (1) people do not necessarily provide 

required information, and (2) people provide information about 

entity associations implicitly, e.g. in device names, (3) even if 

there is correct metadata provided, Smart Home users change 

associations without necessarily updating the metadata. 

Consequently, it is important to use features from all three 

sources (explicit and structured, implicit and semi-structured, 

and ML on the sensor data) to maintain an updated picture over 

time. 

In our current approach we have targeted the specific 

problem detecting the type of appliances connected to a 

metering smart plug. However, we believe that the general ML 

framework we are developing for this subset is applicable even 

beyond the Smart Home domain, e.g. for learning and 

automatically detecting the association between a wearable 

sensor and its wearer. 

G. Privacy, Trust, Security and User Empowerment 

While not addressed in this paper, it is crucial that home 

occupants have full control about their data and can decide 

what data is securely shared outside their homes, and which 

entities can access their data for what purpose. In the context of 

the IoTCrawler project, we are developing several mechanisms 

to address these issues. For instance, only data that needs to be 

accessible by IoTCrawler applications is shared using the 

MDR. In addition, partners in the project are applying CPABE 

[2] and smart contracts managed in blockchains in order to 

solve trust concerns between data providers and data 

consumers [6][9].  

VI. SUMMARY 

In this paper we have outlined our initial work on Smart 

Home Crawling, an approach for faster integration of IoT 

sensor data in the Smart Home domain. We addressed the 

heterogeneity problem by building on the IoTCrawler 

architecture and proposing an initial framework for Smart 

Home Crawling that we believe can be generalised to other 

domains of IoT crawling and semi-automatic IoT data 

integration. Moreover, we have implemented an additional 

prototype and discussed future directions. We are now working 

on further developing and evaluating our methods for 

understanding IoT sensor data. 
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