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Abstract—We consider the problem of collaborative target
localization by several observers, called players, where the
reliability of each player is unknown. As in our previous work
[1] we formulate this problem as a 20 questions game with noise
for collaborative players under a minimum entropy criterion.
We extend the setting of [1] to the case where the players’
error channels have unknown crossover probabilities. First, we
use dynamic programming to characterize the structure of the
optimal policy for constructing the sequence of questions. This
generalizes the multiplayer policies derived in [1] for the known
error channel setting. Second, we prove a separation theorem
showing that a sequential bisection scheme achieves the same
performance as the optimal joint queries. This generalizes the
separation theorem recently derived for the known error channel
case in [1]. Third, we derive bounds for the maximum entropy
loss per iteration. Finally, we show that even for the one-
dimensional case, the optimal query policy for the unknown error
channel is not equivalent to a probabilistic bisection policy. This
framework provides a methodology for simultaneous sequential
estimation of target location and learning the error channels
associated with the players.

I. INTRODUCTION

Consider the problem of estimation of an unknown target
location by playing 20 questions game with a group of
sensors. In this game, sensors are repeatedly queried about
target location. The objective is to optimize the sequence of
queries when the accuracy of responses of the noisy oracles
is unknown, i.e., unknown error channels. This is especially
relevant to the case of human-in-the-loop systems where the
probability of correct response of the human may be difficult
to predict and quantify.

Sequential estimation of target position was studied in [2],
for the single player setting, in the context of a noisy 20
questions game, where the objective was to minimize the
expected entropy after N questions. In the collaborative case
[1], a controller sequentially poses a set of questions about
target location to multiple sensors and fuses the sensors’ noisy
responses to formulate the next questions.

This paper focuses on the unknown error channel case.
Our approach is based on jointly estimating the target and
the error channels associated with the players. Using dynamic
programming, we characterize the optimal policy and provide
bounds on the maximum expected entropy loss per iteration.
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We also derive a separation theorem that shows that a sequen-
tial bisection scheme achieves the same expected entropy loss
as the jointly optimal scheme.

A. Previous Work

The paper by Jedynak et al. [2] formulates the single player
20 questions problem as a controller querying a noisy oracle
about whether or not a target X* lies in a set 4,, C R%
Starting with a prior distribution on the target’s location pg(-),
the objective is to minimize the expected entropy of the
posterior distribution:

(D

where m = (g, m1,...) denotes the controller’s query policy
and the entropy is the standard differential entropy [3] H(p) =
— [y p(x)logp(x)dx. The posterior mean or median py is
used to estimate the target location after N questions. The
densities fp and f; correspond to the noisy channel :

P(Yni1 =ylZn = 2) = foy)I(z = 0) + fi(y)I(z = 1)

where Z,, = I(X* € A,) € {0,1} is the channel input.
The noisy channel models the conditional probability of the
response to each question being correct. For the special case
of a binary symmetric channel (BSC), u* = 1/2 and the
probabilistic bisection policy [2], [4] becomes an optimal
policy. Thm. 2 in [2] shows the bisection policy is opti-
mal under the minimum entropy criterion-i.e., P, (A,) =
J4 pn(z)de = u* € argmax,cp,1) ¢(u), where ¢(u) =
H(fiu+(1—u)fo) —uH(f1)— (1 —u)H(fo) is nonnegative.

Recently, Tsiligkaridis et al. [1] derived optimality con-
ditions for query strategies in the collaborative multiplayer
case. It was shown that even when the collaborative players
act independently, jointly optimal policies require overlapping
non-identical queries. A sequential bisection policy for which
each player responds to a single question was introduced and it
was proven that the expected entropy reduction for the jointly
optimal scheme is the same as that of the sequential bisection
scheme. Thus, while the jointly optimal scheme might be
hard to implement as the number of players and dimensions
increase, the sequential bisection scheme simplifies the con-
troller design with no performance degradation.

inf B [H (p)]

The function I(A) is the indicator function throughout the paper-i.e.,
I(A) =1 if A is true and zero otherwise.



II. NOTATION & ASSUMPTIONS

In this paper, we adopt the setup of [1]. Assume that there
is a target with unknown state X* € X C R, There are M
collaborating players that can be asked questions at each time
instant. The objective of the players is to come up with the
correct answer to a kind of 20 questions game.

In the joint estimation setup, we assume that the controller
design queries for M sensors and, after querying, the responses
are fused and the next set of questions is formulated (see
Fig. 1). Let the mth player’s query at time n be “does X*
lie in the region A%m C RI?”. We denote this query as
zi™ = 1(x* e AY) € {0,1} to which the player
yields provides a noisy response Y,EZ'l) € {0,1}. The query
region(s) chosen at time n depend on the information available
at time n. More formally, {Z{™ = I(X* € AU} is a
predictable stochastic process with respect to the filtration
generated by {A{™} and {erfl)( AU e, (AU, €
Fo =0 ({AU; Y, (AT 0 <k <n—1) forn € N,
At each iteration a current best target estimate X,, of X* is
produced (which is an JF,-measurable random variable).

The sequential strategy consists of sequentially asking play-
ers queries and using the intermediate responses to refine the
posterior (see Fig. 2). For each time epoch, indexed by n
and called a cycle, the controller formulates and asks the M
players questions A,, = A,;, t = 0,...,M — 1. Let the
mth player’s query at time n; = (n,t) = n,,_; be denoted
by Z,, = I(X* € A,,) € {0,1} and its associated noisy
response Yy, , € {0, 1}. The query region A,,, chosen at time
n depends on the information available at that time. More for-
mally, define the multi-index (n,t) where n = 0, 1,. .. indexes
over cycles and t = 0, ..., M —1 indexes within cycles. Define
the nested sequence of sigma-algebras G, +, Gn.t C Gnti 455
foralli > 0and j € {0,...,M — 1 — t}, generated by the
sequence of queries and the players’ responses. The filtration
Gn,¢ carries all the information accumulated by the controller
from time (0, 0) to time (n,¢). The queries {4,, ;} formulated
by the controller are measurable with respect to this filtration.

Define the random vector € = (e1,...,exr) € [0,1/2)M, the
joint posterior distributions P(X™* = z, ¢* = €|F,,) = pn(x,¢€)
and P(X* =z, €* = €|Gp 1) = P, (2, €).

For sets A C R% define Al
Define the M-tuples Y, 41 = (YTSF)17 e ,Yﬁfl)) and A, =
{An ,...7A$LM )}. Given the responses Y11, the posterior
update becomes [1]:

A and A° Ae°.

pn+1(1‘, 6) o8 ]P)(Y’n+1 = Yn+1|AnaX* =, 6* = ea]:n)pn('ra 6)
(2)
Assuming that all sensors are queried in sequence starting
from m = 1 and ending at m = M, the posterior updates
(after querying the (¢ 4 1)th player) become:
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Fig. 1. Joint scheme for M collaborative players responding to binary
valued queries about the location X ™ of an unknown target.

We make the following assumptions throughout the paper.

Assumption 1. (Conditional Independence) Assume that the
players’ responses are conditionally independent:

M
P(Yoi1|An, X5 6%, Fo) = [] POLYTATY, X5 ) 3)

m=1
where
PV AU, X, ) = {fl . s, ATY), X € AT

™ (v, e ALY, X+ ¢ Al
4)

Assumption 2. (Memoryless Binary Symmetric Channels)
Players’ response channels are independent (memoryless)
binary symmetric channels (BSC) [3] with crossover proba-
bilities €., € [0,1/2):

£ (0 e, AT =

£ ()

M,j=0,1

where m =1, ...,

ITII. NoisYy 20 QUESTIONS WITH COLLABORATIVE
PLAYERS: UNKNOWN ERROR CHANNELS

We consider the setting where the error probabilities of the
M players are unknown. In this case, the Bayes posterior
update (2) is not well-defined, so the probabilistic bisection
algorithm cannot be directly used. In the generic setup of
unknown €}, € [0,1/2) with no a priori information, a joint
scheme is to estimate the target X* and the error probabilities
€* = (€f,...,€4). The joint posterior distribution of (X*, €*)
is considered here because the error probabilities e,, are
coupled with the target x through the Bayesian update (e.g.

see (4) and (2)).

A. Joint Query Design

We consider the minimum entropy criterion (1). Since the
error probabilities of sensors are unknown, the joint policy

P (T,€) derived in Thm. 1 in [1] is no longer applicable or valid.
— O Define the density parameterized by € = (e1,...,€pm) €
XP(Yo,., = Ynyu|An,, X" =, €1 = €141, Gn, ), (T, € y p y Lo--- €M
Vnior = Ynoga t(Jtril) t+1 )P (2, €) 0,1/2)M and i = (i1,...,in) € {0,13M as g(ylie) =
P(Yo, | An, X* €511, Gn,) = { i (Yo lei), X € Am]_[" (m)(y(m)|em). Next, we derive the joint optimality
MNt41 nes 9 )y INg

fét+1)(

Yo lef), X5 ¢ AntCOIldltIOIlS for the case of unknown error probabilities.
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Fig. 2. Sequential scheme for M collaborative players responding to
binary valued queries about the location X ™ of an unknown target.
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Theorem 1. (Jointly Optimal Policy, Unknown Error Proba-
bilities) Let Assumptions 1 and 2 hold. Consider the problem
(1), where the joint policy is made up of the query regions for
the M sensors.

1) Optimal policies A, = (ASE), cee A%M)) at time n satisfy:

1/2
sup H Z / (-li,€) (ﬂ(A(m’))i’"’,e) de
{AM)}, ie{0,1}M m
1/2
Z / H(g(-|i,€) (ﬂ( (m))i’”,e> de ®)
ie{0,1}M m

=Gy,

2) The maximum information gain at time n is:

ZE

felwiio C(em )pn (€m)d€m.

Proof: 1) Optimality conditions
The solution of (1) yields the Bellman recursion:

Va(pn) = inE Vit 1(Prt1)|An = A, F

Using a similar argument as in Thm. 2 in [2], the optimal
solution at time n is given by maximizing the entropy loss:

Gy =supI((X* €);
A

(€m)|Fnl (6)

where E[C(ep)|Frn] =

Y.t1|An = A F,)
= Sip H(pn) —-E [H(pn+1)‘An = A7]:n]
E [H(YTL+1)|X*7 6*7 An; ]:n]

(7

and the value function is given by V,(p,) = H(p.) —
,ICV;nl G} for n < N and Vi (pn) = H(pw). Rewriting (7)

inside the supremum, we obtain (5) [5].

2) Bounds on Maximum entropy loss

Note that the second term in (5) is independent of the queries,

so the supremum can be restricted to only the first term

without loss of generality. This follows from the additivity

of the entropy of a product distribution-i.e., H(g(-|i,e)) =

=sup H(Y t1|An, Fn) —
A,

M H(F (lem)) = XM hy(en). Using part 1), the
capacity formula of BSC (C(ey) = 1 — hp(em)), and the
fact that the uniform distribution maximizes the entropy (see
Ch.2 in [3]), the maximum entropy loss can be bounded

as G, < E {Zm C(em)‘}"ﬂ} [5]. Using the concavity of

H(-) along with Thm. I from [1], it can be shown that
G: >E [zﬁf:l C(em)‘fn} [51. -
1) Lower Bound on MSE Performance: The maximum

entropy loss derived in Thm. 1 is used next to provide a lower
bound on the MSE of the joint sequential estimator.

Theorem 2. (Lower bound on Joint MSE) Assume H(pg) is
finite. Then, the joint MSE of the joint query policy in Thm. 1
satisfies:

K ( 2nC,,
——dexp 7

where K = exp(2H(py)) is a constant and X, =

E[X*|F.], en = E[e*|F,]. The average entropy loss after n
. 1 n—1 v

questions is C,, = £ Y10 G

) < Ef| X0~ X* |+ Ellen—c"I3] (®)

Proof: The proof is similar to the proof of Thm. 3 in [1]
and is included in [5]. |
2) Discussion: The jointly optimal policy derived in Thm.
1 bears some similarity with the jointly optimal policy of Thm.
1 in [1] that does not apply to the case of unknown channels.
We remark that in the unknown channel setting, the maximum
entropy loss G, given in (5) is not time-invariant, unlike in the
case of known error channels, in which the maximum entropy
loss was the sum of the capacities of the players’ channels
= > ,,C(€y). This observation motivates an adaptive
sensor selection; given the constraint that only one sensor may
be queried at each time instant, then, unlike in the known
channel case, the maximal information gain may be obtained
by querying different sensors at different time instants based
on the collected information.

B. Sensor Selection Scheme

The control u,, = u denotes that the uth sensor is queried
at time n and A" = A is the associated query region.

Theorem 3. (Sensor Selection Policy, Unknown Error Prob-
abilities) Consider the problem (1), where the policy is made
up of which sensor to choose and the associated query region.

1) At time n, optimal query policies satisfy:

1/2 1
- (e )P (A
s, i = ([ 52t )
1/2 1
—~ / > H (fi(tlew)) PS(A% €u)dey 9)
eu_(]l 0

2) At time n, the maximum entropy loss is:
G = max G} (u) = max E[C(e,)|Fy]

Proof: The proof follows using techniques similar to
Thm. 1 and is included in [5]. |



The optimal policy for the minimum expected entropy
criterion (1) shown in Thm. 3 prescribes to use the sensor
u with the maximum information gain (measured through the
uth sub-marginal distribution pﬁl“) (z, €,)). While the form (9)
bears some similarity to the optimality conditions of the known
error models (see Thm. 1 in [1]), the bisection policy is no
longer optimal.

1) One-dimensional Case: The next corollary specifies
the form of the optimal policy derived in Thm. 3 for one-
dimensional targets. For simplicity, consider the unit interval
X =10,1] as the target domain.

Corollary 1. (Sensor Selection Policy, Unknown Error Prob-
abilities, One-dimensional Target) Consider the problem (1)
for the optimal sensor and query selection policy. Consider
the query regions A, = [0,z,). The optimal sensor u and
associated query region A = [0, x| at time n is given by:

max{ max hp (gﬁi(m)) - cﬁ”}

(10)
u z€[0,1]

where hp(+) is the binary entropy function [3] and

1/2
e = / h ()P (eu)dey
Euzo

W@y — [ Lo (8) — @
o) (2) / O ()t + / (pat) — p (1))t

1/2
Mgu) (t) = / eupglu) (t> Eu)deu
€,=0

1/2 1/2
pn(t):/ / pn(t7€17~'~7€A1)d61"'dGM
61:0 61\/[:0

Proof: The proof follows from Thm. 3 [5]. [ |
We note that the optimal policy derived for the case of
unknown probability in (10) is not equivalent to the prob-
abilistic bisection policy-i.e., obtaining P\ ([0,2]) = 1/2
for each sensor u and then evaluating the information gain and
choosing the sensor with the maximum information gain. This
heuristic scheme would yield a suboptimal information gain
as compared to the maximal information gain given by (10).
Thus, in the unknown probability setting, the optimal control
law is no longer equivalent to the known probability setting
(after marginalizing out the noise parameters €i,...,€xr).
This result shows that the two settings are quite different.
We empiricallgf observed that there is a unique query point
r =zl = an ) that maximizes the function (10). This is
similar to the one-dimensional case for the known channel
setting when the query region is of the form A = [0, z]; i.e.,
the optimal point is the (unique) median.

C. Sequential Query Design
In this section, we show a version of the separation theorem

(Thm. 2 in [1]) for the unknown error channel case.

Theorem 4. (Separation, Unknown Error Probabilities) Con-
sider the sequential and joint schemes. Then, it follows that
G:eq,n = E[Zm C(Gm)|gn} and G;kL = E[Zm C(Em)|fn] for

all n.

Proof: After querying all M players in sequence, using
the tower property of expectation and Thm. 1 with M = 1 for
each sub-instant n;, the maximal entropy loss can be shown
to be G:eq,n = Sup{Ant}ﬁal E[H(pn) - H(pn+1)|gn] =
]ET[Z%:I C(€m)|Gn] [5]. The second part follows from Thm.
1 part 2). [ ]

IV. SIMULATION

Fig. 3 shows a simulation result of the MSE performance for
M =1 sensor with unknown error probability. This simulation
implies that the binary responses obtained from one player
carry enough information to accurately estimate both the target
and its error probability.
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Fig. 3. Monte Carlo simulation for MSE performance of the joint sequential
estimator (of the target X * and the error probability €*). The MSE for X is
shown on the left and MSE for € on the right, as a function of iteration. 100
Monte Carlo trials were used. The true error probability was set to €* = 0.3
and the true target location was X* = 0.75. The initial distribution was a
product of uniform distributions po(xz) = I(x € [0,1]) and po(e) = I(e €
[0,1/2))-i.e., po(z,€) = po(x)po(€).

V. CONCLUSION

We studied the problem of collaborative 20 questions with
noise for the multiplayer case under unknown error channels.
In this setting, we characterized jointly optimal policies and
derived a separation theorem that shows the jointly optimal
design is equivalent to a sequential bisection design that can
be more easily implemented. Simulations were provided to nu-
merically evaluate the performance of the proposed sequential
estimator. Future work may include cost constraints associated
with the use of sensors.
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