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Abstract—We introduce a parallel algorithmic architecture for
metagenomic sequence assembly, termed MetaPar, which allows
for significant reductions in assembly time and consequently
enables the processing of large genomic datasets on computers
with low memory usage. The gist of the approach is to iteratively
perform read (re)classification based on phylogenetic marker
genes and assembler outputs generated from random subsets
of metagenomic reads. Once a sufficiently accurate classification
within genera is performed, de novo metagenomic assemblers
(such as Velvet or IDBA-UD) or reference based assemblers may
be used for contig construction. We analyze the performance
of MetaPar on synthetic data consisting of 15 randomly chosen
species from the NCBI database [18] through the effective gap
and effective coverage metrics.

I. INTRODUCTION

Metagenomics is a scientific discipline devoted to the study
of complex microbial samples in the environment. Unlike classical
genomics, where one is faced with the task of processing samples
corresponding to one organism, metagenomics is concerned with
samples that consist of a mixture of genetic material of different
species and strains of bacteria or viruses [11] within a host. With
raw data file sizes capable of exceeding hundreds of gigabytes,
metagenomic data poses significant new challenges in Big Data signal
processing and analysis since genomic assembly is computationally
difficult even for single species analysis [11], [10], [8].

Although significant progress was made in the last few years on
developing new methods for metagenome assembly [14], [4], [8],
[15], the problem of accurate metasequence profiling remains wide
open. To hasten the progress of this new discipline, InnoCentive
recently launched a special competition under the auspices of the
U.S. Defense Threat Reduction Agency (DTRA) in metagenomic
de novo assembly. Specialized access to powerful computers and
clusters were given to all active participants for processing relatively
small amounts of data (tens of gigabytes). In the absence of such
strong computational support, large metagenomic assembly appears
to be infeasible. One way to mitigate this issue is to break down
the metagenomic data into smaller subsets that may be processed
independently and in parallel, using modest computational power.
This is the gist of the assembly approach MetaPar for parallel
metagenomic assembly that we proceed to describe in the remainder
of the paper.

MetaPar mitigates the need for computationally demanding full
metagenomic assembly by using an iterative two-stage read classifi-
cation technique. In the first stage, the microbial identification tool
MetaPhyler [6] is used for providing a rough profile of organisms
present in the metagenomic mix. By aligning the reads to all genomes
of organisms within the identified genera via Bowtie2 [3], one obtains
a rough partition of the reads into subgroups. Reads within different
identified subgroup are assembled in parallel, producing contigs that
may be run through BLAST (Basic Local Alignment Search Tool) [1]
to verify the accuracy of the classifier. After this first classification

step, some reads may remain unaligned, and require alternative means
of processing.

Two options may be pursued in the second round of classification,
depending on the number of unaligned reads. If the number of reads
is prohibitively large so as not to allow one-pass assembly with a
standard metagenomic assembler, the reads are randomly partitioned
into subgroups small enough to be assembled. All assemblies are per-
formed in parallel. Unaligned reads are iteratively reassigned between
assemblers until no changes in the assembled contigs are reported or
until a maximum number of iterations is reached. On the other hand,
if the number of reads is small enough to allow for one pass assembly,
the same procedure as outlined for the initial step is performed.
Related ideas involving dynamic classification of reads were described
in [15], but for the purpose of single genome assembly. MetaPar is
a simple parallel (and distributable) metagenomic assembler which
is able to take advantage of improvements in standard de novo
metagenomic assemblers and reference-based assembly, in contrast
to recent distributed and parallel assemblers such as Ray Meta [21].

The paper is organized as follows. In Section II, we provide a
step-by-step description of the MetaPar algorithm. In Section III, we
demonstrate the performance of the method on synthetic Illumina se-
quencer data, using a randomly selected set of 15 bacterial organisms.
We also compute and list the effective coverage and gaps in MetaPar
alignments to the identified species’ genomes.

II. AN ALGORITHMIC SOLUTION FOR PARALLEL
METAGENOMIC ASSEMBLY

The following terminology is used throughout the paper. When
describing a living organism, we will refer to several taxonomy levels,
listed from most general to most specific: life, domain, kingdom,
phylum, class, order, family, genus, and species. Each organism has
a genome, which is a sequence of bases over a four letter alphabet.
A read is a substring of a genome or a chromosom (a part of a
genome), generated through some sequencing system. The coverage
of a base in a genome equals the number of reads that contain the
base. Assembly refers to the process of overlapping reads – suffix to
prefix – in order to reconstruct the original sequence from which the
reads came from, or in order to reconstruct sufficiently long substrings
of the genome, termed contigs. Alignment refers to mapping reads
onto a given genome.

The metagenome assembly problem may be formulated as fol-
lows: given a mixture of reads from genomes of different species
providing sufficiently high coverage, reconstruct the original genomes
as accurately as possible via some computationally plausible assembly
method. Many different assembly methods for metagenomic data
were developed in the past few years, using greedy algorithms,
reference-based approaches, algorithms based on deBruijn graphs and
Eulerian path searches, and many other techniques [7]. Although the
accuracy of the aforementioned assembly methods is high for small
metagenomic samples, it quickly deteriorates when the metagenomic
data contains fragments of a large number of species. Even more
important is the fact that the complexity of most assembly methods
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grows exponentially with the number of species, leading to poor
performance scaling with sample size. As a result, large metagenomic
samples require powerful computers for assembly. This raises the
natural question of parallelizing the assembly process.

We next outline the parallel MetaPar assembly algorithm that
allows for assembling metagenomes containing several hundred
species suitable for commodity computers with 16-48+ GB RAM.
The running time of all components, aside from calls to standard
assemblers, grows linearly with the size of the metagenomic sam-
ple. The block diagram of the algorithm is depicted in Figure 1.
Note that some steps in the algorithm are implemented only if the
metasample (metagenomic sample) is very large, since in that case,
direct assembly is computationally infeasible. The proposed algorithm
uses certain techniques related to the authors’ MCUIUC algorithm for
compression, described in [20].

• Step 1 (Level I Identification): The first step of the iterative
procedure is to remove as many reads that can be associated
with known species from the original sample before running the
assembly process. Such a filtering procedure is expected to produce
significantly reduced metasamples for subsequent assembly. Filter-
ing is achieved by passing the metasample through a taxonomic
identifier, such as Metaphyler [6]1. The gist of the approach in [6]
is that almost every genomic substring of length exceeding 20 is
unique to a species or a genus. MetaPhyler scans through the
reads to identify such substrings and links them to a sequenced
species. Identification usually amounts to specifying the genera
of organisms, and the abundances of the marker sequences. Due
to identification errors, the output of the taxonomic classifier
contains both false-positive and false-negative results. Selection of
the identified genera used for read removal can depend on factors
such as the number of identified organisms, genome lengths and
identifier abundance. Simulation on synthetic data involving 15,
30 and ≥ 60 species was used to determine simple abundance
thresholds, as described in the next section.

• Step 2 (Level I Partitioning of the Dataset):
1) Once a group of genera of interest is identified in Step 1, repre-

sentative reference genomes for alignment of reads are selected.
Selection is accomplished by using complete genomes of all
species within the identified genera in an alignment procedure
performed via Bowtie2 [3]. Bowtie2 is designed for ultra-fast
alignment of short reads to long genomes, and its complexity
scales roughly linearly with the length of the genomes and
number of reads (Bowtie2, along with BLAST [1], is one of the
most frequently used alignment algorithms). Given that not all
correct genera may have been found by Metaphyler, some reads
will be reported as unaligned. Unaligned in this context refers to
not having sufficient sequence similarity to any substrings of the
chosen references genomes. The percentage of unaligned reads
heavily depends on the size of the metagenome, the number
of species involved, as well as the number of identifiers of the
species used in the identification software.

2) Step 3 (Level II Identification): Given that MetaPhyler may
miss identifying a large number of species present in the sample,
and that consequently Bowtie2-based partitioning may leave
a large fraction of reads unclassified, additional identification
procedures are needed. Two different procedures are employed
based on the volume of the unaligned reads. If the size of
the unaligned metagenome is relatively small, metagenomic
assembly based on Velvet, SOAP deNovo or IDBA-UD [8] is
used. If the unaligned metagenome is prohibitively large to
be assembled by existing assemblers, the unaligned read set
is partitioned into an appropriate number of random subsets
(The largest number of subsets we needed to run on any dataset
was eight.).The subsets are processed in parallel by independent
assemblers that produce contigs, which can be run through

1Very recently, a new approach to species identification was described in [2]
that may outperform MetaPhyler. Given that comparing identification software
packages is beyond the scope of the paper, we only report results for the more
commonly used MetaPhyler package.

TABLE I. A RANDOMLY SELECTED SET OF 15 SPECIES USED TO
ILLUSTRATE THE OPERATING PRINCIPLES OF MetaPar.

# Genus Species
1 Acidilobus Acidilobus saccharovorans 345 15 uid51395
2 Alcanivorax Alcanivorax borkumensis SK2 uid58169
3 Bacteroides Bacteroides fragilis YCH46 uid58195
4 Borrelia Borrelia garinii NMJW1 uid177081
5 Corynebacterium Corynebacterium pseudotuberculosis I19 uid159673
6 Enterobacter Enterobacter asburiae LF7a uid72793
7 Frankia Frankia CcI3 uid58397
8 Halomicrobium Halomicrobium mukohataei DSM 12286 uid59107
9 Helicobacter Helicobacter pylori Shi417 uid162205
10 Lactobacillus Lactobacillus amylovorus GRL1118 uid160233
11 Mobiluncus Mobiluncus curtisii ATCC 43063 uid49695
12 Mycoplasma Mycoplasma arthritidis 158L3 1 uid58005
13 Odoribacter Odoribacter splanchnicus DSM20712 uid63397
14 Prevotella Prevotella denticola F0289 uid65091
15 Psychroflexus Psychroflexus torquis ATCC700755 uid54205

BLAST to identify additional reference genomes for alignment
with Bowtie2. Given that the partitioning of the dataset is
random, many reads may appear as stand-alone contigs at the
output of the assembler, and are treated as unaligned reads that
need to be re-classified.2

3) Step 4 (Iterative Re-classification): Reads that remain un-
aligned after the described three steps are processed iteratively
through Step 3, as long as the number of unaligned reads is
higher than a certain threshold or until a maximum number of
iterations is executed.

III. WORKING EXAMPLE

Metagenomic samples have vastly different sizes [10], and the
exact number of iterations performed in the assembly process, as
well as the exact number of parallel read classes used depends
on the metagenomic file size. For example, for the “CO182: Coal
cuttings from Coal bed Methane well site” sample [19], one has
to run eight or more instances of a conventional assembler such as
IDBA-UD – in parallel on several machines, or sequentially on one
machine – with about 5.3 GB of reads per assembler. The algorithms
were executed on computers equipped with dual Intel Xeon E5630
processors (16 threads) and 48 GB RAM in order to not exhaust
the available memory at the 20 kmer level for the modified deBruijn
graph search. This problem is further exacerbated with sequencing
technologies that produce “long reads” (>128 bases in the case of
IDBA-UD) which require additional data to be maintained for reads
during assembly. In many cases, it is not feasible to increase available
memory beyond a certain point per machine. Each part required
∼140 CPU hours to assemble, which while relatively low is not
the critical constraint due to available memory. On the other hand,
for most synthetic metagenomes including roughly 15 species, only
one assembler is needed. All computations other than the running of
parallel assemblers were performed on a computer equipped with an
Intel Core i5 3470 and 16 GB of memory, and were primarily I/O
and CPU limited rather than memory limited. In the former case
(CO182), Metaphyler only identified genera accountable for 40%
of the metareads, while it identified more than 70% of reads in
the small synthetic samples. Due to space limitations, we illustrate
the performance and the steps of the MetaPar algorithm on a small
synthetic sample involving 15 species, and defer the analysis of real
metagenomic samples to the full version of the paper.

A. Simulating the Metagenomic Sample

Species were randomly selected from the NCBI microbial genome
database available at [18]. A selected group of 15 organisms is listed
in Table I. Of the chosen species, Frankia has the longest genome
with 5, 511, 253 bps (base pairs), while Mycoplasma arthritidis has
the shortest genome with 832, 175 bps. For each species, we selected
the FASTA file containing the complete genome and generated paired

2As already mentioned, a means for parallelizing single genome assembly
that shares some of the classification ideas outlined in this step was first
reported in [15].
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Fig. 1. Block Diagram of the MetaPar Algorithm for Metagenomic Sequence Assembly.

TABLE II. A THRESHOLD CRITERIA TO SELECT TOP GENERA OF
MetaPhyler OUTPUT.

# of reported species by Metaphyler Abundance (%) # Reads
≤ 35 1 ≥ 1000

> 35,≤ 60 0.3 ≥ 300
> 60 N/A > 100

reads using the sim reads tool accompanying IDBA-UD with settings
as in [8], and coverage depth 100. The reads from each species
were combined to simulate a metagenomic sample from an Illumina
sequencer without quality score information (nevertheless, the algo-
rithm can be easily adapted to include quality information as well,
and reads stored in the FASTQ format). The resulting metagenomic
sample size was 5 GB in the FASTA format. Note that the chosen
synthetic sample, unlike real metagenomic data, had no species from
the same genus. How the performance of the algorithm changes in
the presence of multiple species per genera will be described in the
full version of the paper.

B. Step 1: Metaphyler Genus Identification

MetaPhyler takes the simulated metagenomic reads as inputs and
outputs their taxonomy classifications. We focused our attention on
genus classification, as it is the finest reliable level provided by Meta-
Phyler. The MetaPhyler genus-level output for the input metagenomic
reads is given in Fig. 2. Note that each genus identifier appears in the
table with the number of reads containing markers and the abundance
level of such reads. We only selected genera with abundance or
number of reads exceeding a certain threshold. The choice of the
threshold is governed by many parameters, including the number
of estimated organisms, their genome lengths, the number of known
markers in the genomes, as well as the actual output of MetaPhyler.
As a guideline, we used the threshold criteria listed in Table II. Of
the 28 genera identified, 11 satisfied the threshold criteria, which in
this case amounted to more than 1% abundance or at least 1000 reads.
The selected set of 11 genera contains all true positives and no false
positives. However, MetaPhyler missed identifying the genera of four
organisms present in the metagenomic sample, namely Acidilobus,
Halomicrobium, Odoribacter, and Psychroflexus.

Species within the metagenomic mixture were identified through
an additional procedure described in the next subsection.

Fig. 2. Output of Metaphyler on randomly selected set of organisms, shown
in Table I. 11 genera with abundance higher than 1% are highlighted.

C. Step 2: Read Classification

For the purpose of classifying the reads based on similarity to
the selected reference genomes, we used the Bowtie2 algorithm [3].
Using all species of the 11 chosen genera above and building a
Bowtie2 index provided a very good metagenomic read alignment
rate, equal to 70.29%. Approximately 30% of the reads were not
aligned to any reference genomes, so these unaligned reads were
assembled via IDBA-UD. The longest 30 resulting contigs were
passed through BLAST. BLAST identified 15 of the contigs as
Odoribacter splanchnicus, 8 as Acidilobus saccharovorans, 6 as
Psychroflexus torquis, and 1 as Halomicrobium mukohataei, which
were exactly the four species missed by MetaPhyler in Step 1. These
4 species and the 25 species listed in table III were used as reference
genomes for the second iteration of Bowtie2, and the read alignment
rate was 99.94%.

D. Assembler performance evaluation

One of the most commonly used statistics for assessing the
performance of an assembler is the N50 statistic on contig lengths.
The N50 statistic is a threshold value for the length, such that contigs
of length longer than or equal to the threshold account for roughly
50% of the total contig length found by the assembler. In other words,
it is helpful to think of the N50 parameter as the median of the contig
length distribution. Since multiple lengths may satisfy this criteria,
the N50 value is often chosen to be the average of all thresholds that
satisfy the terms of the definition.



TABLE III. UP TO 9 BIGGEST SPECIES FILES PER GENUS ASSIGNED BY
BOWTIE AFTER THE FIRST ITERATION.

# Genus Accession # and Description
1 Alcanivorax NC 008260 (Alcanivorax borkumensis SK2)
2 Bacteroides NC 006347 (Bacteroides fragilis YCH46)

NC 016776 (Bacteroides fragilis 638R)
NC 003228 (Bacteroides fragilis NCTC 9343)

3 Borrelia NC 018747 (Borrelia garinii NMJW1)
NC 017717 (Borrelia garinii BgVir)

NC 006156 (Borrelia garinii PBi )
4 Corynebacterium NC 017303 (Corynebacterium pseudotuberculosis I19)

NC 017031 (Corynebacterium pseudotuberculosis P54B96)
NC 017462 (Corynebacterium pseudotuberculosis 267)

NC 017306 (Corynebacterium pseudotuberculosis 42/02-A)
NC 017305 (Corynebacterium pseudotuberculosis PAT10)
NC 017301 (Corynebacterium pseudotuberculosis C231)
NC 017300 (Corynebacterium pseudotuberculosis 1002)
NC 016781 (Corynebacterium pseudotuberculosis 3/99-5)
NC 014329 (Corynebacterium pseudotuberculosis FRC41)

5 Enterobacter NC 015968 (Enterobacter asburiae LF7a)
6 Frankia NC 007777 (Frankia sp. CcI3)
7 Helicobacter NC 017739 (Helicobacter pylori Shi417)
8 Lactobacillus NC 017470 (Lactobacillus amylovorus GRL1118)

NC 015214 (Lactobacillus acidophilus 30SC)
NC 014724 (Lactobacillus amylovorus GRL 1112)

9 Mobiluncus NC 014246 (Mobiluncus curtisii ATCC 43063)
10 Mycoplasma NC 011025 (Mycoplasma arthritidis 158L3-1)
11 Prevotella NC 015311 (Prevotella denticola F0289)

TABLE IV. TABLE OF EFFECTIVE COVERAGE & GAP FOR
REFERENCE-BASED ASSEMBLY WITH BOWTIE2

Genus Effective Coverage Effective Gap
Acidilobus 99.866 5.5
Alcanivorax 99.863 2
Bacteroides 99.947 0
Borrelia 99.863 3
Corynebacterium 99.867 2
Enterobacter 99.867 1
Frankia 99.869 1
Halomicrobium 99.866 1
Helicobacter 99.867 4
Lactobacillus 99.866 4
Mobiluncus 99.867 4
Mycoplasma 99.865 0
Odioribacter 99.751 0
Prevotella 99.861 2
Psychroflexus 99.856 1

The utility of the N50 value for assessing assembler performance
is questionable, since it does not convey important information about
what percentage of the length of underlying genomes is actually
covered by the contigs and to what extent. This is especially true for
reference based assembly. To mitigate this problem, we introduced
two performance measures, termed the effective average coverage
and the effective gap. The effective coverage measures the average
number of times a base in the genome is covered by the longest
matches in each read aligned via Bowtie2 without errors. Similarly,
the effective gap measures the number of bases that were not covered
by the longest matches contained in each read aligned via Bowtie2.
The effective gap and effective coverage for the given example are
listed in Table IV.

As can be seen from the table, the effective coverage is very large,
exceeding 99.751% for all metasample organisms. The observed gaps
are extremely small, with the worst performance observed for the
genera Acidilobus. A quick look at Table III reveals that the selected
organism in this genus was not identified by Metaphyler and may
have consequently had many substrings shared by other organisms.
This may be a plausible explanation for read misclassification and
consequently high effective gap.
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IV. CONCLUSIONS

We have described a new parallelizable framework for metage-
nomic assembly in which the computational time for most steps
grow linearly in time with the size of the metagenomic sample.
The algorithm identifies genera and species in order to use reference
based assembly to reduce the amount of standard de novo assembly
required. Performance was illustrated on a synthetic sample of 15
species. Further work includes designing schemes for efficient parti-
tioning of reads akin to TIGER, incorporation of phylogenic aligners
and incorporation of other classifiers for reads.
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